Oxford Martin School logo

Technology over the long run: zoom out to see how dramatically the world can change within a lifetime

It is easy to underestimate how much the world can change within a lifetime. considering how dramatically the world has changed can help us see how different the world could be in a few years or decades..

Technology can change the world in ways that are unimaginable until they happen. Switching on an electric light would have been unimaginable for our medieval ancestors. In their childhood, our grandparents would have struggled to imagine a world connected by smartphones and the Internet.

Similarly, it is hard for us to imagine the arrival of all those technologies that will fundamentally change the world we are used to.

We can remind ourselves that our own future might look very different from the world today by looking back at how rapidly technology has changed our world in the past. That’s what this article is about.

One insight I take away from this long-term perspective is how unusual our time is. Technological change was extremely slow in the past – the technologies that our ancestors got used to in their childhood were still central to their lives in their old age. In stark contrast to those days, we live in a time of extraordinarily fast technological change. For recent generations, it was common for technologies that were unimaginable in their youth to become common later in life.

The long-run perspective on technological change

The big visualization offers a long-term perspective on the history of technology. 1

The timeline begins at the center of the spiral. The first use of stone tools, 3.4 million years ago, marks the beginning of this history of technology. 2 Each turn of the spiral represents 200,000 years of history. It took 2.4 million years – 12 turns of the spiral – for our ancestors to control fire and use it for cooking. 3

To be able to visualize the inventions in the more recent past – the last 12,000 years – I had to unroll the spiral. I needed more space to be able to show when agriculture, writing, and the wheel were invented. During this period, technological change was faster, but it was still relatively slow: several thousand years passed between each of these three inventions.

From 1800 onwards, I stretched out the timeline even further to show the many major inventions that rapidly followed one after the other.

The long-term perspective that this chart provides makes it clear just how unusually fast technological change is in our time.

You can use this visualization to see how technology developed in particular domains. Follow, for example, the history of communication: from writing to paper, to the printing press, to the telegraph, the telephone, the radio, all the way to the Internet and smartphones.

Or follow the rapid development of human flight. In 1903, the Wright brothers took the first flight in human history (they were in the air for less than a minute), and just 66 years later, we landed on the moon. Many people saw both within their lifetimes: the first plane and the moon landing.

This large visualization also highlights the wide range of technology’s impact on our lives. It includes extraordinarily beneficial innovations, such as the vaccine that allowed humanity to eradicate smallpox , and it includes terrible innovations, like the nuclear bombs that endanger the lives of all of us .

What will the next decades bring?

The red timeline reaches up to the present and then continues in green into the future. Many children born today, even without further increases in life expectancy, will live well into the 22nd century.

New vaccines, progress in clean, low-carbon energy, better cancer treatments – a range of future innovations could very much improve our living conditions and the environment around us. But, as I argue in a series of articles , there is one technology that could even more profoundly change our world: artificial intelligence (AI).

One reason why artificial intelligence is such an important innovation is that intelligence is the main driver of innovation itself. This fast-paced technological change could speed up even more if it’s driven not only by humanity’s intelligence but also by artificial intelligence. If this happens, the change currently stretched out over decades might happen within a very brief time span of just a year. Possibly even faster. 4

I think AI technology could have a fundamentally transformative impact on our world. In many ways, it is already changing our world, as I documented in this companion article . As this technology becomes more capable in the years and decades to come, it can give immense power to those who control it (and it poses the risk that it could escape our control entirely).

Such systems might seem hard to imagine today, but AI technology is advancing quickly. Many AI experts believe there is a real chance that human-level artificial intelligence will be developed within the next decades, as I documented in this article .

legacy-wordpress-upload

Technology will continue to change the world – we should all make sure that it changes it for the better

What is familiar to us today – photography, the radio, antibiotics, the Internet, or the International Space Station circling our planet – was unimaginable to our ancestors just a few generations ago. If your great-great-great grandparents could spend a week with you, they would be blown away by your everyday life.

What I take away from this history is that I will likely see technologies in my lifetime that appear unimaginable to me today.

In addition to this trend towards increasingly rapid innovation, there is a second long-run trend. Technology has become increasingly powerful. While our ancestors wielded stone tools, we are building globe-spanning AI systems and technologies that can edit our genes.

Because of the immense power that technology gives those who control it, there is little that is as important as the question of which technologies get developed during our lifetimes. Therefore, I think it is a mistake to leave the question about the future of technology to the technologists. Which technologies are controlled by whom is one of the most important political questions of our time because of the enormous power these technologies convey to those who control them.

We all should strive to gain the knowledge we need to contribute to an intelligent debate about the world we want to live in. To a large part, this means gaining knowledge and wisdom on the question of which technologies we want.

Acknowledgments: I would like to thank my colleagues Hannah Ritchie, Bastian Herre, Natasha Ahuja, Edouard Mathieu, Daniel Bachler, Charlie Giattino, and Pablo Rosado for their helpful comments on drafts of this essay and the visualization. Thanks also to Lizka Vaintrob and Ben Clifford for the conversation that initiated this visualization.

Appendix: About the choice of visualization in this article

The recent speed of technological change makes it difficult to picture the history of technology in one visualization. When you visualize this development on a linear timeline, then most of the timeline is almost empty, while all the action is crammed into the right corner:

Linear version of the spiral chart

In my large visualization here, I tried to avoid this problem and instead show the long history of technology in a way that lets you see when each technological breakthrough happened and how, within the last millennia, there was a continuous acceleration of technological change.

The recent speed of technological change makes it difficult to picture the history of technology in one visualization. In the appendix, I show how this would look if it were linear.

It is, of course, difficult to assess when exactly the first stone tools were used.

The research by McPherron et al. (2010) suggested that it was at least 3.39 million years ago. This is based on two fossilized bones found in Dikika in Ethiopia, which showed “stone-tool cut marks for flesh removal and percussion marks for marrow access”. These marks were interpreted as being caused by meat consumption and provide the first evidence that one of our ancestors, Australopithecus afarensis, used stone tools.

The research by Harmand et al. (2015) provided evidence for stone tool use in today’s Kenya 3.3 million years ago.

References:

McPherron et al. (2010) – Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia . Published in Nature.

Harmand et al. (2015) – 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya . Published in Nature.

Evidence for controlled fire use approximately 1 million years ago is provided by Berna et al. (2012) Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa , published in PNAS.

The authors write: “The ability to control fire was a crucial turning point in human evolution, but the question of when hominins first developed this ability still remains. Here we show that micromorphological and Fourier transform infrared microspectroscopy (mFTIR) analyses of intact sediments at the site of Wonderwerk Cave, Northern Cape province, South Africa, provide unambiguous evidence—in the form of burned bone and ashed plant remains—that burning took place in the cave during the early Acheulean occupation, approximately 1.0 Ma. To the best of our knowledge, this is the earliest secure evidence for burning in an archaeological context.”

This is what authors like Holden Karnofsky called ‘Process for Automating Scientific and Technological Advancement’ or PASTA. Some recent developments go in this direction: DeepMind’s AlphaFold helped to make progress on one of the large problems in biology, and they have also developed an AI system that finds new algorithms that are relevant to building a more powerful AI.

Cite this work

Our articles and data visualizations rely on work from many different people and organizations. When citing this article, please also cite the underlying data sources. This article can be cited as:

BibTeX citation

Reuse this work freely

All visualizations, data, and code produced by Our World in Data are completely open access under the Creative Commons BY license . You have the permission to use, distribute, and reproduce these in any medium, provided the source and authors are credited.

The data produced by third parties and made available by Our World in Data is subject to the license terms from the original third-party authors. We will always indicate the original source of the data in our documentation, so you should always check the license of any such third-party data before use and redistribution.

All of our charts can be embedded in any site.

Our World in Data is free and accessible for everyone.

Help us do this work by making a donation.

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction
  • Social involvement in technological advances
  • Modes of technological transmission
  • Earliest communities
  • Tools and weapons
  • Building techniques
  • Manufacturing
  • Craftsmen and scientists
  • Copper and bronze
  • Urban manufacturing
  • Transmitting knowledge
  • The mastery of iron
  • Mechanical contrivances
  • Agriculture
  • Military technology
  • Power sources
  • Agriculture and crafts
  • Architecture
  • Communications
  • The Renaissance
  • The steam engine
  • Metallurgy and mining
  • New commodities
  • Land reclamation
  • Military fortifications
  • Transport and communications
  • Steam engines

Electricity

  • Internal-combustion engine
  • Iron and steel
  • Low-grade ores
  • Mechanical engineering
  • Civil engineering
  • Steam locomotive
  • Road locomotive
  • Steamboats and ships
  • Printing and photography
  • Telegraphs and telephones

Gas-turbine engine

  • Atomic power
  • Improvements in iron and steel
  • Building materials
  • Synthetic fibres
  • Synthetic rubber
  • Pharmaceuticals and medical technology
  • Food and agriculture
  • Transportation
  • Alternatives to fossil fuels
  • Gas turbine
  • Automation and the computer
  • Food production
  • Space exploration
  • Science and technology
  • Criticisms of technology
  • Nuclear technology
  • Population explosion
  • Ecological balance
  • Interactions between society and technology
  • The putative autonomy of technology
  • Technology and education
  • The quality of life

International Space Station

  • Is Internet technology "making us stupid"?
  • What is the impact of artificial intelligence (AI) technology on society?
  • Where and when did the Industrial Revolution take place?
  • How did the Industrial Revolution change economies?
  • How did the Industrial Revolution change society?

Abstract vector hi speed internet technology background

The 20th and 21st centuries

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Frontiers - The Evolution of Technology and Physical Inactivity: The Good, the Bad, and the Way Forward
  • San José State University - Introduction to the History of Technology
  • Table Of Contents

Technology from 1900 to 1945

Recent history is notoriously difficult to write, because of the mass of material and the problem of distinguishing the significant from the insignificant among events that have virtually the power of contemporary experience. In respect to the recent history of technology , however, one fact stands out clearly: despite the immense achievements of technology by 1900, the following decades witnessed more advance over a wide range of activities than the whole of previously recorded history. The airplane, the rocket and interplanetary probes, electronics, atomic power , antibiotics, insecticides, and a host of new materials have all been invented and developed to create an unparalleled social situation, full of possibilities and dangers, which would have been virtually unimaginable before the present century.

In venturing to interpret the events of the 20th century, it will be convenient to separate the years before 1945 from those that followed. The years 1900 to 1945 were dominated by the two World Wars, while those since 1945 were preoccupied by the need to avoid another major war. The dividing point is one of outstanding social and technological significance: the detonation of the first atomic bomb at Alamogordo, New Mexico , in July 1945.

There were profound political changes in the 20th century related to technological capacity and leadership. It may be an exaggeration to regard the 20th century as “the American century,” but the rise of the United States as a superstate was sufficiently rapid and dramatic to excuse the hyperbole . It was a rise based upon tremendous natural resources exploited to secure increased productivity through widespread industrialization, and the success of the United States in achieving this objective was tested and demonstrated in the two World Wars. Technological leadership passed from Britain and the European nations to the United States in the course of these wars. This is not to say that the springs of innovation went dry in Europe. Many important inventions of the 20th century originated there. But it was the United States that had the capacity to assimilate innovations and take full advantage from them at times when other countries were deficient in one or other of the vital social resources without which a brilliant invention cannot be converted into a commercial success. As with Britain in the Industrial Revolution , the technological vitality of the United States in the 20th century was demonstrated less by any particular innovations than by its ability to adopt new ideas from whatever source they come.

The two World Wars were themselves the most important instruments of technological as well as political change in the 20th century. The rapid evolution of the airplane is a striking illustration of this process, while the appearance of the tank in the first conflict and of the atomic bomb in the second show the same signs of response to an urgent military stimulus. It has been said that World War I was a chemists’ war, on the basis of the immense importance of high explosives and poison gas. In other respects the two wars hastened the development of technology by extending the institutional apparatus for the encouragement of innovation by both the state and private industry . This process went further in some countries than in others, but no major belligerent nation could resist entirely the need to support and coordinate its scientific-technological effort. The wars were thus responsible for speeding the transformation from “little science,” with research still largely restricted to small-scale efforts by a few isolated scientists, to “big science,” with the emphasis on large research teams sponsored by governments and corporations, working collectively on the development and application of new techniques. While the extent of this transformation must not be overstated, and recent research has tended to stress the continuing need for the independent inventor at least in the stimulation of innovation, there can be little doubt that the change in the scale of technological enterprises had far-reaching consequences . It was one of the most momentous transformations of the 20th century, for it altered the quality of industrial and social organization. In the process it assured technology, for the first time in its long history, a position of importance and even honour in social esteem.

Fuel and power

There were no fundamental innovations in fuel and power before the breakthrough of 1945, but there were several significant developments in techniques that had originated in the previous century. An outstanding development of this type was the internal-combustion engine , which was continuously improved to meet the needs of road vehicles and airplanes. The high-compression engine burning heavy-oil fuels, invented by Rudolf Diesel in the 1890s, was developed to serve as a submarine power unit in World War I and was subsequently adapted to heavy road haulage duties and to agricultural tractors. Moreover, the sort of development that had transformed the reciprocating steam engine into the steam turbine occurred with the internal-combustion engine, the gas turbine replacing the reciprocating engine for specialized purposes such as aero-engines, in which a high power-to-weight ratio is important. Admittedly, this adaptation had not proceeded very far by 1945, although the first jet-powered aircraft were in service by the end of the war. The theory of the gas turbine, however, had been understood since the 1920s at least, and in 1929 Sir Frank Whittle , then taking a flying instructor’s course with the Royal Air Force , combined it with the principle of jet propulsion in the engine for which he took out a patent in the following year. But the construction of a satisfactory gas-turbine engine was delayed for a decade by the lack of resources, and particularly by the need to develop new metal alloys that could withstand the high temperatures generated in the engine. This problem was solved by the development of a nickel-chromium alloy, and, with the gradual solution of the other problems, work went on in both Germany and Britain to seize a military advantage by applying the jet engine to combat aircraft.

The principle of the gas turbine is that of compressing and burning air and fuel in a combustion chamber and using the exhaust jet from this process to provide the reaction that propels the engine forward. In its turbopropeller form, which developed only after World War II , the exhaust drives a shaft carrying a normal airscrew (propeller). Compression is achieved in a gas-turbine engine by admitting air through a turbine rotor. In the so-called ramjet engine, intended to operate at high speeds, the momentum of the engine through the air achieves adequate compression. The gas turbine has been the subject of experiments in road, rail, and marine transport, but for all purposes except that of air transport its advantages have not so far been such as to make it a viable rival to traditional reciprocating engines.

technology era essay

As far as fuel is concerned, the gas turbine burns mainly the middle fractions (kerosene, or paraffin) of refined oil, but the general tendency of its widespread application was to increase still further the dependence of the industrialized nations on the producers of crude oil , which became a raw material of immense economic value and international political significance. The refining of this material itself underwent important technological development. Until the 20th century it consisted of a fairly simple batch process whereby oil was heated until it vaporized, when the various fractions were distilled separately. Apart from improvements in the design of the stills and the introduction of continuous-flow production, the first big advance came in 1913 with the introduction of thermal cracking . This process took the less volatile fractions after distillation and subjected them to heat under pressure, thus cracking the heavy molecules into lighter molecules and so increasing the yield of the most valuable fuel, petrol or gasoline. The discovery of this ability to tailor the products of crude oil to suit the market marks the true beginning of the petrochemical industry. It received a further boost in 1936, with the introduction of catalytic cracking. By the use of various catalysts in the process, means were devised for still further manipulating the molecules of the hydrocarbon raw material. The development of modern plastics followed directly on this ( see below Plastics ). So efficient had the processes of utilization become that by the end of World War II the petrochemical industry had virtually eliminated all waste materials.

All the principles of generating electricity had been worked out in the 19th century, but by its end these had only just begun to produce electricity on a large scale. The 20th century witnessed a colossal expansion of electrical power generation and distribution. The general pattern has been toward ever-larger units of production, using steam from coal- or oil-fired boilers. Economies of scale and the greater physical efficiency achieved as higher steam temperatures and pressures were attained both reinforced this tendency. Experience in the United States indicates the trend: in the first decade of the 20th century, a generating unit with a capacity of 25,000 kilowatts with pressures up to 200–300 pounds per square inch at 400–500 °F (about 200–265 °C) was considered large, but by 1930 the largest unit was 208,000 kilowatts with pressures of 1,200 pounds per square inch at a temperature of 725 °F, while the amount of fuel necessary to produce a kilowatt-hour of electricity and the price to the consumer had fallen dramatically. As the market for electricity increased, so did the distance over which it was transmitted, and the efficiency of transmission required higher and higher voltages. The small direct-current generators of early urban power systems were abandoned in favour of alternating-current systems, which could be adapted more readily to high voltages. Transmission over a line of 155 miles (250 km) was established in California in 1908 at 110,000 volts, and Hoover Dam in the 1930s used a line of 300 miles (480 km) at 287,000 volts. The latter case may serve as a reminder that hydroelectric power , using a fall of water to drive water turbines, was developed to generate electricity where the climate and topography make it possible to combine production with convenient transmission to a market. Remarkable levels of efficiency were achieved in modern plants. One important consequence of the ever-expanding consumption of electricity in the industrialized countries has been the linking of local systems to provide vast power grids, or pools, within which power can be shifted easily to meet changing local needs for current.

Essay on Technology – A Boon or Bane for Students

500+ words essay on technology for students.

In this essay on technology, we are going to discuss what technology is, what are its uses, and also what technology can do? First of all, technology refers to the use of technical and scientific knowledge to create, monitor, and design machinery. Also, technology helps in making other goods that aid mankind.

Essay on Technology – A Boon or Bane?

Experts are debating on this topic for years. Also, the technology covered a long way to make human life easier but the negative aspect of it can’t be ignored. Over the years technological advancement has caused a severe rise in pollution . Also, pollution has become a major cause of many health issues. Besides, it has cut off people from society rather than connecting them. Above all, it has taken away many jobs from the workers class.

Essay on technology

Familiarity between Technology and Science

As they are completely different fields but they are interdependent on each other. Also, it is due to science contribution we can create new innovation and build new technological tools. Apart from that, the research conducted in laboratories contributes a lot to the development of technologies. On the other hand, technology extends the agenda of science.

Vital Part of our Life

Regularly evolving technology has become an important part of our lives. Also, newer technologies are taking the market by storm and the people are getting used to them in no time. Above all, technological advancement has led to the growth and development of nations.

Negative Aspect of Technology

Although technology is a good thing, everything has two sides. Technology also has two sides one is good and the other is bad. Here are some negative aspects of technology that we are going to discuss.

Get the huge list of more than 500 Essay Topics and Ideas

With new technology the industrialization increases which give birth to many pollutions like air, water, soil, and noise. Also, they cause many health-related issues in animals, birds, and human beings.

Exhaustion of Natural Resources

New technology requires new resources for which the balance is disturbed. Eventually, this will lead to over-exploitation of natural resources which ultimately disturbs the balance of nature.

Unemployment

A single machine can replace many workers. Also, machines can do work at a constant pace for several hours or days without stopping. Due to this, many workers lost their job which ultimately increases unemployment .

Types of Technology

Generally, we judge technology on the same scale but in reality, technology is divided into various types. This includes information technology, industrial technology , architectural technology, creative technology and many more. Let’s discuss these technologies in brief.

Industrial Technology

This technology organizes engineering and manufacturing technology for the manufacturing of machines. Also, this makes the production process easier and convenient.

Creative Technology

This process includes art, advertising, and product design which are made with the help of software. Also, it comprises of 3D printers , virtual reality, computer graphics, and other wearable technologies.

Information Technology

This technology involves the use of telecommunication and computer to send, receive and store information. Internet is the best example of Information technology.

technology era essay

FAQs on Essay on Technology

Q.1 What is Information technology?

A –  It is a form of technology that uses telecommunication and computer systems for study. Also, they send, retrieve, and store data.

Q.2 Is technology harmful to humans?

 A – No, technology is not harmful to human beings until it is used properly. But, misuses of technology can be harmful and deadly.

Download Toppr – Best Learning App for Class 5 to 12

Toppr provides free study materials, last 10 years of question papers, 1000+ hours of video lectures, live 24/7 doubts solving, and much more for FREE! Download Toppr app for Android and iOS or signup for free.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Home / Essay Samples / Information Science and Technology / Modern Technology

Modern Technology Essay Examples

Life without computers: a glimpse into a simpler college experience.

Imagine a time when computers were absent from the college scene, and every academic pursuit required a touch of the analog. This essay offers a nostalgic journey back to a college life without computers, where handwritten notes, manual research, and face-to-face interactions dominated the learning...

The Transformative Impact of the Internet on Our Lives

The emergence of the internet has catalyzed a revolution that has permeated every corner of society, reshaping the way we perceive and engage with the world. This essay delves into the profound impact of the internet on our daily lives, highlighting its influence on communication,...

Modern Technology Improves Quality of Life

Modern technology has become an integral part of our daily lives, revolutionizing the way we communicate, work, and live. From smartphones to artificial intelligence, technology has greatly improved the quality of life for individuals and societies as a whole. This essay will explore the various...

Artificial Intelligence: Exploring the Pros and Cons

Artificial Intelligence (AI) has emerged as a transformative force that is reshaping industries, enhancing efficiency, and challenging our notions of human capabilities. This essay delves into the myriad benefits and potential drawbacks of AI, discussing its positive impact on automation, healthcare, and data analysis, as...

Jeroen Van Den Hoven: Nanotechnology and Privacy

Jeroen van den Hoven is a prominent philosopher and ethicist known for his work on the ethical implications of emerging technologies, including nanotechnology. In particular, he has explored the complex relationship between nanotechnology and privacy, raising thought-provoking questions about the potential threats and safeguards associated...

Nanotechnology and Its Remediation

Nanotechnology is a rapidly advancing field that involves manipulating matter at the nanoscale level, typically within the range of 1 to 100 nanometers. At this size, materials exhibit unique properties and behaviors that can be harnessed for various applications. This essay explores the fascinating world...

Exploring Nanotechnology as a Promising Career Path

Nanotechnology is a rapidly growing and interdisciplinary field that offers exciting career opportunities for individuals interested in cutting-edge research and innovation. This essay explores the potential of nanotechnology as a career choice, the skills required, and the diverse applications of nanotechnology in various industries. Embarking...

How Do We Communicate and Why It's Getting Weird

Instead of going out and spending quality time with friends or family, people nowadays just communicate through texting and calling over the phone. When people did not have phones, they use to walk or drive somewhere and meet up just to have a face-to-face conversation....

The Way Artificial Intelligence Will Change the World

What is Artificial Intelligence and how it is changing the world? In AI will change the world by essay I want to share how beneficial Artificial Intelligence is for nowadays world. Artificial intelligence as the name suggests that creating intelligence artificially. Artificial intelligence is a...

The Role of Artificial Intelligence in Customer Service

Can the use of artificial intelligence lead to improved customer loyalty in customer service? In customer service essay we will try to find answer. It has been proven that a functioning customer service is more responsible than ever before that a customer feels bound to...

Trying to find an excellent essay sample but no results?

Don’t waste your time and get a professional writer to help!

  • Artificial Intelligence
  • Google Glass
  • Cloud Computing
  • 3D Printing
  • Text Messaging
  • Crowdsourcing
  • Nanotechnology
  • Impact of Technology
  • Digital Devices
  • Computer Science

samplius.com uses cookies to offer you the best service possible.By continuing we’ll assume you board with our cookie policy .--> -->