ExcelDemy

How to Do a T Test in Excel (2 Ways with Interpretation of Results)

Md. Meraz al Nahian

Download the Practice Workbook

T Test.xlsx

T Test Types

There are two types of t-tests. They are:

  • One-tailed t-test
  • Two-tailed t-test

Each of them has 3 subtypes. They are:

  • Two sample equal variance
  • Two sample unequal variance

How to Do a T-Test in Excel: 2 Effective Ways

Method 1 – using the excel t.test or ttest function for a t-test, case 1.1 – two sample equal variance t-test.

In the dataset, you will see the prices of different laptops and smartphones. Here is a formula that performs a T-Test on the prices of these products and returns the t-test result.

=T.TEST(B5:B14,C5:C14,2,2)

Calculating Two Sample T-Test Result by Formula

We set the 3rd argument of the function to 2 as we are doing a two-tailed t-test on the dataset. The 4th argument should be 2 for a two-sample equal variance t-test.

Case 1.2 – Paired T-Test

We are going to apply another formula to calculate the Paired T-Test . The following dataset shows the performance mark of some employees in two different criteria.

=T.TEST(C5:C13,D5:D13,2,1)

Calculating Paired T-Test Result by Formula

Note: The explanation of the results is described in the following sections.

Method 2 – Using the Analysis ToolPak

  • Go to the Options window.
  • Select Add-ins and click on the Go button in the Manage section.

Initiating Analysis Toolpak Add-in

  • The Add-ins window will appear. Select Analysis ToolPak and click OK again.

Adding Analysis Toolpak Add-in

Case 2.1 – Tw-Sample Equal Variance T-Test

  • Click on the Data Analysis button from the ribbon of the Data tab.
  • The Data Analysis features will appear. Select t-Test: Two Sample Assuming Equal Variances and click OK .

Opening Two Sample T Test by Analysis Toolpak

  • Set up the parameters for the t-test operation. Insert the Laptop and Smartphone prices as Variable 1 Range and Variable 2 Range. Include the headings in the range and check Labels.
  • Set the value of Hypothesized Mean Difference to 0 .
  • Select an Output option of your preference and click OK .

Setting up Parameters for Two Sample T-Test

  • As we have chosen a New Worksheet for the outputs, we will see the results in a new sheet.

Showing T-Test Result for Two Sample Test

Comments on Results

The output shows that the mean values for Laptops and Smartphones are 1608.85 and 1409.164 respectively. We can see from the Variances row that they are not precisely equal, but they are close enough to be assumed to have equal variances. The most relevant metric is the p-value .

The difference between means is statistically significant if the p-value is less than your significance level. Excel calculates p-values for one- and two-tailed T Tests .

One-tailed T Tests can detect only one direction of difference between means. A one-tailed test, for example, might only evaluate whether Smartphones have higher prices than Laptops . Two-tailed tests can reveal differences that are larger or smaller than. There are some other disadvantages to utilizing one-tailed testing, so I’ll continue with the conventional two-tailed results.

For our results, we’ll utilize P(T=t) two-tail, which is the p-value for the t-test’s two-tailed version. We cannot reject the null hypothesis because our p-value ( 0.095639932 ) is greater than the conventional significance level of 0.05 . The hypothesis that the population means differ is supported by our sample data. The mean price of Laptops is greater than the mean price of Smartphones’ .

The Analysis ToolPak also returns results for a one-tailed t-test . Here, the one-tailed P value of the two-sample equal variance t-test is 1.734 .

Case 2.2 – Paired T-Test

Select the t-Test: Paired Two Samples for Mean when you open the Data Analysis window.

Showing T-Test Result for Paired Test

The result shows that the mean for the Workpace is 104 and the mean for the Efficiency is 96.56 .

The difference between means is statistically significant if the p-value is less than your significance level. For our results, we’ll utilize P(T=t) two-tail, which is the p-value for the t-test’s two-tailed version. We cannot reject the null hypothesis because our p-value ( 0.188 ) is greater than the conventional significance level of 0.05 . The hypothesis that the population means differ is supported by our sample data. In particular, the Workpace mean exceeds the Efficiency mean.

How to Interpret T-Test Results in Excel

Let’s bring out the results again.

Two Sample Equal Variance t-Test Interpretation

  • The mean of laptop prices = 1608.85
  • The mean of smartphone prices = 1409.164

ii. Variance

  • The variance of laptop prices = 77622.597
  • The variance of smartphone prices = 51313.7904

iii. Observations

The number of observations for both laptops and smartphones are 10 .

iv. Pooled Variance

The samples’ average variance, calculated by pooling the variances of each sample.

The mathematical formula for this parameter is:

((No of observations of Sample 1-1)*(Variance of Sample 1) + (No of observations of Sample 2-1)*(Variance of Sample 2))/(No of observations of Sample 1 + No of observations of Sample 2 – 2)

So it becomes: ((10-1)*77622.59676+(10-1)*51313.7904)/(10+10-2) = 64468.19358

v. Hypothesized Mean Difference

We “hypothesize” that the number is the difference between the two population means. In this situation, we chose 0 because we want to see if the difference between the means of the two populations is zero.

It indicates the value of the Degrees of Freedom. Formula for this parameter is:

No of observations of Sample 1 + No of observations of Sample 2 – 2 = 10 + 10 – 2 = 18

vii. t-Stat

The test statistic value of the t-Test operation.

The formula for this parameter is given below.

(Mean of Sample 1 – Mean of Sample 2)/(Square root of (Pooling Variance* (1/No of observations of Sample 1 + 1/No of observations of Sample 2)))

So it becomes: (1608.85 – 1409.164)/Sqrt(64468.19358 * (1/10 + 1/10)) = 1.758570846

viii. P(T<=t) two-tail

A two-tailed t-test’s p-value. This value can be found by entering t = 1.758570846 with 18 degrees of freedom into any T Score to P Value Calculator.

In this situation, the value of p is 0.095639932 . Because this is greater than 0.05 , we cannot reject the null hypothesis. This suggests that we lack adequate evidence to conclude that the two population means differ.

ix. t-Critical two-tail

This is the test’s crucial value. A t-Critical value Calculator with 18 degrees of freedom and a 95% confidence level can be used to calculate this number.

In this instance, the critical value is 2.10092204 . We cannot reject the null hypothesis because our test statistic t is less than this number. Again, we lack adequate information to conclude that the two population means are distinct.

Things to Remember

  • Excel demands that your data be arranged in columns, with data from each group in a separate column. The first row should have labels or headers.
  • Clearly state your null hypothesis (usually that there is no significant difference between the group means) and your alternative hypothesis (the opposite of the null hypothesis).
  • As a result of the t-test, Excel returns the p-value. A small p-value (usually less than the specified alpha level) indicates that the null hypothesis may be rejected and that there is a substantial difference between the group means.

Frequently Asked Questions

Can I perform a t-test on unequal sample sizes in Excel?

Yes, you can use the T.TEST function to do a t-test on unequal sample sizes. When calculating the test statistic, Excel automatically accounts for unequal sample sizes.

What is the difference between a one-tailed and a two-tailed t-test?

A one-tailed t-test determines if the means of the two groups differ substantially in a given direction (e.g., greater or smaller). A two-tailed t-test looks for any significant difference, regardless of direction.

Can I calculate the effect size in Excel for t-tests?

While there is no built-in tool in Excel to calculate effect size, you can manually compute Cohen’s d for independent t-tests and paired sample correlations for paired t-tests using Excel’s basic mathematical operations.

<< Go Back to Excel for Statistics  |  Learn Excel

What is ExcelDemy?

Tags: Statistical Significance in Excel

Meraz Al Nahian

Md. Meraz Al Nahian has worked with the ExcelDemy project for over 1.5 years. He wrote 140+ articles for ExcelDemy. He also solved a lot of user problems and worked on dashboards. He is interested in data analysis, advanced Excel, statistics, and dashboards. He also likes to explore various Excel and VBA applications. He completed his graduation in Electrical & Electronic Engineering from Bangladesh University of Engineering & Technology (BUET). He enjoys exploring Excel-related features to gain efficiency... Read Full Bio

Leave a reply Cancel reply

ExcelDemy is a place where you can learn Excel, and get solutions to your Excel & Excel VBA-related problems, Data Analysis with Excel, etc. We provide tips, how to guide, provide online training, and also provide Excel solutions to your business problems.

Contact  |  Privacy Policy  |  TOS

  • User Reviews
  • List of Services
  • Service Pricing

trustpilot review

  • Create Basic Excel Pivot Tables
  • Excel Formulas and Functions
  • Excel Charts and SmartArt Graphics
  • Advanced Excel Training
  • Data Analysis Excel for Beginners

DMCA.com Protection Status

Advanced Excel Exercises with Solutions PDF

ExcelDemy

Excel Dashboards

Excel Tutorial: How To Test Hypothesis In Excel

Introduction.

Hypothesis testing is a crucial part of data analysis, helping us make informed decisions based on statistical evidence. It allows us to determine if there is enough evidence to support or reject a claim about a population parameter. In this Excel tutorial, we will delve into the process of testing hypothesis in Excel , providing you with the knowledge and skills to confidently analyze and draw conclusions from your data.

So why is hypothesis testing so important? Well, it helps us make sense of the overwhelming amount of data we encounter in our professional and personal lives. Whether we are trying to understand consumer behavior, assess the effectiveness of a new product, or evaluate the impact of a marketing campaign, hypothesis testing allows us to make informed decisions and draw reliable conclusions.

Key Takeaways

  • Hypothesis testing is essential for making informed decisions based on statistical evidence.
  • Understanding null and alternative hypotheses, as well as type I and type II errors, is crucial in hypothesis testing.
  • Setting up and organizing data accurately in Excel is necessary for conducting hypothesis tests.
  • Interpreting the results of a hypothesis test, including determining the p-value and significance level, is important for drawing reliable conclusions.
  • Avoiding common mistakes such as misinterpreting results and using the wrong test for the data is vital in hypothesis testing.

Understanding hypothesis testing

Hypothesis testing is a crucial concept in statistics that allows us to make inferences about a population based on a sample. In the context of Excel, understanding hypothesis testing is essential for data analysis and decision-making.

In hypothesis testing, the null hypothesis ( H0 ) is a statement that there is no effect or no difference in the population parameter. It is typically the hypothesis that researchers aim to refute. On the other hand, the alternative hypothesis ( Ha ) is a statement that there is an effect or a difference in the population parameter. It represents what the researchers are trying to prove.

In hypothesis testing, there are two types of errors that can occur. A Type I error occurs when the null hypothesis is rejected when it is actually true. This is also known as a false positive. A Type II error occurs when the null hypothesis is not rejected when it is actually false. This is also known as a false negative.

The significance level, often denoted as α , is the probability of rejecting the null hypothesis when it is true. In hypothesis testing, choosing the appropriate significance level is crucial as it determines the likelihood of making a Type I error. Commonly used significance levels include 0.05, 0.01, and 0.10.

Setting up the data in Excel

When conducting hypothesis testing in Excel, it is crucial to properly set up your data to ensure accurate results. Here are the key steps to follow:

The first step in testing a hypothesis in Excel is to input your data into the spreadsheet. This may include numerical values, categorical data, or any other relevant information for your analysis.

Once the data is inputted, it is important to organize it in a way that is conducive to hypothesis testing. This may involve structuring the data into relevant columns and rows, or creating separate sheets for different variables.

Prior to conducting hypothesis testing, it is essential to ensure that the data is accurate and complete. This may involve checking for any missing or erroneous values, as well as verifying the overall integrity of the dataset.

  • Input all relevant data into the Excel spreadsheet.
  • Organize the data in a manner that facilitates hypothesis testing.
  • Verify the accuracy and completeness of the data before proceeding with hypothesis testing.

Performing a hypothesis test in Excel

When it comes to testing hypotheses in Excel, there are a few key steps to follow to ensure accurate and reliable results. Here, we'll delve into the process of performing a hypothesis test in Excel, covering everything from selecting the appropriate test for the data to interpreting the test results.

Before diving into the hypothesis testing process, it's crucial to determine the appropriate test for the data at hand. This involves understanding the nature of the data and the specific hypothesis being tested. Whether it's a t-test, chi-squared test, ANOVA, or another statistical test, choosing the right test is essential for obtaining meaningful results.

Excel offers a range of built-in functions that make hypothesis testing relatively straightforward. Functions like T.TEST, CHISQ.TEST, and ANOVA help streamline the process, allowing users to input their data and quickly obtain test statistics and p-values. Understanding how to utilize these functions is key to executing hypothesis tests accurately.

Once the hypothesis test has been run in Excel, it's important to carefully interpret the results. This involves analyzing the test statistic, p-value, and any relevant confidence intervals to determine whether the data provides enough evidence to support or reject the null hypothesis. Excel's output can provide valuable insights into the significance of the findings, helping to draw meaningful conclusions from the hypothesis test.

Interpreting the results

After conducting a hypothesis test in Excel, it is important to carefully interpret the results to draw meaningful conclusions.

Understanding the p-value

The p-value is a crucial indicator of the strength of evidence against the null hypothesis. A low p-value (typically less than 0.05) suggests that the results are statistically significant, and the null hypothesis can be rejected in favor of the alternative hypothesis.

Significance level

The significance level, often denoted as alpha (α), is the threshold at which the p-value is considered significant. Commonly used significance levels include 0.05 and 0.01.

Rejecting or failing to reject the null hypothesis

Based on the obtained p-value and significance level, it is possible to determine whether the null hypothesis should be rejected or retained. If the p-value is less than the significance level, the null hypothesis is typically rejected in favor of the alternative hypothesis.

Considering the practical significance

In addition to statistical significance, it is important to consider the practical implications of the results. Even if a hypothesis is statistically significant, it may not have meaningful real-world impact.

Interpreting the findings in context

It is essential to discuss the implications of the hypothesis test within the specific context of the research or analysis. This involves considering the broader implications and potential applications of the results.

Considering limitations and alternative explanations

Discussing the potential limitations of the hypothesis test and considering alternative explanations for the results can provide a more comprehensive understanding of the findings.

Common mistakes to avoid

When conducting hypothesis testing in Excel, it's important to be aware of common mistakes that can lead to inaccurate results. Here are some key pitfalls to watch out for:

Misinterpreting the results of hypothesis tests is a common mistake that can lead to faulty conclusions. It's important to thoroughly understand the output of the test and consider the implications of the results before drawing any conclusions.

Using the wrong hypothesis test for the type of data being analyzed can lead to incorrect results. It's essential to select the appropriate test based on the nature of the data and the research question being addressed.

Failing to check for data integrity before conducting hypothesis tests can result in unreliable results. It's crucial to ensure that the data being analyzed is accurate and free from errors or anomalies that could impact the validity of the test.

Recap: Hypothesis testing is a crucial step in data analysis as it allows us to make informed decisions based on the evidence provided by the data.

Encouragement: I highly encourage you to apply the tutorial on hypothesis testing in Excel to your own data analysis projects. It's a valuable skill that can greatly enhance the quality and reliability of your conclusions.

Final Thoughts: The significance of hypothesis testing in Excel cannot be understated. It is a powerful tool that enables us to make conclusions about the population based on sample data, ultimately leading to more accurate and meaningful insights.

Excel Dashboard

Immediate Download

MAC & PC Compatible

Free Email Support

Related aticles

Mastering Excel Dashboards for Data Analysts

The Benefits of Excel Dashboards for Data Analysts

Exploring the Power of Real-Time Data Visualization with Excel Dashboards

Unlock the Power of Real-Time Data Visualization with Excel Dashboards

How to Connect Your Excel Dashboard to Other Platforms for More Focused Insights

Unlocking the Potential of Excel's Data Dashboard

10 Keys to Designing a Dashboard with Maximum Impact in Excel

Unleashing the Benefits of a Dashboard with Maximum Impact in Excel

Essential Features for Data Exploration in Excel Dashboards

Exploring Data Easily and Securely: Essential Features for Excel Dashboards

Real-Time Dashboard Updates in Excel

Unlock the Benefits of Real-Time Dashboard Updates in Excel

Interpreting Excel Dashboards: From Data to Action

Unleashing the Power of Excel Dashboards

Different Approaches to Excel Dashboard Design and Development

Understanding the Benefits and Challenges of Excel Dashboard Design and Development

Best Excel Dashboard Tips for Smarter Data Visualization

Leverage Your Data with Excel Dashboards

How to Create Effective Dashboards in Microsoft Excel

Crafting the Perfect Dashboard for Excel

Dashboards in Excel: Managing Data Analysis and Visualization

An Introduction to Excel Dashboards

Best Practices for Designing an Insightful Excel Dashboard

How to Create an Effective Excel Dashboard

  • Choosing a selection results in a full page refresh.

#1 Excel tutorial on the net

This example teaches you how to perform a t-Test in Excel . The t-Test is used to test the null hypothesis that the means of two populations are equal.

Below you can find the study hours of 6 female students and 5 male students.

t-Test in Excel

To perform a t-Test, execute the following steps.

1. First, perform an F-Test to determine if the variances of the two populations are equal. This is not the case.

2. On the Data tab, in the Analysis group, click Data Analysis.

Click Data Analysis

Note: can't find the Data Analysis button? Click here to load the Analysis ToolPak add-in .

3. Select t-Test: Two-Sample Assuming Unequal Variances and click OK.

Select t-Test: Two-Sample Assuming Unequal Variances

4. Click in the Variable 1 Range box and select the range A2:A7.

5. Click in the Variable 2 Range box and select the range B2:B6.

6. Click in the Hypothesized Mean Difference box and type 0 (H 0 : μ 1 - μ 2 = 0).

7. Click in the Output Range box and select cell E1.

t-Test Parameters

8. Click OK.

t-Test Result in Excel

Conclusion: We do a two-tail test (inequality). lf t Stat < -t Critical two-tail or t Stat > t Critical two-tail, we reject the null hypothesis. This is not the case, -2.365 < 1.473 < 2.365. Therefore, we do not reject the null hypothesis. The observed difference between the sample means (33 - 24.8) is not convincing enough to say that the average number of study hours between female and male students differ significantly.

  • Analysis ToolPak

Learn more, it's easy

  • Descriptive Statistics
  • Moving Average
  • Exponential Smoothing
  • Correlation

Download Excel File

  • t-test.xlsx

Next Chapter

  • Create a Macro

Follow Excel Easy

Excel Easy on Facebook

Become an Excel Pro

  • 300 Examples

t-Test • © 2010-2024 Excel is Awesome, we'll show you: Introduction • Basics • Functions • Data Analysis • VBA

Hypothesis Test in Excel for the Population Mean (Large Sample)

Microsoft Excel for statistics > Hypothesis Test in Excel #1

Note : This article covers z-tests in Excel. If you have a small sample (under 30), or don’t know the population standard deviation , run a T Test in Excel instead.

Hypothesis Test in Excel: Overview

Hypothesis Test in Excel

Hypothesis Test in Excel: Two Sample for Means

Hypothesis test in excel: manual steps.

Step 1: Type your data into a single column in Excel. For example, type your data into cells A1:A40.

Step 2: Click the “Data” tab and then click “Data Analysis.” If you don’t see the Data Analysis button then you may need to load the Data Analysis Toolpak .

Step 3: Click “ Descriptive Statistics “ and then click “OK.” When the Descriptive Statistics dialog box opens, click “Summary Statistics” and then type the location for a cell where you want your result to appear. For example, type”B1.”

Step 4: Click “OK. ” A variety of descriptive statistics, like the median and mode , will appear starting in cell B1.

Step 5: Find the cells that have the mean and the standard error results in it. If you typed in cell B1 in Step 3, your mean will be in cell C3 and your standard error will be in cell C4. Take a note of those cell locations.

Step 6: Type the following formula into cell D1 (assuming your mean is in cell C3 and your SE is in cell C4 — if they are not, you’ll need to adjust the formula): (C3-0)/C4

Change the “zero” to reflect the mean in your null hypothesis . For example, if your null hypothesis states that the mean is $7 per hour, then change the 0 to “7.”

Step 7: Press “Enter” to get the value of the test statistic. Compare the value to the accepted value for your mean from the z-table*. If the test statistic falls into the accepted range, then you will fail to reject the null hypothesis .

Subscribe to our YouTube channel for more Microsoft Excel for Statistics help and tips!

Comments are closed.

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Hypothesis Testing: Uses, Steps & Example

By Jim Frost 4 Comments

What is Hypothesis Testing?

Hypothesis testing in statistics uses sample data to infer the properties of a whole population . These tests determine whether a random sample provides sufficient evidence to conclude an effect or relationship exists in the population. Researchers use them to help separate genuine population-level effects from false effects that random chance can create in samples. These methods are also known as significance testing.

Data analysts at work.

For example, researchers are testing a new medication to see if it lowers blood pressure. They compare a group taking the drug to a control group taking a placebo. If their hypothesis test results are statistically significant, the medication’s effect of lowering blood pressure likely exists in the broader population, not just the sample studied.

Using Hypothesis Tests

A hypothesis test evaluates two mutually exclusive statements about a population to determine which statement the sample data best supports. These two statements are called the null hypothesis and the alternative hypothesis . The following are typical examples:

  • Null Hypothesis : The effect does not exist in the population.
  • Alternative Hypothesis : The effect does exist in the population.

Hypothesis testing accounts for the inherent uncertainty of using a sample to draw conclusions about a population, which reduces the chances of false discoveries. These procedures determine whether the sample data are sufficiently inconsistent with the null hypothesis that you can reject it. If you can reject the null, your data favor the alternative statement that an effect exists in the population.

Statistical significance in hypothesis testing indicates that an effect you see in sample data also likely exists in the population after accounting for random sampling error , variability, and sample size. Your results are statistically significant when the p-value is less than your significance level or, equivalently, when your confidence interval excludes the null hypothesis value.

Conversely, non-significant results indicate that despite an apparent sample effect, you can’t be sure it exists in the population. It could be chance variation in the sample and not a genuine effect.

Learn more about Failing to Reject the Null .

5 Steps of Significance Testing

Hypothesis testing involves five key steps, each critical to validating a research hypothesis using statistical methods:

  • Formulate the Hypotheses : Write your research hypotheses as a null hypothesis (H 0 ) and an alternative hypothesis (H A ).
  • Data Collection : Gather data specifically aimed at testing the hypothesis.
  • Conduct A Test : Use a suitable statistical test to analyze your data.
  • Make a Decision : Based on the statistical test results, decide whether to reject the null hypothesis or fail to reject it.
  • Report the Results : Summarize and present the outcomes in your report’s results and discussion sections.

While the specifics of these steps can vary depending on the research context and the data type, the fundamental process of hypothesis testing remains consistent across different studies.

Let’s work through these steps in an example!

Hypothesis Testing Example

Researchers want to determine if a new educational program improves student performance on standardized tests. They randomly assign 30 students to a control group , which follows the standard curriculum, and another 30 students to a treatment group, which participates in the new educational program. After a semester, they compare the test scores of both groups.

Download the CSV data file to perform the hypothesis testing yourself: Hypothesis_Testing .

The researchers write their hypotheses. These statements apply to the population, so they use the mu (μ) symbol for the population mean parameter .

  • Null Hypothesis (H 0 ) : The population means of the test scores for the two groups are equal (μ 1 = μ 2 ).
  • Alternative Hypothesis (H A ) : The population means of the test scores for the two groups are unequal (μ 1 ≠ μ 2 ).

Choosing the correct hypothesis test depends on attributes such as data type and number of groups. Because they’re using continuous data and comparing two means, the researchers use a 2-sample t-test .

Here are the results.

Hypothesis testing results for the example.

The treatment group’s mean is 58.70, compared to the control group’s mean of 48.12. The mean difference is 10.67 points. Use the test’s p-value and significance level to determine whether this difference is likely a product of random fluctuation in the sample or a genuine population effect.

Because the p-value (0.000) is less than the standard significance level of 0.05, the results are statistically significant, and we can reject the null hypothesis. The sample data provides sufficient evidence to conclude that the new program’s effect exists in the population.

Limitations

Hypothesis testing improves your effectiveness in making data-driven decisions. However, it is not 100% accurate because random samples occasionally produce fluky results. Hypothesis tests have two types of errors, both relating to drawing incorrect conclusions.

  • Type I error: The test rejects a true null hypothesis—a false positive.
  • Type II error: The test fails to reject a false null hypothesis—a false negative.

Learn more about Type I and Type II Errors .

Our exploration of hypothesis testing using a practical example of an educational program reveals its powerful ability to guide decisions based on statistical evidence. Whether you’re a student, researcher, or professional, understanding and applying these procedures can open new doors to discovering insights and making informed decisions. Let this tool empower your analytical endeavors as you navigate through the vast seas of data.

Learn more about the Hypothesis Tests for Various Data Types .

Share this:

hypothesis testing examples excel

Reader Interactions

' src=

June 10, 2024 at 10:51 am

Thank you, Jim, for another helpful article; timely too since I have started reading your new book on hypothesis testing and, now that we are at the end of the school year, my district is asking me to perform a number of evaluations on instructional programs. This is where my question/concern comes in. You mention that hypothesis testing is all about testing samples. However, I use all the students in my district when I make these comparisons. Since I am using the entire “population” in my evaluations (I don’t select a sample of third grade students, for example, but I use all 700 third graders), am I somehow misusing the tests? Or can I rest assured that my district’s student population is only a sample of the universal population of students?

' src=

June 10, 2024 at 1:50 pm

I hope you are finding the book helpful!

Yes, the purpose of hypothesis testing is to infer the properties of a population while accounting for random sampling error.

In your case, it comes down to how you want to use the results. Who do you want the results to apply to?

If you’re summarizing the sample, looking for trends and patterns, or evaluating those students and don’t plan to apply those results to other students, you don’t need hypothesis testing because there is no sampling error. They are the population and you can just use descriptive statistics. In this case, you’d only need to focus on the practical significance of the effect sizes.

On the other hand, if you want to apply the results from this group to other students, you’ll need hypothesis testing. However, there is the complicating issue of what population your sample of students represent. I’m sure your district has its own unique characteristics, demographics, etc. Your district’s students probably don’t adequately represent a universal population. At the very least, you’d need to recognize any special attributes of your district and how they could bias the results when trying to apply them outside the district. Or they might apply to similar districts in your region.

However, I’d imagine your 3rd graders probably adequately represent future classes of 3rd graders in your district. You need to be alert to changing demographics. At least in the short run I’d imagine they’d be representative of future classes.

Think about how these results will be used. Do they just apply to the students you measured? Then you don’t need hypothesis tests. However, if the results are being used to infer things about other students outside of the sample, you’ll need hypothesis testing along with considering how well your students represent the other students and how they differ.

I hope that helps!

June 10, 2024 at 3:21 pm

Thank you so much, Jim, for the suggestions in terms of what I need to think about and consider! You are always so clear in your explanations!!!!

June 10, 2024 at 3:22 pm

You’re very welcome! Best of luck with your evaluations!

Comments and Questions Cancel reply

  • How it Works

Call us: +1 – 732 510 0607

Email: [email protected]

Linkedin / Twitter

Hypothesis Testing in Statistics: Step by Step with Examples

Hypothesis testing is the act of statistically evaluating a belief or theory. Hypothesis testing is the process of testing your theory using data from the real world obtained either through observation or experiments. Hypothesis testing is the step-by-step process of analyzing empirical data to check if it differs from the expected numbers if the belief or theory you started with was true.

This article walks you through the hypothesis testing concept and lists the process of hypothesis testing step by step.

To illustrate the concept and show you the hypothesis testing process with a example, we evaluate a belief that the companies in the Russell 3000 grow at a rate greater than 10% per year.

Here is a list of subtopics if you want to jump ahead:

Hypothesis Testing: Step by Step

Structuring the hypothesis test: the null and alternate hypothesis, the null hypothesis.

  • The Alternate Hypthesis
  • Significance level
  • Sample Size and Sampling to get the test statistic

Setting up the Critical Value & Reject Regions

Computing the test statistic.

  • Comparing the Test Statistic Vs. the Critical Values

Concluding the Hypothesis Test

A hypothesis test and a criminal trial: similarities, the sampling distribution, reject region in hypothesis testing, some facts on the null hypothesis, some facts on the alternate hypothesis.

If you already know the concept of hypothesis testing concept and you only need to follow the step-by-step process outlined below.

  • State the null hypothesis
  • State the alternate hypothesis
  • Decide on the level of significance
  • Choose the sample size
  • Determine the statistical technique
  • Set up the critical values to identify the reject region and non-reject region
  • Collect the data sample and compute sample parameters & Test statistic
  • Compare sample/test statistic with critical value/reject or non-reject region.
  • Make your conclusion clear.

List of Topics

A hypothesis test starts with a hypothesis that you want to test. It is designed as a statement or belief that you are examining. This statement or belief is termed the null hypothesis. The null hypothesis is what the hypothesis test is evaluating.

The Alternate Hypothesis

The opposite of the null hypothesis is called an alternate hypothesis. We are not examining the alternate hypothesis. Instead, the alternate hypothesis is what remains if the null hypothesis is rejected after being examined.

We will talk more about designing the null and alternate hypotheses later. Remember that we place what we want to prove in the alternate hypothesis. And we put the opposite of what we want to prove in the null hypothesis.

To continue our example, we will place what we believe to be true (mean growth rate is great than 10%) in the alternate hypothesis. And the opposite of the alternate hypothesis (mean growth rate is less than or equal to 10%) in the null hypothesis. Accordingly, we will have the following null and alternate hypotheses for our example: Ho: Mean growth rate <= 10% Ha: Mean growth rate > 10%

If we reject the null hypothesis, we will be concluding that the alternate hypothesis stands. On the other hand, if the evidence does not provide evidence to reject the null hypothesis, we can only conclude that we cannot reject the null hypothesis. In other words, we have not proven the alternate hypothesis. We conclude that we cannot reject the null hypothesis and therefore make no claim to have proven the alternate hypothesis or our starting theory or belief!

Significance Level

In hypothesis testing, the evidence required is gathered from a sample of the relevant population. Then, the parameter of interest from the sample is computed and referred to as the test statistic. This test statistic informs us about the null hypothesis.

Even if the null hypothesis is true, the test statistic is unlikely to be exactly equal to the parameter of interest of the true population because we are basing our test statistic on a sample of the population! A sample is only an unbiased estimator and not the actual population parameter. However, if the null hypothesis is true, the test statistic is likely to be close to the null hypothesis value, and likely agree with the null hypothesis. How close should it be? Or how far away from the null hypothesis value should the test statistic be before we can conclude that the null hypothesis is not true and “can be rejected”?

This is where the significance level comes into play. The significance level is the level of certainty required to reject the null hypothesis. The most commonly used significance levels are 1%, 5%, or 10% in practice. The significance level should be determined by the type of errors we are willing to tolerate (type 1 or type 2 errors).

We will use a 5% level of significance in our example today.

Significance level helps us determine the point beyond which we say that the null hypothesis is not true and “can be rejected”!

Best practice dictates that the critical value must be set up at the design stage and before the hypothesis test is done. The critical value is based on two factors. 1) the sampling distribution and 2) significance levels.

Sampling Distribution

The sampling distribution is a distribution of sample values we can expect if the null hypothesis were true. Theoretically, the sample distribution is the distribution we would get if we took all possible samples that covered the entire population. The reason the sample distribution is central to hypothesis testing is that the mean of the sample distribution will equal the mean of the true population. So we use the sample distribution to evaluate the sample test statistic and check if our data agree with the null hypothesis.

If our null hypothesis is true, the test statistic will lie close to the middle of the sampling distribution. However, if our null hypothesis is NOT true, the test statistic will likely be closer to the tails of the sampling distribution.

To make a firm decision, we need a point beyond which we say that the null hypothesis is not true. That point is referred to as the critical value. The region beyond the critical value is referred to as the critical region or the reject region. If the test statistic falls in this region, we reject the null hypothesis. We conclude that the alternate hypothesis is true.

In our example, we are looking for a 5% confidence level. Therefore the critical value and reject region will be computed using a 5% confidence level. The critical value and reject region can be computed using the Z table, Microsoft Excel or another software program.

In Microsoft Excel we use the =NORM.S.INV(0.95) for a single tail critical value of 1.645 as the z value. We can use the Z table to arrive at the same value too.

hypothesis testing examples excel

Once we have the critical value, we run the experiment or gather sample data. Then, we analyze the sample data and compute the sample parameter of interest.

In our example, we randomly sample __ companies of the Russell 3000. We compute the average growth rates of the sample. We then compute the test statistic using this formula.

hypothesis testing examples excel

Comparing the Test Statistic and the Critical Value

We compare the sample parameter of interest with the critical value/critical region. We are essentially checking if the test statistic falls in the reject region.

We are ready to conclude the hypothesis test only when we have the sample parameter of interest and the critical value at hand. We check if the parameter of interest falls in the critical regions identified in the earlier step.

hypothesis testing examples excel

In our example, we can see that the test statistic falls in the reject region.

If the parameter of interest falls in the critical regions, we reject the null hypothesis. Only when we reject the null hypothesis can we conclude that we believe the alternate hypothesis!

In our example, we can conclude that we reject the null hypothesis as the test statistic falls in the reject region. Because we reject the null hypothesis, we can say we believe the alternate hypothesis is true. And we conclude that the growth rate of companies of the Russell 3000 is greater than 10% per year!

A hypothesis test is often compared to and explained as a criminal trial. In a criminal trial, we start with the belief “innocent until proven guilty.” Similarly, in hypothesis testing, we assume that the null hypothesis is true. Therefore, we need to present data to disprove the null hypothesis. That is why we say that hypothesis testing is a trial of the null hypothesis. It is not the alternate hypothesis we are testing! The null hypothesis is similar to the criminal defendant. The data scientist is similar to the prosecutor. It is the prosecutor’s job to prove that the criminal is guilty. The prosecutor or the data scientist/researcher examines the data to present evidence that the null hypothesis is not true. Only if the researcher presents data to prove the null hypothesis is not true, can we conclude that that alternate hypothesis is true. If we do not have evidence to prove the criminal is guilty, he escapes conviction. It does not mean he is truly innocent. It only means that he was not found guilty. Similarly, if we do not have evidence to reject the null hypothesis we can only conclude that we cannot reject the null hypothesis.

  • The null hypothesis is the current belief.
  • You are examining or testing the null hypothesis.
  • The null hypothesis refers to a specific parameter/value of the true population (not the sample parameter)
  • The null hypothesis contains the “equal to” parameter
  • If you reject the null hypothesis, you have statistical proof that the alternate hypothesis is true.
  • Failure to reject the null hypothesis does not mean you have statistical proof that the null hypothesis is true.
  • The alternate hypothesis is what the researcher wants to prove statistically.
  • The alternate hypothesis is the opposite of the null hypothesis.
  • The failure to prove the alternate hypothesis does not mean that you have proven the null hypothesis.
  • The alternate hypothesis usually does not contain the “equal to” parameter.

Sample Size and Sampling to get the Test Statistic

We are looking for evidence that the null hypothesis is not true and “can be rejected”. This evidence is provided by a sample. How should this sample be gathered? How large should the sample be to provide this evidence? The sample must be carefully selected to be representative of the true population of interest. A random sample is best. Other sampling methods include cluster sampling, cluster sampling, stratified sampling, convenience sampling, etc. Each has its advantages and disadvantages, which we will not go into here.

Selecting the sample size is important in hypothesis testing. The sample size chosen impacts the risk of Type I and Type 2 errors. The sample size also directly determines the confidence levels and the power of the test. The sample size formula can be resorted to arrive at the sample size.

Hypothesis Testing Tutoring

Please do let us know if we can help you with tutoring for hypothesis testing. Our statistics tutors will be happy to meet with you one on one to help you understand and design and perform a hypothesis test.

Sign Up Now

Recent Posts

  • MBA Tutoring for Operations Management & Research at Chicago Booth School of Business
  • Private Tutoring for Operations Management at the Darden Business School, UVA
  • Private Tutoring for Financial Management and Policies I & II at Darden Business School, UVA
  • Private Tutoring for Global Economies and Markets (GEM) at Darden Business School, UVA
  • Tutoring for ‘Accounting for Managers’ at Darden Business School, UVA

GraduateTutor.com Forest View Drive Avenel, NJ 07001 Call us:+1 – (732) 510-0607, E-mail: [email protected] Privacy , FAQ

Core Areas of Tutoring

Sign up now.

hypothesis testing examples excel

  • Mastering Hypothesis Testing in Excel: A Practical Guide for Students

Excel for Hypothesis Testing: A Practical Approach for Students

Angela O'Brien

Hypothesis testing lies at the heart of statistical inference, serving as a cornerstone for drawing meaningful conclusions from data. It's a methodical process used to evaluate assumptions about a population parameter, typically based on sample data. The fundamental idea behind hypothesis testing is to assess whether observed differences or relationships in the sample are statistically significant enough to warrant generalizations to the larger population. This process involves formulating null and alternative hypotheses, selecting an appropriate statistical test, collecting sample data, and interpreting the results to make informed decisions. In the realm of statistical software, SAS stands out as a robust and widely used tool for data analysis in various fields such as academia, industry, and research. Its extensive capabilities make it particularly favored for complex analyses, large datasets, and advanced modeling techniques. However, despite its versatility and power, SAS can have a steep learning curve, especially for students who are just beginning their journey into statistics. The intricacies of programming syntax, data manipulation, and interpreting output may pose challenges for novice users, potentially hindering their understanding of statistical concepts like hypothesis testing. Understanding hypothesis testing is essential for performing statistical analyses and drawing meaningful conclusions from data using Excel 's built-in functions and tools.

Excel for Hypothesis Testing

Enter Excel, a ubiquitous spreadsheet software that most students are already familiar with to some extent. While Excel may not offer the same level of sophistication as SAS in terms of advanced statistical procedures, it remains a valuable tool, particularly for introductory and intermediate-level analyses. Its intuitive interface, user-friendly features, and widespread accessibility make it an attractive option for students seeking a practical approach to learning statistics. By leveraging Excel's built-in functions, data visualization tools, and straightforward formulas, students can gain hands-on experience with hypothesis testing in a familiar environment. In this blog post, we aim to bridge the gap between theoretical concepts and practical application by demonstrating how Excel can serve as a valuable companion for students tackling hypothesis testing problems, including those typically encountered in SAS assignments. We will focus on demystifying the process of hypothesis testing, breaking it down into manageable steps, and showcasing Excel's capabilities for conducting various tests commonly encountered in introductory statistics courses.

Understanding the Basics

Hypothesis testing is a fundamental concept in statistics that allows researchers to draw conclusions about a population based on sample data. At its core, hypothesis testing involves making a decision about whether a statement regarding a population parameter is likely to be true. This decision is based on the analysis of sample data and is guided by two competing hypotheses: the null hypothesis (H0) and the alternative hypothesis (Ha). The null hypothesis represents the status quo or the absence of an effect. It suggests that any observed differences or relationships in the sample data are due to random variation or chance. On the other hand, the alternative hypothesis contradicts the null hypothesis and suggests the presence of an effect or difference in the population. It reflects the researcher's belief or the hypothesis they aim to support with their analysis.

Formulating Hypotheses

In Excel, students can easily formulate hypotheses using simple formulas and logical operators. For instance, suppose a researcher wants to test whether the mean of a sample is equal to a specified value. They can use the AVERAGE function in Excel to calculate the sample mean and then compare it to the specified value using logical operators like "=" for equality. If the calculated mean is equal to the specified value, it supports the null hypothesis; otherwise, it supports the alternative hypothesis.

Excel's flexibility allows students to customize their hypotheses based on the specific parameters they are testing. Whether it's comparing means, proportions, variances, or other population parameters, Excel provides a user-friendly interface for formulating hypotheses and conducting statistical analysis.

Selecting the Appropriate Test

Excel offers a plethora of functions and tools for conducting various types of hypothesis tests, including t-tests, z-tests, chi-square tests, and ANOVA (analysis of variance). However, selecting the appropriate test requires careful consideration of the assumptions and conditions associated with each test. Students should familiarize themselves with the assumptions underlying each hypothesis test and assess whether their data meets those assumptions. For example, t-tests assume that the data follow a normal distribution, while chi-square tests require categorical data and independence between observations.

Furthermore, students should consider the nature of their research question and the type of data they are analyzing. Are they comparing means of two independent groups or assessing the association between categorical variables? By understanding the characteristics of their data and the requirements of each test, students can confidently choose the appropriate hypothesis test in Excel.

T-tests are statistical tests commonly used to compare the means of two independent samples or to compare the mean of a single sample to a known value. These tests are valuable in various fields, including psychology, biology, economics, and more. In Excel, students can employ the T.TEST function to conduct t-tests, providing them with a practical and accessible way to analyze their data and draw conclusions about population parameters based on sample statistics.

Independent Samples T-Test

The independent samples t-test, also known as the unpaired t-test, is utilized when comparing the means of two independent groups. This test is often employed in experimental and observational studies to assess whether there is a significant difference between the means of the two groups. In Excel, students can easily organize their data into separate columns representing the two groups, calculate the sample means and standard deviations for each group, and then use the T.TEST function to obtain the p-value. The p-value obtained from the T.TEST function represents the probability of observing the sample data if the null hypothesis, which typically states that there is no difference between the means of the two groups, is true.

A small p-value (typically less than the chosen significance level, commonly 0.05) indicates that there is sufficient evidence to reject the null hypothesis in favor of the alternative hypothesis, suggesting a significant difference between the group means. By conducting an independent samples t-test in Excel, students can not only assess the significance of differences between two groups but also gain valuable experience in data analysis and hypothesis testing, which are essential skills in various academic and professional settings.

Paired Samples T-Test

The paired samples t-test, also known as the dependent t-test or matched pairs t-test, is employed when comparing the means of two related groups. This test is often used in studies where participants are measured before and after an intervention or when each observation in one group is matched or paired with a specific observation in the other group. Examples include comparing pre-test and post-test scores, analyzing the performance of individuals under different conditions, and assessing the effectiveness of a treatment or intervention. In Excel, students can perform a paired samples t-test by first calculating the differences between paired observations (e.g., subtracting the before-measurement from the after-measurement). Next, they can use the one-sample t-test function, specifying the calculated differences as the sample data. This approach allows students to determine whether the mean difference between paired observations is statistically significant, indicating whether there is a meaningful change or effect between the two related groups.

Interpreting the results of a paired samples t-test involves assessing the obtained p-value in relation to the chosen significance level. A small p-value suggests that there is sufficient evidence to reject the null hypothesis, indicating a significant difference between the paired observations. This information can help students draw meaningful conclusions from their data and make informed decisions based on statistical evidence. By conducting paired samples t-tests in Excel, students can not only analyze the relationship between related groups but also develop critical thinking skills and gain practical experience in hypothesis testing, which are valuable assets in both academic and professional contexts. Additionally, mastering the application of statistical tests in Excel can enhance students' data analysis skills and prepare them for future research endeavors and real-world challenges.

Chi-Square Test

The chi-square test is a versatile statistical tool used to assess the association between two categorical variables. In essence, it helps determine whether the observed frequencies in a dataset significantly deviate from what would be expected under certain assumptions. Excel provides a straightforward means to perform chi-square tests using the CHISQ.TEST function, which calculates the probability associated with the chi-square statistic.

Goodness-of-Fit Test

One application of the chi-square test is the goodness-of-fit test, which evaluates how well the observed frequencies in a single categorical variable align with the expected frequencies dictated by a theoretical distribution. This test is particularly useful when researchers wish to ascertain whether their data conforms to a specific probability distribution. In Excel, students can organize their data into a frequency table, listing the categories of the variable of interest along with their corresponding observed frequencies. They can then specify the expected frequencies based on the theoretical distribution they are testing against. For example, if analyzing the outcomes of a six-sided die roll, where each face is expected to occur with equal probability, the expected frequency for each category would be the total number of observations divided by six.

Once the observed and expected frequencies are determined, students can employ the CHISQ.TEST function in Excel to calculate the chi-square statistic and its associated p-value. The p-value represents the probability of obtaining a chi-square statistic as extreme or more extreme than the observed value under the assumption that the null hypothesis is true (i.e., the observed frequencies match the expected frequencies). Interpreting the results of the goodness-of-fit test involves comparing the calculated p-value to a predetermined significance level (commonly denoted as α). If the p-value is less than α (e.g., α = 0.05), there is sufficient evidence to reject the null hypothesis, indicating that the observed frequencies significantly differ from the expected frequencies specified by the theoretical distribution. Conversely, if the p-value is greater than α, there is insufficient evidence to reject the null hypothesis, suggesting that the observed frequencies align well with the expected frequencies.

Test of Independence

Another important application of the chi-square test in Excel is the test of independence, which evaluates whether there is a significant association between two categorical variables in a contingency table. This test is employed when researchers seek to determine whether the occurrence of one variable is related to the occurrence of another. To conduct a test of independence in Excel, students first create a contingency table that cross-tabulates the two categorical variables of interest. Each cell in the table represents the frequency of occurrences for a specific combination of categories from the two variables.

Similar to the goodness-of-fit test, students then calculate the expected frequencies for each cell under the assumption of independence between the variables. Using the CHISQ.TEST function in Excel, students can calculate the chi-square statistic and its associated p-value based on the observed and expected frequencies in the contingency table. The interpretation of the test results follows a similar procedure to that of the goodness-of-fit test, with the p-value indicating whether there is sufficient evidence to reject the null hypothesis of independence between the two variables.

Excel, despite being commonly associated with spreadsheet tasks, offers a plethora of features that make it a versatile and powerful tool for statistical analysis, especially for students diving into the intricacies of hypothesis testing. Its widespread availability and user-friendly interface make it accessible to students at various levels of statistical proficiency. However, the true value of Excel lies not just in its accessibility but also in its ability to facilitate a hands-on learning experience that reinforces theoretical concepts.

At the core of utilizing Excel for hypothesis testing is a solid understanding of the fundamental principles of statistical inference. Students need to grasp concepts such as the null and alternative hypotheses, significance levels, p-values, and test statistics. Excel provides a practical platform for students to apply these concepts in a real-world context. Through hands-on experimentation with sample datasets, students can observe how changes in data inputs and statistical parameters affect the outcome of hypothesis tests, thus deepening their understanding of statistical theory.

Post a comment...

Mastering hypothesis testing in excel: a practical guide for students submit your homework, attached files.

File Actions
  • 800 -274-2874
  • [email protected]

Hypothesis Testing

hypothesis

So, a hypothesis is just a statement of theory.  It may or may not be true.  A drug company can claim that a new drug is better at decreasing blood pressure.   You may claim that the diet plan you created helps people lose more weight than a nationally known diet plan.  All these things are just statements – just hypotheses.

The hypothesis is the starting point.  From there, we have to test the hypothesis and reach a decision if the hypothesis is probably true or probably false.  Note the word “probably.”  There is always variation – so there is always a chance for you to make the wrong decision.  This month’s publication takes a look at the five steps involved in conducting a hypothesis test.

In this issue:

  • The problem
  • A brief pause for the standard normal distribution
  • Formulate the null hypothesis and the alternative hypothesis
  • Determine the significance level
  • Collect the data and calculate the sample statistics
  • Calculate the p value for the hypothesis test
  • Compare the p value to the desired significance level

Quick Links

You can download this publication as a pdf here .

The Problem

six sigma

The average coating thickness is 5 mil.  You want to be sure that the coating thickness remains the same before you will approve the process change.

The team wants to perform a hypothesis test to prove that the average coating thickness will not change.  The team will go through the basic five steps of hypothesis testing:

The details of the five steps are shown below.  However, before those steps are covered, a review of the standard normal distribution is needed.  This will be required when we do some calculations.

A Brief Pause for the Standard Normal Distribution

We need to digress a moment here because we will need to make use of a special case of the normal distribution – when the average = 0 and the standard deviation = 1. This special case is called the standard normal distribution and is shown in Figure 1.

Figure 1: Standard Normal Distribution

standard_normal_curve

For this distribution, the area under the curve from -∞ to +∞ is equal to 1.0. In addition, the area under the curve is proportional to the fraction of measurements that fall in that region. These two facts can used to help determine the fraction of measurements that fall above some value (such as a specification limit), below some value, or between two values.

histogram

z=  (x- μ)/σ

where x is some value, μ is the average, and σ is the standard deviation of the x values.  The value of z (the z score) is simply how many standard deviations a value, x, is from the average.

For example, suppose x is 1.5 standard deviations below the average.  In this case, z = -1.5.  The area below z = -1.5 is the percentage of x values that are more than 1.5 standard deviations below the average.  For z = -1.5, that area is 6.68% as is shown in Figure 1.   If z = 1.5, then the area above z = 1.5 is the percentage of x values that are more than 1.5 standard deviations above the average.  This area is also 6.68%.

To find the percentage of data within z = -1.5 and z = 1.5, you simply use the fact that the area under the curve is 100%, so the percentage of data between the two z values is 100 – 6.68 – 6.68 = 86.64%.  You can determine these percentages from a table of z values (see our publication on the normal distribution ) or by using Excel’s NORMSDIST function.

These percentages can also be viewed as probabilities, e.g., the probability of getting a result that is less than -1.5 standard deviations below the average is 0.0668.  We will make use of this knowledge below.  Now back to the steps in hypothesis testing.

Step 1: Formulate the Null Hypothesis and Alternative Hypothesis

Hypothesis testing

So the null hypothesis (H 0 ) is that the process change will not impact the average coating thickness; the average coating thickness (μ) will remain at 5.  This is usually written as:

Now for the alternative hypothesis, which is denoted by H 1 .  The alternative hypothesis is that the process change will have an effect on the average coating thickness and the average coating thickness will not equal 5.  This is usually written as:

This is called a two-sided hypothesis test since you are only interested if the mean is not equal to 5.  You can have one-sided tests where you want the mean to be greater than or less than some value.

Step 2: Determine the Significance Level You Want

The significance level is important in hypothesis testing.  It is the probability of rejecting the null hypothesis when it is true.  This probability is denoted by α.  Typical values of  α include 0.05 and 0.01.  You decide that you want α to be 0.05.  This means that there is only a 5% of chance of rejecting the null hypothesis when it is actually true.

Step 3: Collect the Data and Calculate the Sample Statistics

data

X   = average coating thickness = 5.06

s = standard deviation of the coating thickness = 0.20

We have our statistics.  How do you decide to accept or reject the null hypothesis?  The way you do this is to assume that the null hypothesis is true and then determine the probability (p value) of getting this sample average.  If the p value is large, it means that there is large probability of getting an average thickness of 5.06 with a standard deviation of 0.20 when the null hypothesis is true and you will accept that the null hypothesis is probably true.  But if the probability of getting these statistics is small, you will assume that the null hypothesis is probably not true and reject it in favor the alternative hypothesis.

Step 4: Calculate the p Value

To determine this probability, you will need to consider your sampling distribution.    The distribution of sample averages tends to be normal when the sample size is large enough.  We will use this assumption here.  So, your sampling distribution is represented by all the possible sample averages of sample size 25 from the population of coating thicknesses.  This normal distribution is shown in Figure 2.

Figure 2: Normal Distribution for Sample Averages

sampling distribution

The highest point on the curve is the average.  The population average of the sample averages (μ X ) is equal to the population average, μ, so we have just used μ in Figure 1.  The standard deviation of the sample averages is denoted by σ X .

To be able to draw your sampling distribution, you need to know μ X   and  σ X .  Since you assumed that the null hypothesis is true, μ X   = 5.0.  The standard deviation of the sample averages is given by:

where σ is the population standard deviation and n is the sample size.

You don’t know what the population standard deviation is, but you have an estimate from the sample statistics.  The standard deviation of the 25 samples was 0.2.  You can use this as the population standard deviation.

σ X =σ/√n =  s/√n=0.2/√25=0.04

Now you can draw the sampling distribution and add the sample average as shown in Figure 3.

Figure 3: Sampling Distribution

sampling distrbution with mean = 5

Now we return to the z score.  Remember, the z score is a measure of how many standard deviations the sample average ( X  )is from the population average (μ).   For this example, the z value is calculated as:

z=  ( X -μ)/σ X =(5.06-5)/.04=.06/.04=1.5

So, 5.06 is 1.5 standard deviations away from the average.    As shown above, the probability of getting a result that is 1.5 standard deviations away from the average is 0.0668.  Remember, this a two-side test, so you didn’t care if the difference was above or below the average.  So, the probability of getting an average that is more than 1.5 standard deviations away from the average is 2(0.0668) = 0.1336 or 13.36%.  This is the p value:

p value = 0.1336

Remember what the p value represents.  You assumed that the null hypothesis is true.  The p value is the probability of getting this result (or a more extreme result) if the null hypothesis is true.

Step 5:  Compare the p value to the Desired Significance Level

In step 2, we set the significance level at 0.05.  Since our p value is greater than this, we conclude that the coating thickness was not impacted by the process change.  We accept the null hypothesis as probably being true.  If the p value had been less than 0.05, we would rejected the null hypothesis and said that the process change did impact the coating thickness.

This newsletter has taken a look at how to perform hypothesis testing.  The five steps are:

  • Determine the significance level you want

The normal distribution was used to demonstrate how hypothesis testing is done.  You will not always be dealing with the normal distribution but the process is essentially the same.  One item that is still to be discussed is how to select the sample size.  This will be the subject of a later publication.

  • SPC for Excel Software
  • Visit our home page
  • SPC Training
  • SPC Consulting
  • Ordering Information

Thanks so much for reading our SPC Knowledge Base. We hope you find it informative and useful. Happy charting and may the data always support your position.

Dr. Bill McNeese BPI Consulting, LLC

View Bill McNeese

Connect with Us

  • Basic Statistics
  • Item Analysis
  • Analysis of Individual Values (ANOX)
  • Nonparametric Techniques for Comparing Processes
  • Nonparametric Techniques for a Single Sample
  • Descriptive Statistics
  • Interpretation of Alpha and p-Value
  • Just Because There is a Correlation, Doesn’t Mean ….
  • Deciding Which Distribution Fits Your Data Best
  • Distribution Fitting
  • Box-Cox Transformation
  • What? My Data are Not Normal?
  • Are Skewness and Statistics Useful Statistics – Revisited
  • How Many Samples Do I Need?
  • Anderson-Darling Test for Normality
  • Polls, Sample Size, and Error Margins
  • Normal Probability Plots
  • Normal Distribution
  • Are the Skewness and Kurtosis Useful Statistics?
  • Inspecting Supplier Material
  • Explaining Standard Deviation

guest

SPC Knowledgebase Newsletter and Videos

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

> > > Athletes

Excel Sample Data - Athletes

This page has two Microsoft Excel sample datasets that you can download, to use for testing, Excel training and demos, and other learning activities. See the data descriptions below, and choose the file with athlete data that will work best for you!

football player sample data for testing

1) Sample Data - Winter Athletes

2) Sample Data - Football Players

3) Download the Sample Data

4) Many More Sample Data Files

5) where to go next, 1) winter athletes data.

This sample Excel spreadsheet file has athlete data from the 2010 Winter Olympics, in Vancouver Canada.

  • There are 6 columns of data, with no calculations in the table.
  • There are 2606 rows of data in the athletes table.

Each row shows these 6 manual entry fields, with information about the Olympic participants:

  • Name : athlete's full name - LAST First
  • Sport : sport(s) athlete will participate in
  • Nationality : country athlete competes for
  • Age : athlete's age in years
  • Wt kg : athlete's weight in kilograms
  • Ht : athlete's height in centimetres

Note : This screen shot shows all 6 columns in the Winter Athletes dataset table.

hockey sample data for testing

2) Football Players Data

This sample file has data for professional football players in the USA, for two teams, in two different years - 2010 and 2022.

In January 2010, I watched a playoff game between the New Orleans Saints and the Arizona Cardinals. It was interesting that the players' numbers closely correlated with their physical size.

So, I found the player rosters online, and got that data into Excel, for analysis. You can read about it in my Contextures blog post , and see the game summary on the ESPN website .

2.1) Compare Team Data

Now I've added data for the 2022 team rosters, so you can compare years, teams, and/or player types!

  • Player heights were entered as text values, in feet-inches, e.g. 6-1. In Excel, I used formulas to convert those text values to real numbers.
  • Full names were listed, so I used formulas in two columns, to calculate each player's first and last name
  • New Orleans team roster and Arizona team roster

2.2) Player Table

In the Excel workbook, there is a player table with:

  • There are 16 columns of data, including 6 columns with a calculation.
  • There are 306 rows of data in the players table.

Each row shows these 10 manual entry fields:

  • Year : Roster Year
  • Team : Team city name
  • Name : Player's full name
  • No. : Player number, worn on jersey
  • Pos : Player's position code , e.g. QB (Quarterback)
  • Ht : Player's height in text, feet-inches, e.g. 5-10
  • Wt : Player's weight in pounds
  • Age : Player's age in years
  • Exp : Player's years of experience (or R for rookie)
  • College : Name of college that player attended

Each row shows the following 6 calculated fields:

  • FirstName : Player's first (given) name
  • LastName : Player's last (family) name
  • Ft : Number of feet in player's text height
  • In : Number of inches in player's text height
  • Inches : Player's height in total inches
  • NumGrp : Number group for player's jersey number (groups of 10)

Note : This screen shot shows the first 9 columns in the Football Player dataset table. There are 7 additional columns in the dataset, as described above.

3) Download Sample Data

Winter Athletes : Click here to get the winter athletes data file . The zipped Excel file is in xlsx format, and does not contain any macros.

Football Players : Click here to get the Football Player data file . The zipped Excel file is in xlsx format, and does not contain any macros.

There are many more Excel files with sample data that you can download! Go to any of the pages listed below, and get more data sets for Excel practice.

  • Office Supply Sales - This sample Excel file has office supply sales data, from a fictional company. For details on this data, and to download the zipped Excel file, go to the Office Supply Sales Sample Data page .
  • Food Sales - This sample Excel file has food sales data, from a fictional food company. For details on this data, and to download the zipped Excel file, go to the Food Sales Sample Data page .
  • Athlete Data - These sample Excel files have data for football players, and winter games athletes. For details on this data, and to download the zipped Excel file, go to the Athletes Sample Data page .
  • Hockey Player Data - This sample file has data from the 2018 Olympic Hockey teams, from Canada and the USA. For details on this data, and to download the sample file, go to the hockey player data analysis page.
  • Workplace Safety Data : This sample file has data for workplace safety incidents. For details on this data, and to download the zipped Excel file, go to the Workplace Safety Sample Data page .

Here are a few of my tutorials on working with data in Excel, organizing it in tables, and summarizing the data in pivot tables. You can find new ideas for your Excel practice sessions, or for training examples.

-- Excel Sample Data

-- Excel Tables

-- Pivot Tables

-- Data Entry Tips

Get Monthly Excel Tips!

Be sure to get my monthly newsletter , with quick Excel tips, links, news, and a bit of fun. Just add your email, then click Subscribe.

More Sample Files

Last updated: August 26, 2024 2:03 PM

IMAGES

  1. Hypothesis Testing Infographic

    hypothesis testing examples excel

  2. 8 Hypothesis Testing Examples in Real Life

    hypothesis testing examples excel

  3. Hypothesis testing in excel

    hypothesis testing examples excel

  4. What is Hypothesis testing in statistics: How to do Hypothesis testing,5 steps process

    hypothesis testing examples excel

  5. Hypothesis Testing Definition

    hypothesis testing examples excel

  6. Describe a Benefit of Hypothesis Testing Using Statistics

    hypothesis testing examples excel

COMMENTS

  1. The Complete Guide: Hypothesis Testing in Excel

    To test this, they collect a random sample of 20 plants from each species and measure their heights. The researchers would write the hypotheses for this particular two sample t-test as follows: H0: µ1 = µ2. HA: µ1 ≠ µ2. Refer to this tutorial for a step-by-step explanation of how to perform this hypothesis test in Excel.

  2. How to do t-Tests in Excel

    To perform a paired t-test in Excel, arrange your data into two columns so that each row represents one person or item, as shown below. Note that the analysis does not use the subject's ID number. In Excel, click Data Analysis on the Data tab. From the Data Analysis popup, choose t-Test: Paired Two Sample for Means.

  3. The Complete Guide: Hypothesis Testing in Excel

    In statistics, a hypothesis test is used to test some assumption about a population parameter. There are many different types of hypothesis tests you can perform depending on the type of data you're working with and the goal of your analysis. This tutorial explains how to perform the following types of hypothesis tests in Excel: One sample t ...

  4. How to Do a T Test in Excel (2 Ways with Interpretation of Results)

    Select t-Test: Two Sample Assuming Equal Variances and click OK. Set up the parameters for the t-test operation. Insert the Laptop and Smartphone prices as Variable 1 Range and Variable 2 Range. Include the headings in the range and check Labels. Set the value of Hypothesized Mean Difference to 0.

  5. How to Conduct a Two Sample t-Test in Excel

    If you don't see this as an option to click on, you need to first download the Analysis ToolPak, which is completely free. Step 3: Select the appropriate test to use. Select the option that says t-Test: Two-Sample Assuming Equal Variances and then click OK. Step 4: Enter the necessary info.

  6. The Complete Guide: Hypothesis Testing in Excel

    There are many different types of hypothesis tests you can perform depending on the type of data you're working with and the goal of your analysis. This tutorial explains how to perform the following types of hypothesis tests in Excel: One sample t-test. Two sample t-test. Paired samples t-test. One proportion z-test. Two proportion z-test.

  7. Excel Tutorial: How To Test Hypothesis In Excel

    A. Inputting the data into the Excel spreadsheet. The first step in testing a hypothesis in Excel is to input your data into the spreadsheet. This may include numerical values, categorical data, or any other relevant information for your analysis. B. Organizing the data for hypothesis testing.

  8. t-Test in Excel (In Easy Steps)

    This example teaches you how to perform a t-Test in Excel. The t-Test is used to test the null hypothesis that the means of two populations are equal. Below you can find the study hours of 6 female students and 5 male students. H 0: μ 1 - μ 2 = 0 H 1: μ 1 - μ 2 ≠ 0

  9. Hypothesis Testing

    Hypothesis Testing. Central to statistical analysis is the notion of hypothesis testing. We now review hypothesis testing (via null and alternative hypotheses), as well as consider the related topics of confidence intervals, effect size, statistical power, and sample size requirements. Concepts introduced in this part of the website will seem ...

  10. Hypothesis Testing in Excel: A Practical Handbook

    Hypothesis testing is a crucial statistical method used to draw meaningful conclusions about populations based on sample data. Excel, a ubiquitous spreadsheet tool, can be a handy companion in ...

  11. Hypothesis Test in Excel for the Population Mean (Large Sample)

    Hypothesis Test in Excel: Manual Steps. Step 1: Type your data into a single column in Excel. For example, type your data into cells A1:A40. Step 2: Click the "Data" tab and then click "Data Analysis.". If you don't see the Data Analysis button then you may need to load the Data Analysis Toolpak. Step 3: Click " Descriptive ...

  12. Hypothesis t-test for One Sample Mean using Excel's Data Analysis

    This video shows how to conduct a one-sample hypothesis t-test for the mean in Microsoft Excel using the built-in Data Analysis (from raw data).How to load ...

  13. How to Conduct a One Sample t-Test in Excel

    Step 2: Calculate the test statistic t. Next, we will calculate the test statistic t using the following formula: t = x - µ / (s/√n) where: x = sample mean. µ = hypothesized population mean. s = sample standard deviation. n = sample size. The following image shows how to calculate t in Excel:

  14. One-Sample t-Test

    The input data for the one-sample t-test can have missing data, indicated by empty cells or cells with non-numeric data. Such cells will be ignored in the analysis. Worksheet Function. As described in Paired T-Test and Two-Sample T-Test, Excel provides a T.TEST function that supports paired-sample and two-sample t-tests, but not the one-sample ...

  15. Hypothesis Testing

    In this article we will learn about One Sample z Test, forming the null and alternate hypothesis, p-value approach, critical value approach and how to use MS Excel to create it as your own ...

  16. Hypothesis Testing: Uses, Steps & Example

    The researchers write their hypotheses. These statements apply to the population, so they use the mu (μ) symbol for the population mean parameter.. Null Hypothesis (H 0): The population means of the test scores for the two groups are equal (μ 1 = μ 2).; Alternative Hypothesis (H A): The population means of the test scores for the two groups are unequal (μ 1 ≠ μ 2).

  17. Hypothesis T Test using Excel

    Hypothesis T Test using Excel | One Sample Test | Two Sample Test | Data Analysis using Excel𝐓𝐢𝐦𝐞𝐋𝐢𝐧𝐞: 00:00 Introduction 01:46 Hypothesis Testing...

  18. Using Microsoft Excel for One Sample Hypothesis Test

    This video provides the fundamental knowledge on One Sample Hypothesis Test and how to use Microsoft Excel to calculate the test statistics, critical value ...

  19. Hypothesis Testing in Statistics: Step by Step with Examples

    In Microsoft Excel we use the =NORM.S.INV(0.95) for a single tail critical value of 1.645 as the z value. We can use the Z table to arrive at the same value too. ... Selecting the sample size is important in hypothesis testing. The sample size chosen impacts the risk of Type I and Type 2 errors. The sample size also directly determines the ...

  20. 6.2 Hypothesis Testing

    Expand/collapse global hierarchy. 6.2 Hypothesis Testing - Single Population Mean using Excel. Last updated. Jul 24, 2021. Page ID. Table of contents. No headers. Please view the video below to learn to perform a one-sample hypothesis test using Excel.

  21. Excel for Hypothesis Testing: A Practical Approach for Students

    Hypothesis testing is a fundamental concept in statistics that allows researchers to draw conclusions about a population based on sample data. At its core, hypothesis testing involves making a decision about whether a statement regarding a population parameter is likely to be true. This decision is based on the analysis of sample data and is ...

  22. How to Conduct a Paired Samples t-Test in Excel

    On the Data tab along the top ribbon, click "Data Analysis.". If you don't see this as an option to click on, you need to first download the Analysis ToolPak, which is completely free. Step 2: Select the appropriate test to use. Select the option that says t-Test: Paired Two Sample for Means and then click OK.

  23. Hypothesis Testing

    The team will go through the basic five steps of hypothesis testing: Formulate the null hypothesis and the alternative hypothesis. Determine the significance level. Collect the data and calculate the sample statistics. Calculate the p value for the hypothesis test. Compare the p value to the desired significance level.

  24. Mastering Hypothesis Testing: 8 Steps Decoded

    Deliverable 04 Worksheet 1. Describe the 8 steps in the process for hypothesis testing. Explain the decision criteria for rejecting the null hypothesis for both the p-value method and the critical value method. Answer and Explanation: The remaining problems refer to the following scenario: A claim is made that the average salary for all jobs in Minnesota is less than $75,000.

  25. Excel Sample Data-Athletes-Example Analysis

    Here are a few of my tutorials on working with data in Excel, organizing it in tables, and summarizing the data in pivot tables. You can find new ideas for your Excel practice sessions, or for training examples.-- Excel Sample Data-- Excel Tables-- Pivot Tables-- Data Entry Tips. Get Monthly Excel Tips!