The teacher's logo for schools and students.

The Will to Teach

Critical Thinking in the Classroom: A Guide for Teachers

In the ever-evolving landscape of education, teaching students the skill of critical thinking has become a priority. This powerful tool empowers students to evaluate information, make reasoned judgments, and approach problems from a fresh perspective. In this article, we’ll explore the significance of critical thinking and provide effective strategies to nurture this skill in your students.

Why is Fostering Critical Thinking Important?

Strategies to cultivate critical thinking, real-world example, concluding thoughts.

Critical thinking is a key skill that goes far beyond the four walls of a classroom. It equips students to better understand and interact with the world around them. Here are some reasons why fostering critical thinking is important:

  • Making Informed Decisions:  Critical thinking enables students to evaluate the pros and cons of a situation, helping them make informed and rational decisions.
  • Developing Analytical Skills:  Critical thinking involves analyzing information from different angles, which enhances analytical skills.
  • Promoting Independence:  Critical thinking fosters independence by encouraging students to form their own opinions based on their analysis, rather than relying on others.

how hard is critical thinking class

Creating an environment that encourages critical thinking can be accomplished in various ways. Here are some effective strategies:

  • Socratic Questioning:  This method involves asking thought-provoking questions that encourage students to think deeply about a topic. For example, instead of asking, “What is the capital of France?” you might ask, “Why do you think Paris became the capital of France?”
  • Debates and Discussions:  Debates and open-ended discussions allow students to explore different viewpoints and challenge their own beliefs. For example, a debate on a current event can engage students in critical analysis of the situation.
  • Teaching Metacognition:  Teaching students to think about their own thinking can enhance their critical thinking skills. This can be achieved through activities such as reflective writing or journaling.
  • Problem-Solving Activities:  As with developing problem-solving skills , activities that require students to find solutions to complex problems can also foster critical thinking.

As a school leader, I’ve seen the transformative power of critical thinking. During a school competition, I observed a team of students tasked with proposing a solution to reduce our school’s environmental impact. Instead of jumping to obvious solutions, they critically evaluated multiple options, considering the feasibility, cost, and potential impact of each. They ultimately proposed a comprehensive plan that involved water conservation, waste reduction, and energy efficiency measures. This demonstrated their ability to critically analyze a problem and develop an effective solution.

Critical thinking is an essential skill for students in the 21st century. It equips them to understand and navigate the world in a thoughtful and informed manner. As a teacher, incorporating strategies to foster critical thinking in your classroom can make a lasting impact on your students’ educational journey and life beyond school.

1. What is critical thinking? Critical thinking is the ability to analyze information objectively and make a reasoned judgment.

2. Why is critical thinking important for students? Critical thinking helps students make informed decisions, develop analytical skills, and promotes independence.

3. What are some strategies to cultivate critical thinking in students? Strategies can include Socratic questioning, debates and discussions, teaching metacognition, and problem-solving activities.

4. How can I assess my students’ critical thinking skills? You can assess critical thinking skills through essays, presentations, discussions, and problem-solving tasks that require thoughtful analysis.

5. Can critical thinking be taught? Yes, critical thinking can be taught and nurtured through specific teaching strategies and a supportive learning environment.

' src=

Related Posts

7 simple strategies for strong student-teacher relationships.

Getting to know your students on a personal level is the first step towards building strong relationships. Show genuine interest in their lives outside the classroom.

Students observing a teacher in a classroom.

Connecting Learning to Real-World Contexts: Strategies for Teachers

When students see the relevance of their classroom lessons to their everyday lives, they are more likely to be motivated, engaged, and retain information.

A young girl is using a tablet computer for school.

Encouraging Active Involvement in Learning: Strategies for Teachers

Active learning benefits students by improving retention of information, enhancing critical thinking skills, and encouraging a deeper understanding of the subject matter.

Students raising their hands in a classroom.

Collaborative and Cooperative Learning: A Guide for Teachers

These methods encourage students to work together, share ideas, and actively participate in their education.

A group of students are doing a science experiment in school, guided by their teacher.

Experiential Teaching: Role-Play and Simulations in Teaching

These interactive techniques allow students to immerse themselves in practical, real-world scenarios, thereby deepening their understanding and retention of key concepts.

In a school classroom, a teacher engages with her students while delivering a lesson.

Project-Based Learning Activities: A Guide for Teachers

Project-Based Learning is a student-centered pedagogy that involves a dynamic approach to teaching, where students explore real-world problems or challenges.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Menu Trigger

Why Schools Need to Change Yes, We Can Define, Teach, and Assess Critical Thinking Skills

how hard is critical thinking class

Jeff Heyck-Williams (He, His, Him) Director of the Two Rivers Learning Institute in Washington, DC

critical thinking

Today’s learners face an uncertain present and a rapidly changing future that demand far different skills and knowledge than were needed in the 20th century. We also know so much more about enabling deep, powerful learning than we ever did before. Our collective future depends on how well young people prepare for the challenges and opportunities of 21st-century life.

Critical thinking is a thing. We can define it; we can teach it; and we can assess it.

While the idea of teaching critical thinking has been bandied around in education circles since at least the time of John Dewey, it has taken greater prominence in the education debates with the advent of the term “21st century skills” and discussions of deeper learning. There is increasing agreement among education reformers that critical thinking is an essential ingredient for long-term success for all of our students.

However, there are still those in the education establishment and in the media who argue that critical thinking isn’t really a thing, or that these skills aren’t well defined and, even if they could be defined, they can’t be taught or assessed.

To those naysayers, I have to disagree. Critical thinking is a thing. We can define it; we can teach it; and we can assess it. In fact, as part of a multi-year Assessment for Learning Project , Two Rivers Public Charter School in Washington, D.C., has done just that.

Before I dive into what we have done, I want to acknowledge that some of the criticism has merit.

First, there are those that argue that critical thinking can only exist when students have a vast fund of knowledge. Meaning that a student cannot think critically if they don’t have something substantive about which to think. I agree. Students do need a robust foundation of core content knowledge to effectively think critically. Schools still have a responsibility for building students’ content knowledge.

However, I would argue that students don’t need to wait to think critically until after they have mastered some arbitrary amount of knowledge. They can start building critical thinking skills when they walk in the door. All students come to school with experience and knowledge which they can immediately think critically about. In fact, some of the thinking that they learn to do helps augment and solidify the discipline-specific academic knowledge that they are learning.

The second criticism is that critical thinking skills are always highly contextual. In this argument, the critics make the point that the types of thinking that students do in history is categorically different from the types of thinking students do in science or math. Thus, the idea of teaching broadly defined, content-neutral critical thinking skills is impossible. I agree that there are domain-specific thinking skills that students should learn in each discipline. However, I also believe that there are several generalizable skills that elementary school students can learn that have broad applicability to their academic and social lives. That is what we have done at Two Rivers.

Defining Critical Thinking Skills

We began this work by first defining what we mean by critical thinking. After a review of the literature and looking at the practice at other schools, we identified five constructs that encompass a set of broadly applicable skills: schema development and activation; effective reasoning; creativity and innovation; problem solving; and decision making.

critical thinking competency

We then created rubrics to provide a concrete vision of what each of these constructs look like in practice. Working with the Stanford Center for Assessment, Learning and Equity (SCALE) , we refined these rubrics to capture clear and discrete skills.

For example, we defined effective reasoning as the skill of creating an evidence-based claim: students need to construct a claim, identify relevant support, link their support to their claim, and identify possible questions or counter claims. Rubrics provide an explicit vision of the skill of effective reasoning for students and teachers. By breaking the rubrics down for different grade bands, we have been able not only to describe what reasoning is but also to delineate how the skills develop in students from preschool through 8th grade.

reasoning rubric

Before moving on, I want to freely acknowledge that in narrowly defining reasoning as the construction of evidence-based claims we have disregarded some elements of reasoning that students can and should learn. For example, the difference between constructing claims through deductive versus inductive means is not highlighted in our definition. However, by privileging a definition that has broad applicability across disciplines, we are able to gain traction in developing the roots of critical thinking. In this case, to formulate well-supported claims or arguments.

Teaching Critical Thinking Skills

The definitions of critical thinking constructs were only useful to us in as much as they translated into practical skills that teachers could teach and students could learn and use. Consequently, we have found that to teach a set of cognitive skills, we needed thinking routines that defined the regular application of these critical thinking and problem-solving skills across domains. Building on Harvard’s Project Zero Visible Thinking work, we have named routines aligned with each of our constructs.

For example, with the construct of effective reasoning, we aligned the Claim-Support-Question thinking routine to our rubric. Teachers then were able to teach students that whenever they were making an argument, the norm in the class was to use the routine in constructing their claim and support. The flexibility of the routine has allowed us to apply it from preschool through 8th grade and across disciplines from science to economics and from math to literacy.

argumentative writing

Kathryn Mancino, a 5th grade teacher at Two Rivers, has deliberately taught three of our thinking routines to students using the anchor charts above. Her charts name the components of each routine and has a place for students to record when they’ve used it and what they have figured out about the routine. By using this structure with a chart that can be added to throughout the year, students see the routines as broadly applicable across disciplines and are able to refine their application over time.

Assessing Critical Thinking Skills

By defining specific constructs of critical thinking and building thinking routines that support their implementation in classrooms, we have operated under the assumption that students are developing skills that they will be able to transfer to other settings. However, we recognized both the importance and the challenge of gathering reliable data to confirm this.

With this in mind, we have developed a series of short performance tasks around novel discipline-neutral contexts in which students can apply the constructs of thinking. Through these tasks, we have been able to provide an opportunity for students to demonstrate their ability to transfer the types of thinking beyond the original classroom setting. Once again, we have worked with SCALE to define tasks where students easily access the content but where the cognitive lift requires them to demonstrate their thinking abilities.

These assessments demonstrate that it is possible to capture meaningful data on students’ critical thinking abilities. They are not intended to be high stakes accountability measures. Instead, they are designed to give students, teachers, and school leaders discrete formative data on hard to measure skills.

While it is clearly difficult, and we have not solved all of the challenges to scaling assessments of critical thinking, we can define, teach, and assess these skills . In fact, knowing how important they are for the economy of the future and our democracy, it is essential that we do.

Jeff Heyck-Williams (He, His, Him)

Director of the two rivers learning institute.

Jeff Heyck-Williams is the director of the Two Rivers Learning Institute and a founder of Two Rivers Public Charter School. He has led work around creating school-wide cultures of mathematics, developing assessments of critical thinking and problem-solving, and supporting project-based learning.

Read More About Why Schools Need to Change

Teacher holding laptop in classroom

AI in Schools Has Prevailed for a Full Year. What Happens Next?

August 13, 2024

elementary students collaborate

Connections over Consequences: Effective Strategies for Collaborative Problem-Solving with Students

Sanchel Hall

August 6, 2024

Two high school students

Incorporating Leadership Skills into a Student-Centered Classroom

Elizabeth Lennon (she, her)

July 8, 2024

how hard is critical thinking class

  • Our Mission

Helping Students Hone Their Critical Thinking Skills

Used consistently, these strategies can help middle and high school teachers guide students to improve much-needed skills.

Middle school students involved in a classroom discussion

Critical thinking skills are important in every discipline, at and beyond school. From managing money to choosing which candidates to vote for in elections to making difficult career choices, students need to be prepared to take in, synthesize, and act on new information in a world that is constantly changing.

While critical thinking might seem like an abstract idea that is tough to directly instruct, there are many engaging ways to help students strengthen these skills through active learning.

Make Time for Metacognitive Reflection

Create space for students to both reflect on their ideas and discuss the power of doing so. Show students how they can push back on their own thinking to analyze and question their assumptions. Students might ask themselves, “Why is this the best answer? What information supports my answer? What might someone with a counterargument say?”

Through this reflection, students and teachers (who can model reflecting on their own thinking) gain deeper understandings of their ideas and do a better job articulating their beliefs. In a world that is go-go-go, it is important to help students understand that it is OK to take a breath and think about their ideas before putting them out into the world. And taking time for reflection helps us more thoughtfully consider others’ ideas, too.

Teach Reasoning Skills 

Reasoning skills are another key component of critical thinking, involving the abilities to think logically, evaluate evidence, identify assumptions, and analyze arguments. Students who learn how to use reasoning skills will be better equipped to make informed decisions, form and defend opinions, and solve problems. 

One way to teach reasoning is to use problem-solving activities that require students to apply their skills to practical contexts. For example, give students a real problem to solve, and ask them to use reasoning skills to develop a solution. They can then present their solution and defend their reasoning to the class and engage in discussion about whether and how their thinking changed when listening to peers’ perspectives. 

A great example I have seen involved students identifying an underutilized part of their school and creating a presentation about one way to redesign it. This project allowed students to feel a sense of connection to the problem and come up with creative solutions that could help others at school. For more examples, you might visit PBS’s Design Squad , a resource that brings to life real-world problem-solving.

Ask Open-Ended Questions 

Moving beyond the repetition of facts, critical thinking requires students to take positions and explain their beliefs through research, evidence, and explanations of credibility. 

When we pose open-ended questions, we create space for classroom discourse inclusive of diverse, perhaps opposing, ideas—grounds for rich exchanges that support deep thinking and analysis. 

For example, “How would you approach the problem?” and “Where might you look to find resources to address this issue?” are two open-ended questions that position students to think less about the “right” answer and more about the variety of solutions that might already exist. 

Journaling, whether digitally or physically in a notebook, is another great way to have students answer these open-ended prompts—giving them time to think and organize their thoughts before contributing to a conversation, which can ensure that more voices are heard. 

Once students process in their journal, small group or whole class conversations help bring their ideas to life. Discovering similarities between answers helps reveal to students that they are not alone, which can encourage future participation in constructive civil discourse.

Teach Information Literacy 

Education has moved far past the idea of “Be careful of what is on Wikipedia, because it might not be true.” With AI innovations making their way into classrooms, teachers know that informed readers must question everything. 

Understanding what is and is not a reliable source and knowing how to vet information are important skills for students to build and utilize when making informed decisions. You might start by introducing the idea of bias: Articles, ads, memes, videos, and every other form of media can push an agenda that students may not see on the surface. Discuss credibility, subjectivity, and objectivity, and look at examples and nonexamples of trusted information to prepare students to be well-informed members of a democracy.

One of my favorite lessons is about the Pacific Northwest tree octopus . This project asks students to explore what appears to be a very real website that provides information on this supposedly endangered animal. It is a wonderful, albeit over-the-top, example of how something might look official even when untrue, revealing that we need critical thinking to break down “facts” and determine the validity of the information we consume. 

A fun extension is to have students come up with their own website or newsletter about something going on in school that is untrue. Perhaps a change in dress code that requires everyone to wear their clothes inside out or a change to the lunch menu that will require students to eat brussels sprouts every day. 

Giving students the ability to create their own falsified information can help them better identify it in other contexts. Understanding that information can be “too good to be true” can help them identify future falsehoods. 

Provide Diverse Perspectives 

Consider how to keep the classroom from becoming an echo chamber. If students come from the same community, they may have similar perspectives. And those who have differing perspectives may not feel comfortable sharing them in the face of an opposing majority. 

To support varying viewpoints, bring diverse voices into the classroom as much as possible, especially when discussing current events. Use primary sources: videos from YouTube, essays and articles written by people who experienced current events firsthand, documentaries that dive deeply into topics that require some nuance, and any other resources that provide a varied look at topics. 

I like to use the Smithsonian “OurStory” page , which shares a wide variety of stories from people in the United States. The page on Japanese American internment camps is very powerful because of its first-person perspectives. 

Practice Makes Perfect 

To make the above strategies and thinking routines a consistent part of your classroom, spread them out—and build upon them—over the course of the school year. You might challenge students with information and/or examples that require them to use their critical thinking skills; work these skills explicitly into lessons, projects, rubrics, and self-assessments; or have students practice identifying misinformation or unsupported arguments.

Critical thinking is not learned in isolation. It needs to be explored in English language arts, social studies, science, physical education, math. Every discipline requires students to take a careful look at something and find the best solution. Often, these skills are taken for granted, viewed as a by-product of a good education, but true critical thinking doesn’t just happen. It requires consistency and commitment.

In a moment when information and misinformation abound, and students must parse reams of information, it is imperative that we support and model critical thinking in the classroom to support the development of well-informed citizens.

how hard is critical thinking class

Developing critical thinking skills in the classroom

April 29, 2021

Critical thinking skills in the classroom: A teacher's guide to developing higher-order thinking and student reasoning.

Main, P (2021, April 29). Developing critical thinking skills in the classroom. Retrieved from https://www.structural-learning.com/post/what-is-critical-thinking

What is critical thinking?

Critical thinking is important in every aspect of our lives. It helps us make decisions, solve problems , and learn new information. But how do we develop these skills in school?

In order to become a well-rounded person who has developed critical thinking skills, students must first understand the importance of developing these skills. This means teaching students how to analyze data, evaluate arguments, and draw conclusions from evidence.

This article will help teachers teach critical thinking skills in the class room. We'll look at how to teach critical thinking skills using examples from history, science, math, literature, and art.

Critical thinking has been defined and re-defined by many teachers over the years and it's one of those essential abilities we want our students to develop. However, looking at the breakdown of the term as the two words that comprise it provides a simple, yet accurate definition.

The Critical Thinking process involves the use of the mind to incorporate prior experience and basic knowledge about a subject matter in order to reach conclusions. Critical thinking has a few definitions. In this article we are focused on what critical thinking looks like in the classroom.

We are interested in how we can make more logical and accurate thinking a classroom habit that every school can adopt. To examine the topic of critical thinking we have to look beyond the purely philosophical perspective and explore the latest cognitive science . For example, we now know the importance that knowledge plays in developing critical thinking, you can't have one without the other. Expert thinking is a domain specific skill and the subject disciplines act as a catalyst for enhancing this life long skill. We also know the importance of retrieval practice in developing higher order thinking.

Low stakes quizzing is not just rote learning, it plays an important part in freeing up our working memory to do more of the creative work. If we no longer have to strain to remember the facts and figures, our mental capacities can be put to work in more creative ways . Within the article we will also put forward some ideas about how to promote critical and creative thinking across your school.

Logical reasoning is one of the three main components of critical thinking. This component requires students to think critically about a problem and then apply logic to solve it. Students must understand the difference between logical and illogical arguments and recognize when someone is using logical fallacies.

Why critical thinking is important

Critical thinking is a process that is often viewed as a more intense version of just plain old thinking. In education, critical thinking is a disciplined process that has stuck around for a while now – but how is this coveted skill really different from just plain old thinking? Frankly, sometimes, it's not. The two terms can be used interchangeably, and often are.

Consider a teacher who is urging a student “think harder” or “think differently”. What the teacher is actually saying is: “think critically in order to reach a more complex solution”. We are not always conscious of the multitude of cognitive actions at our disposal, the Universal Thinking Framework addresses this issue by providing child-friendly explanations of the various ways in which we can think.

These can be chained together to create a logical inquiry that any student can follow. The idea being that over time, children begin to develop critical thinking dispositions that cause reflective thinking and advance the mental process. Increasing our repertoire of cognitive actions improves a students decision making process as they are simply more aware of the directions their learning could move in.

Framework of critical thinking skills

We have divided the various types of thinking using these key questions:

  • How do I get started?
  • How should I organise my ideas?
  • How do I know this?
  • How can I communicate my understanding?
  • What can I do with my new knowledge and understanding?

All of the sections provide teachers with a systematic approach to encourage reflective thinking . The questions that are posed to the learner are designed to break down a complex process into basic skills. These thinking skills, over time can be mastered and understood. Having the different types of thinking available to both educators and students means that logical thinking can be achieved more readily and can eventually become an attitude of mind. The mental actions are accompanied by critical thinking questions . Teachers can use critical thinking questions to promote rational thinking. 

Reflective thinking is employed when a solution is needed, or in school when there is a connection that needs to be drawn between two or more concepts. Therefore, critical thinking is, in essence, the thought processes that result from disapproval of the solutions and connections that already exist, or a lack thereof.

Students engaging in critical thinking exercise using the Structural Learning blocks

Mental skills or learning behaviours?

School leaders love to see and hear teachers incorporating the idea of crosscutting concepts into their daily instruction. That is, concepts and skills can be used and developed in more than one subject matter, and therefore more than one class. I don't think I have ever had an administrator who has not asked me how I plan to collaborate with my colleagues in order to make instruction more meaningful and applicable to my students' lives.

Upon further consideration of this popular interview question, there should really only ever be one acceptable response to such a question – “I will make it a priority to routinely engage my students in the practice of critical thinking so that they can grow that skill and use it in other classes as well as outside of the school” … or something along those lines.

It remains true that practice leads to confidence and increased ability. Therefore, as students learn what the process of thinking critically feels like for them, they will be able to replicate that feeling by replicating their actions in other classes. When critical thinking is used as a part of the daily routine, it becomes less scary to use that skill when faced with a problem, regardless of the subject matter .

Critical thinking is, therefore, a crosscutting concept to be planned for and incorporated into a teacher's daily lesson plans as well as the scope and sequence of a course. If you want a practical way of integrating critical thinking into your lessons, our mental modelling approach using the building block method might be a good place to start. The playful approach encourages children to organise their ideas and in doing so, engage in critical reasoning.

Principles of critical thinking

Despite its value in all subjects , one uncertainty that educators run into is the idea of what Daniel T. Willingham (2019) calls transfer. That is, whether or not the ability to think critically in one subject or in relation to one problem will automatically lead to similar abilities in other subjects or problems. As Willingham (2019) explains, the research on this idea is not necessarily all in agreement. Consequently, educators are faced with a task that seems to be in flux and altogether unanswered. While frustrating, this is not necessarily a new ask for educators.

Some scholars claim that the ability to think critically in one subject will naturally transfer to all other subjects , which is why it is so inherently valuable as a skill. Others argue that this is not the case, and that is why it is crucial to intentionally teach students how to think critically in all situations and across all subjects. With this quality still largely disagreed upon, it is difficult to know how best to proceed when attempting to teach and develop critical thinking skills.

Do students ever possess a true foundation of critical thinking skills and abilities, or do they regress back to a point of utter confusion with the introduction to each new problem? How can educators make these skills stick for their students ? What do students need to understand in order to be able approach problems from a critical thinking perspective regardless of the discipline or subject matter? How can we train students to recycle prior experience and previous solutions when faced with new problems?

Using the Universal Thinking Framework to promote inductive reasoning

Assessing students analytical thinking

Critical thinking is a high-level goal that educators everywhere strive toward for their students. Many “teacher moves” exist solely to work toward this purpose. However, repeatedly asking higher-order thinking questions in class and on tests, is merely the method that best demonstrates that the skill of thinking critically has already been developed. That is to say that just asking these types of questions as often as possible is not a sufficient method for the true development of this skill.

When we ask higher-order thinking questions in class or on assessments , we are ultimately trying to analyze whether or not students have that ability; or to what level they have mastered that ability. However, it stands to reason that the only way to develop this skill cannot be to simply ask more of these types of questions more often, since this is just the method of measurement. So, the question now becomes - what are the steps that lead up to a student being able to successfully encounter and respond to these higher-order thinking questions that show their ability to think critically? The answer is actually quite simple– continue to teach and prioritize critical thinking skills in every possible situation, regardless of how many times it has been reviewed.

What about critical thinking dispositions ? It has been argued that this ability is not a distinct cognitive skill but a set of critical thinking dispositions or habits of mind. Ron Ritchart talks through the argument here.

If your school is interested in implementing more critical thinking in your classrooms, you might want to start by sharing some key ideas with your staff. Our professional development approach gives staff access to the principles that underpinned critical thinking. We can help educators measure the impact of the interventions in the classroom.

Monitor Critical Thinking Skills

How can we develop reasoning skills?

Notice that in the answer above, the onus is placed on the educator rather than the student. There is not necessarily a numbered universal list of steps to take when given a critical thinking problem that we can give to students as a road map and post as an anchor chart in the classroom. Quite the opposite, educators are charged with the vague task of teaching students how to access prior knowledge and experience and apply it in a way that will benefit them.

Ultimately, if students can manipulate their understanding and experience into a process and application that works for the task or question at hand, they are able to think critically . However, the ability to think critically in one situation does not predict with any real degree of certainty the same ability in a novel situation, especially one that seems more challenging to a student.

One characteristic that tends to make students believe that one situation is more difficult than another is subject matter. Students are not able to generalize solutions that they have already thought through because the subject matter is so different. Willingham (2019) refers to this as the surface structure of a problem and gives the example of an inability to derive the solution for a medical problem even though it is essentially the same as the solution to military/tactical problem that the group had just worked through.

However, since the surface structure of these problems seems so different, participants were not able to transfer the reasoning behind the solution to the tactical problem to the medical problem.Teachers see this difficulty with students all the time across subjects, which means that the real task for teachers to tackle is teaching students how to recognize the deep structure of a problem.

Graphic organisers for developing critical thinking

According to Willingham (2019), strong critical thinkers claim that they are able to recognize the deep structure of problems presented to them in their field of expertise, but not necessarily in other fields. This is both comforting and disconcerting for teachers. It is comforting because it shows that it is normal for it to be a challenge for students to be able to transfer critical thinking skills from one problem to another. However, it is disconcerting because it seems nearly impossible for teachers to be able to overcome this barrier if experts still encounter this barrier regularly.

All things considered, the seemingly realistic approach to the task of developing critical thinking skills in students through consistent practice seems to have a few clearly actionable approaches that are also memorable due to the alliteration they produce: collaboration , comparison and content knowledge. This form of knowledge is certainly important in everyday life. 

Facilitating critical thinking

Collaborative problem solving skills

Collaboration is the act of working with another person or other people in order to achieve a common goal or solve a common problem. In as many ways as possible, teachers should incorporate collaboration into their lessons. Initially, it may seem as though this practice takes away from the development of independent critical thinking since weaker thinkers can lean on stronger thinkers or just more dominant personalities. However, since subject-matter experts are easily able to identify the deep structure of problems within their area of expertise, it stands to reason that pairing experts together who excel in different areas and presenting them with a complex problem will yield the best results.

Of course, in any given group of students, there may not be identifiable “experts”, however, the idea is that the different perspectives and experiences that students bring with them will intuitively lead them to a problem from different angles . This type of natural exposure to different approaches serves to model for students how it is possible to think differently about a similar problem. With continued modelling and wider exposure, students will gradually learn to intentionally incorporate different ways of thinking and to continue to seek out differing perspectives when searching for a solution to a problem.

Logical thinking and careful thinking are often cited as being ways of thinking critically. The Cornell Critical Thinking Test and Watson Glaser Critical Thinking Appraisal both claim to be able to measure critical reasoning and critical thinking ability. 

Comparisons and critical thinking

While telling students what the deep structure of a problem is might seem fairly simple, the fact is that telling does not equate to teaching, nor does it always result in learning, especially when a skill is involved . Therefore, one way to begin to lead students to be able to identify and extract the deep structure of a problem is to have them compare.

When asked to compare two (or more) problems with contrasting surface structures, students are forced to look harder for the similarities. While this may be met with resistance and frustration at first, when coupled with the practice of modelling these types of comparisons, students will begin to understand that there are similarities to be found after all, and how those comparisons can help lead to a practical and applicable solution.

Developing reasoning skills

Academic Arguments

Identification, construction , and evaluation of arguments are crucial parts of critical thinking.

People often use the term "argument" to refer to a quarrel between people in everyday life. To a logician or critical thinker, an argument is not a statement, it is a collection of statements , with one being the conclusion and the rest being premise or assumption.

The way students attain in subjects is by reading the views of the academic writing of others. The way students achieve in a formal exam setting is by writing the academic argument of their own. So without academic argument writing we cannot learn, or teach, or persuade. One way of promoting argumentation is by teaching students to create argument maps . This practical approach of developing an analysis of arguments means that students can visualise the main points in an easy-to-understand format. 

Domain Knowledge and critical thinking

Sometimes, educators tend to avoid questions and practice activities that can be labelled as “ basic recall ” because they are said to be low in rigour. However, when attempting to develop critical thinking skills , it should be noted that domain knowledge expertise is achieved through extensive knowledge of the foundational aspects and facts of a topic. Willingham (2019) explains that effective critical thinking about a problem often comes from a place of confidence in the subject matter, which is born from extensive knowledge about it.

Being able to see alternative viewpoints, argument with evidence (and spot bad arguments) and avoid faulty reasoning can become habits of mind that are nurtured throughout a students career. Additionally, sometimes a complex solution is merely the sum of many smaller and more routine solutions. There is value in teaching and focusing on content in school , as it breeds experts. When paired with the challenge of critical thinking in order to solve real-world problems, new interest can also be bred for a subject that students may previously have seen little use for.

Critical thinking using the modelling blocks

Five tips for improving critical thinking in your classroom

Critical thinking abilities are essential skills for students to develop. Here are five tips for improving critical thinking skills in your classroom :

1. Teach Students How to Think Critically

Teaching students how to think critically involves helping them understand the difference between facts and opinions. Facts are true statements that can be proven using evidence. Opinions are beliefs based on personal experiences, feelings, values, and preferences.

Students often confuse facts with opinions. For example, “I am going to the store to buy milk.” This statement contains no opinion. It is simply stating a fact. On the other hand, “Milk tastes good.” This statement expresses an opinion.

When teaching students how to think critically, focus on helping them distinguish between facts and opinions. Helping students learn how to think critically will improve their ability to analyze information and solve problems.

2. Encourage Critical Thinking

Encouraging students to think critically means encouraging them to question everything. If you ask students questions such as “Why did you write that?,” “What makes you say that?,” or “How would you prove that?,” you encourage them to think critically.

Asking questions helps students become better thinkers . Questions allow students to explore issues and come up with answers themselves. Asking questions encourages students to think deeply and analytically.

3. Use Real World Examples

Real world examples are helpful for teaching students how to think. Using real world examples allows students to apply concepts to situations outside of school.

For example, if you teach students how to identify logical fallacies, you can show them how to recognize these errors in arguments. Showing students how to identify logical fallacy gives them practice identifying common mistakes made by others.

4. Provide Feedback

Providing feedback is another effective method for teaching students how to improve their critical thinking skills. Giving students positive and constructive criticism improves their performance.

Giving students negative feedback does not improve their performance . Negative feedback may discourage students from trying again. Positive feedback motivates students to continue working toward success.

#5. Model Good Critical Thinking Skills

Modelling good critical thinking skills is one of the most effective methods for teaching students how to become better thinkers. Teaching students how to think critically requires modeling good critical thinking skills.

Good critical thinking skills include asking open-ended questions, analyzing data, evaluating sources, and recognizing logical fallacies.

By showing students how to think critically and model good critical thinking skills, you can help them develop into successful learners.

In a world where artificial intelligence is on the rise and continuously developing, a humanized value such as critical thinking is increasingly important. Reliance on technology makes life simpler in many ways, but simultaneously makes the possession of certain skills and abilities more attractive to potential employers and more beneficial for individuals who possess them.

Critical thinking allows for creativity when problem-solving and promotes independence and confidence. Should technology ever fail, those who are able to think critically in a variety of situations will be the ones who are valued the most.

Willingham, D. T. (2019). How to Teach Critical Thinking. Education: FutureFrontiers.

http://www.danielwillingham.com/uploads/5/0/0/7/5007325/willingham_2019_nsw_critical_thinking2.pdf

how hard is critical thinking class

Enhance Learner Outcomes Across Your School

Download an Overview of our Support and Resources

We'll send it over now.

Please fill in the details so we can send over the resources.

What type of school are you?

We'll get you the right resource

Is your school involved in any staff development projects?

Are your colleagues running any research projects or courses?

Do you have any immediate school priorities?

Please check the ones that apply.

how hard is critical thinking class

Download your resource

Thanks for taking the time to complete this form, submit the form to get the tool.

Already have an account?

Logo

Why is critical thinking difficult?

05 nov why is critical thinking difficult, students struggle to think critically.

85% of teachers thought critical thinking skills were inadequate when students reached post-16 education (TES). Our own qualitative research in schools revealed typical worries that students have such as: losing track of the argument; not planning before starting an essay; including irrelevant information. Examiners’ reports consistently point out the lack of a good argument in exam entries. Moreover, teachers express concern with regards to teaching of critical thinking skills. Students are often much better at learning facts than making a good argument, but there is no time to teach this properly in a content-heavy curriculum. The requirements to think critically have increased, but the textbooks and training have not always kept up.

Arguments are hidden in textbook prose

In school, students are introduced to critical thinking by reading and writing arguments in prose. The textbooks, articles and original sources they read are usually in prose, as are the essays they write. Prose is a very flexible medium, but it is not the optimal way to represent an argument.

Firstly, students cannot look at argumentative prose and immediately find the argument. Prose makes no distinction between the sentences which are part of the argument and those that do other things, such as supporting facts and context. So the argument is hidden amongst other information, much of which is distracting.

how hard is critical thinking class

Prose is linear, but arguments are branched

Prose is written in a way that makes it hard to understand the structure of the argument. This is a problem, because the whole structure has to be kept in mind when evaluating the argument. For example, if they find a counter-example to one step of an argument, they need to know the structure to realise whether this defeats the whole argument or just a part of it.

Poor critical thinking leads to poor arguments

For these reasons, argumentative prose imposes a heavy cognitive load on the reader. Students are obliged to work hard to discover how an argument works before they can even begin to critique it. This is especially difficult for those who have reading difficulties such as dyslexia.

School students normally create their own arguments by writing essays. Even if they are well-informed they often write a lot of facts without pulling them together into an argument. The very flexibility of prose allows essays to be unrigorous, ambiguous, and irrelevant. Moreover, essays are slow for students to write and slow for teachers to check and mark, limiting the amount of arguments that can be studied in detail. For these reasons, learning critical thinking through school work is difficult and its results are patchy.

At Endoxa Learning, we design resources that make it easier for students to read, understand and create arguments.

What is critical thinking?

Privacy Overview

  • College Catalog
  • Events Calendar
  • Current Students
  • Future Students
  • Faculty & Staff
  • Business & Community

Introduction to Critical Thinking

This introductory-level course is designed to help learners define and identify critical thinking and reasoning skills and develop those skills. Critical thinking is an intellectual model for reasoning through issues to reach well-founded conclusions. It may be the single most valuable skill that one can bring to any job, profession, or life challenge. Being able to ask the right questions, critique an argument, and logically dissect an issue occur constantly in the workplace and our lives.

Learning Outcomes:

  • Define critical thinking, reasoning, and logic
  • Understand the process of systemic problem-solving
  • Identify and overcome barriers to critical thinking
  • Articulate common reasoning fallacies
  • Engage in critical thinking as it pertains to the workplace

Student Testimonial

"I will be able to implement some of the elements of reasoning questions that are relevant to critical thinking. I feel confident in identifying fallacies as well. The material was well presented."  -- Marie, Introduction to Critical Thinking

Course Dates and Times

Date and TimesLocationCourse Cost/Fees
Online               $95

Course Hours: 7 Hours  

This workshop is offered through our continuing education online partner.

Register for Introduction to Critical Thinking

Go back to school with Sophia with 25% off your first month.

Use code BTS2024 by 9/16.

The discount provides 25% off the first month. After the first month, you will be charged our normal $99 per month membership subscription fee, unless canceled. 

  • Critical Thinking
  • All courses
  • Humanities courses

critical-thinking

Critical Thinking reviews

In this class, students will learn how to think more critically by questioning assumptions and biases and being aware of fallacies. Students will learn to interpret and write deductive and inductive arguments and apply to real-life situations.

13450 students successfully completed

43 partners accept credit transfer.* See Partners

3.0 semester credits

Recommended for credit to the ACE® and DEAC college and university networks.

Logo

Download Syllabus

Fill in the form to recieve a syllabus for your course..

By providing your information, you consent to receive occasional special promotional offers and education opportunities by email from Sophia Learning or one of its affiliates.

Learning outcomes

Partners who accept this course.

This course transfers into a degree program at these featured institutions

Assignments & grading

This is a pass/fail course. Students are required to complete all 13 Challenges (formative assessments), 4 Milestones (summative assessments), and 1 Touchstone (project-based or written assessments) with an overall score of 70% or better.

mountain

  • No credit card required!
  • Sophia membership starts with a risk-free trial

* All fields are required.

Inside the Sophia courseroom

Sophia course image

Knock out your general education requirements on your terms. Sophia courses are available anytime, anywhere, and most can be accessed from any device.

Sophia course image

A revolutionary way to satisfy general education requirements for your degree. On demand. ACE ®-recommended. Low cost.

Sophia course image

Sophia's Learning Coaches are here for you by phone, email or online chat from the start of your course to ordering your final transcript.

How many courses can I take with the free trial?

Access the course content through the first Challenge of any of Sophia’s 50+ courses.

How do I confirm transfer credit with my school?

Check Sophia’s list of partner schools to see if your school is on the list. If not, contact your registrar to learn about your school’s transfer credit policy and if Sophia coursework can be submitted for transfer.

Can I take courses for credit if I’m not enrolled at a school?

Sophia course completions do not expire and will be available to submit for transfer when you’re ready. At that time, check with your school’s registrar for their credit transfer policies.

What happens to the coursework I’ve already completed once I become a Sophia member?

If you’ve completed the first Challenge during your free trial, you can pick up right where you left off after you become a Sophia member.

What happens to my coursework if I cancel my Sophia membership?

Don’t worry. Your completed courses won’t disappear if you cancel your membership. Those courses will be there for you when you’re ready to submit for transfer.

Will my HR benefits cover the cost of Sophia?

If you have an education benefit through your employer, it may cover your subscription to Sophia. Check with your benefits administrator to find out if you qualify.

  • Higher education partnerships
  • Corporate partnerships
  • Social impact partnerships
  • Privacy policy
  • Cookie policy
  • Terms of use

gdpr

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Critical Thinking Is About Asking Better Questions

  • John Coleman

how hard is critical thinking class

Six practices to sharpen your inquiry.

Critical thinking is the ability to analyze and effectively break down an issue in order to make a decision or find a solution. At the heart of critical thinking is the ability to formulate deep, different, and effective questions. For effective questioning, start by holding your hypotheses loosely. Be willing to fundamentally reconsider your initial conclusions — and do so without defensiveness. Second, listen more than you talk through active listening. Third, leave your queries open-ended, and avoid yes-or-no questions. Fourth, consider the counterintuitive to avoid falling into groupthink. Fifth, take the time to stew in a problem, rather than making decisions unnecessarily quickly. Last, ask thoughtful, even difficult, follow-ups.

Are you tackling a new and difficult problem at work? Recently promoted and trying to both understand your new role and bring a fresh perspective? Or are you new to the workforce and seeking ways to meaningfully contribute alongside your more experienced colleagues? If so, critical thinking — the ability to analyze and effectively break down an issue in order to make a decision or find a solution — will be core to your success. And at the heart of critical thinking is the ability to formulate deep, different, and effective questions.

how hard is critical thinking class

  • JC John Coleman is the author of the HBR Guide to Crafting Your Purpose . Subscribe to his free newsletter, On Purpose , or contact him at johnwilliamcoleman.com . johnwcoleman

Partner Center

More From Forbes

13 Easy Steps To Improve Your Critical Thinking Skills

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

With the sheer volume of information that we’re bombarded with on a daily basis – and with the pervasiveness of fake news and social media bubbles – the ability to look at evidence, evaluate the trustworthiness of a source, and think critically is becoming more important than ever. This is why, for me, critical thinking is one of the most vital skills to cultivate for future success.

Critical thinking isn’t about being constantly negative or critical of everything. It’s about objectivity and having an open, inquisitive mind. To think critically is to analyze issues based on hard evidence (as opposed to personal opinions, biases, etc.) in order to build a thorough understanding of what’s really going on. And from this place of thorough understanding, you can make better decisions and solve problems more effectively.

To put it another way, critical thinking means arriving at your own carefully considered conclusions instead of taking information at face value. Here are 13 ways you can cultivate this precious skill:

1. Always vet new information with a cautious eye. Whether it’s an article someone has shared online or data that’s related to your job, always vet the information you're presented with. Good questions to ask here include, "Is this information complete and up to date?” “What evidence is being presented to support the argument?” and “Whose voice is missing here?”

2. Look at where the information has come from. Is the source trustworthy? What is their motivation for presenting this information? For example, are they trying to sell you something or get you to take a certain action (like vote for them)?

Best High-Yield Savings Accounts Of 2024

Best 5% interest savings accounts of 2024.

3. Consider more than one point of view. Everyone has their own opinions and motivations – even highly intelligent people making reasonable-sounding arguments have personal opinions and biases that shape their thinking. So, when someone presents you with information, consider whether there are other sides to the story.

4. Practice active listening. Listen carefully to what others are telling you, and try to build a clear picture of their perspective. Empathy is a really useful skill here since putting yourself in another person's shoes can help you understand where they're coming from and what they might want. Try to listen without judgment – remember, critical thinking is about keeping an open mind.

5. Gather additional information where needed. Whenever you identify gaps in the information or data, do your own research to fill those gaps. The next few steps will help you do this objectively…

6. Ask lots of open-ended questions. Curiosity is a key trait of critical thinkers, so channel your inner child and ask lots of "who," "what," and "why" questions.

7. Find your own reputable sources of information, such as established news sites, nonprofit organizations, and education institutes. Try to avoid anonymous sources or sources with an ax to grind or a product to sell. Also, be sure to check when the information was published. An older source may be unintentionally offering up wrong information just because events have moved on since it was published; corroborate the info with a more recent source.

8. Try not to get your news from social media. And if you do see something on social media that grabs your interest, check the accuracy of the story (via reputable sources of information, as above) before you share it.

9. Learn to spot fake news. It's not always easy to spot false or misleading content, but a good rule of thumb is to look at the language, emotion, and tone of the piece. Is it using emotionally charged language, for instance, and trying to get you to feel a certain way? Also, look at the sources of facts, figures, images, and quotes. A legit news story will clearly state its sources.

10. Learn to spot biased information. Like fake news, biased information may seek to appeal more to your emotions than logic and/or present a limited view of the topic. So ask yourself, “Is there more to this topic than what’s being presented here?” Do your own reading around the topic to establish the full picture.

11. Question your own biases, too. Everyone has biases, and there’s no point pretending otherwise. The trick is to think objectively about your likes and dislikes, preferences, and beliefs, and consider how these might affect your thinking.

12. Form your own opinions. Remember, critical thinking is about thinking independently. So once you’ve assessed all the information, form your own conclusions about it.

13. Continue to work on your critical thinking skills. I recommend looking at online learning platforms such as Udemy and Coursera for courses on general critical thinking skills, as well as courses on specific subjects like cognitive biases.

Read more about critical thinking and other essential skills in my new book, Future Skills: The 20 Skills & Competencies Everyone Needs To Succeed In A Digital World . Written for anyone who wants to surf the wave of digital transformation – rather than be drowned by it – the book explores why these vital future skills matter and how to develop them.

Bernard Marr

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

Half portrait of a young girl with glasses looking up stock photo

Critical Thinking: Why Is It So Hard to Teach?

Learning critical thinking skills can only take a student so far. Critical thinking depends on knowing relevant content very well and thinking about it, repeatedly. Here are five strategies, consistent with the research, to help bring critical thinking into the everyday classroom.

On this page:

Why is thinking critically so hard, thinking tends to focus on a problem's "surface structure", with deep knowledge, thinking can penetrate beyond surface structure, looking for a deep structure helps, but it only takes you so far, is thinking like a scientist easier, why scientific thinking depends on scientific knowledge.

Virtually everyone would agree that a primary, yet insufficiently met, goal of schooling is to enable students to think critically. In layperson’s terms, critical thinking consists of seeing both sides of an issue, being open to new evidence that disconfirms your ideas, reasoning dispassionately, demanding that claims be backed by evidence, deducing and inferring conclusions from available facts, solving problems, and so forth. Then too, there are specific types of critical thinking that are characteristic of different subject matter: That’s what we mean when we refer to “thinking like a scientist” or “thinking like a historian.”

This proper and commonsensical goal has very often been translated into calls to teach “critical thinking skills” and “higher-order thinking skills” and into generic calls for teaching students to make better judgments, reason more logically, and so forth. In a recent survey of human resource officials 1 and in testimony delivered just a few months ago before the Senate Finance Committee, 2 business leaders have repeatedly exhorted schools to do a better job of teaching students to think critically. And they are not alone. Organizations and initiatives involved in education reform, such as the National Center on Education and the Economy, the American Diploma Project, and the Aspen Institute, have pointed out the need for students to think and/or reason critically. The College Board recently revamped the SAT to better assess students’ critical thinking and ACT, Inc. offers a test of critical thinking for college students.

These calls are not new. In 1983, A Nation At Risk , a report by the National Commission on Excellence in Education, found that many 17-year-olds did not possess the “ ‘higher-order’ intellectual skills” this country needed. It claimed that nearly 40 percent could not draw inferences from written material and only onefifth could write a persuasive essay.

Following the release of A Nation At Risk , programs designed to teach students to think critically across the curriculum became extremely popular. By 1990, most states had initiatives designed to encourage educators to teach critical thinking, and one of the most widely used programs, Tactics for Thinking, sold 70,000 teacher guides. 3 But, for reasons I’ll explain, the programs were not very effective — and today we still lament students’ lack of critical thinking.

After more than 20 years of lamentation, exhortation, and little improvement, maybe it’s time to ask a fundamental question: Can critical thinking actually be taught? Decades of cognitive research point to a disappointing answer: not really. People who have sought to teach critical thinking have assumed that it is a skill, like riding a bicycle, and that, like other skills, once you learn it, you can apply it in any situation. Research from cognitive science shows that thinking is not that sort of skill. The processes of thinking are intertwined with the content of thought (that is, domain knowledge). Thus, if you remind a student to “look at an issue from multiple perspectives” often enough, he will learn that he ought to do so, but if he doesn’t know much about an issue, he can’t think about it from multiple perspectives. You can teach students maxims about how they ought to think, but without background knowledge and practice, they probably will not be able to implement the advice they memorize. Just as it makes no sense to try to teach factual content without giving students opportunities to practice using it, it also makes no sense to try to teach critical thinking devoid of factual content.

In this article, I will describe the nature of critical thinking, explain why it is so hard to do and to teach, and explore how students acquire a specific type of critical thinking: thinking scientifically. Along the way, we’ll see that critical thinking is not a set of skills that can be deployed at any time, in any context. It is a type of thought that even 3-year-olds can engage in — and even trained scientists can fail in. And it is very much dependent on domain knowledge and practice.

Educators have long noted that school attendance and even academic success are no guarantee that a student will graduate an effective thinker in all situations. There is an odd tendency for rigorous thinking to cling to particular examples or types of problems. Thus, a student may have learned to estimate the answer to a math problem before beginning calculations as a way of checking the accuracy of his answer, but in the chemistry lab, the same student calculates the components of a compound without noticing that his estimates sum to more than 100%. And a student who has learned to thoughtfully discuss the causes of the American Revolution from both the British and American perspectives doesn’t even think to question how the Germans viewed World War II. Why are students able to think critically in one situation, but not in another? The brief answer is: Thought processes are intertwined with what is being thought about. Let’s explore this in depth by looking at a particular kind of critical thinking that has been studied extensively: problem solving.

Imagine a seventh-grade math class immersed in word problems. How is it that students will be able to answer one problem, but not the next, even though mathematically both word problems are the same, that is, they rely on the same mathematical knowledge? Typically, the students are focusing on the scenario that the word problem describes (its surface structure) instead of on the mathematics required to solve it (its deep structure). So even though students have been taught how to solve a particular type of word problem, when the teacher or textbook changes the scenario, students still struggle to apply the solution because they don’t recognize that the problems are mathematically the same.

To understand why the surface structure of a problem is so distracting and, as a result, why it’s so hard to apply familiar solutions to problems that appear new, let’s first consider how you understand what’s being asked when you are given a problem. Anything you hear or read is automatically interpreted in light of what you already know about similar subjects. For example, suppose you read these two sentences: “After years of pressure from the film and television industry, the President has filed a formal complaint with China over what U.S. firms say is copyright infringement. These firms assert that the Chinese government sets stringent trade restrictions for U.S. entertainment products, even as it turns a blind eye to Chinese companies that copy American movies and television shows and sell them on the black market.” Background knowledge not only allows you to comprehend the sentences, it also has a powerful effect as you continue to read because it narrows the interpretations of new text that you will entertain. For example, if you later read the word “Bush,” it would not make you think of a small shrub, nor would you wonder whether it referred to the former President Bush, the rock band, or a term for rural hinterlands. If you read “piracy,” you would not think of eye-patched swabbies shouting “shiver me timbers!” The cognitive system gambles that incoming information will be related to what you’ve just been thinking about. Thus, it significantly narrows the scope of possible interpretations of words, sentences, and ideas. The benefit is that comprehension proceeds faster and more smoothly; the cost is that the deep structure of a problem is harder to recognize.

The narrowing of ideas that occurs while you read (or listen) means that you tend to focus on the surface structure, rather than on the underlying structure of the problem. For example, in one experiment, 4 subjects saw a problem like this one:

Members of the West High School Band were hard at work practicing for the annual Homecoming Parade. First they tried marching in rows of 12, but Andrew was left by himself to bring up the rear. Then the director told the band members to march in columns of eight, but Andrew was still left to march alone. Even when the band marched in rows of three, Andrew was left out. Finally, in exasperation, Andrew told the band director that they should march in rows of five in order to have all the rows filled. He was right. Given that there were at least 45 musicians on the field but fewer than 200 musicians, how many students were there in the West High School Band?

Earlier in the experiment, subjects had read four problems along with detailed explanations of how to solve each one, ostensibly to rate them for the clarity of the writing. One of the four problems concerned the number of vegetables to buy for a garden, and it relied on the same type of solution necessary for the band problem-calculation of the least common multiple. Yet, few subjects — just 19 percent — saw that the band problem was similar and that they could use the garden problem solution. Why?

When a student reads a word problem, her mind interprets the problem in light of her prior knowledge, as happened when you read the two sentences about copyrights and China. The difficulty is that the knowledge that seems relevant relates to the surface structure — in this problem, the reader dredges up knowledge about bands, high school, musicians, and so forth. The student is unlikely to read the problem and think of it in terms of its deep structure — using the least common multiple. The surface structure of the problem is overt, but the deep structure of the problem is not. Thus, people fail to use the first problem to help them solve the second: In their minds, the first was about vegetables in a garden and the second was about rows of band marchers.

If knowledge of how to solve a problem never transferred to problems with new surface structures, schooling would be inefficient or even futile — but of course, such transfer does occur. When and why is complex, 5 but two factors are especially relevant for educators: familiarity with a problem’s deep structure and the knowledge that one should look for a deep structure. I’ll address each in turn. When one is very familiar with a problem’s deep structure, knowledge about how to solve it transfers well. That familiarity can come from long-term, repeated experience with one problem, or with various manifestations of one type of problem (i.e., many problems that have different surface structures, but the same deep structure). After repeated exposure to either or both, the subject simply perceives the deep structure as part of the problem description. Here’s an example:

A treasure hunter is going to explore a cave up on a hill near a beach. He suspected there might be many paths inside the cave so he was afraid he might get lost. Obviously, he did not have a map of the cave; all he had with him were some common items such as a flashlight and a bag. What could he do to make sure he did not get lost trying to get back out of the cave later?

The solution is to carry some sand with you in the bag, and leave a trail as you go, so you can trace your path back when you’re ready to leave the cave. About 75% of American college students thought of this solution — but only 25% of Chinese students solved it. 6 The experimenters suggested that Americans solved it because most grew up hearing the story of Hansel and Gretel which includes the idea of leaving a trail as you travel to an unknown place in order to find your way back. The experimenters also gave subjects another puzzle based on a common Chinese folk tale, and the percentage of solvers from each culture reversed. www.aft.org/pubs-reports/american_educator/index.htm”>Read the puzzle based on the Chinese folk tale, and the tale itself.

It takes a good deal of practice with a problem type before students know it well enough to immediately recognize its deep structure, irrespective of the surface structure, as Americans did for the Hansel and Gretel problem. American subjects didn’t think of the problem in terms of sand, caves, and treasure; they thought of it in terms of finding something with which to leave a trail. The deep structure of the problem is so well represented in their memory, that they immediately saw that structure when they read the problem.

Now let’s turn to the second factor that aids in transfer despite distracting differences in surface structure — knowing to look for a deep structure. Consider what would happen if I said to a student working on the band problem, “this one is similar to the garden problem.” The student would understand that the problems must share a deep structure and would try to figure out what it is. Students can do something similar without the hint. A student might think “I’m seeing this problem in a math class, so there must be a math formula that will solve this problem.” Then he could scan his memory (or textbook) for candidates, and see if one of them helps. This is an example of what psychologists call metacognition, or regulating one’s thoughts. In the introduction, I mentioned that you can teach students maxims about how they ought to think. Cognitive scientists refer to these maxims as metacognitive strategies. They are little chunks of knowledge — like “look for a problem’s deep structure” or “consider both sides of an issue” — that students can learn and then use to steer their thoughts in more productive directions.

Helping students become better at regulating their thoughts was one of the goals of the critical thinking programs that were popular 20 years ago. These programs are not very effective. Their modest benefit is likely due to teaching students to effectively use metacognitive strategies. Students learn to avoid biases that most of us are prey to when we think, such as settling on the first conclusion that seems reasonable, only seeking evidence that confirms one’s beliefs, ignoring countervailing evidence, overconfidence, and others. 7 Thus, a student who has been encouraged many times to see both sides of an issue, for example, is probably more likely to spontaneously think “I should look at both sides of this issue” when working on a problem.

Unfortunately, metacognitive strategies can only take you so far. Although they suggest what you ought to do, they don’t provide the knowledge necessary to implement the strategy. For example, when experimenters told subjects working on the band problem that it was similar to the garden problem, more subjects solved the problem (35% compared to 19% without the hint), but most subjects, even when told what to do, weren’t able to do it. Likewise, you may know that you ought not accept the first reasonable-sounding solution to a problem, but that doesn’t mean you know how to come up with alterative solutions or weigh how reasonable each one is. That requires domain knowledge and practice in putting that knowledge to work.

Since critical thinking relies so heavily on domain knowledge, educators may wonder if thinking critically in a particular domain is easier to learn. The quick answer is yes, it’s a little easier. To understand why, let’s focus on one domain, science, and examine the development of scientific thinking.

Teaching science has been the focus of intensive study for decades, and the research can be usefully categorized into two strands. The first examines how children acquire scientific concepts; for example, how they come to forgo naive conceptions of motion and replace them with an understanding of physics. The second strand is what we would call thinking scientifically, that is, the mental procedures by which science is conducted: developing a model, deriving a hypothesis from the model, designing an experiment to test the hypothesis, gathering data from the experiment, interpreting the data in light of the model, and so forth.† Most researchers believe that scientific thinking is really a subset of reasoning that is not different in kind from other types of reasoning that children and adults do. 8 What makes it scientific thinking is knowing when to engage in such reasoning, and having accumulated enough relevant knowledge and spent enough time practicing to do so.

Recognizing when to engage in scientific reasoning is so important because the evidence shows that being able to reason is not enough; children and adults use and fail to use the proper reasoning processes on problems that seem similar. For example, consider a type of reasoning about cause and effect that is very important in science: conditional probabilities. If two things go together, it’s possible that one causes the other. Suppose you start a new medicine and notice that you seem to be getting headaches more often than usual. You would infer that the medication influenced your chances of getting a headache. But it could also be that the medication increases your chances of getting a headache only in certain circumstances or conditions. In conditional probability, the relationship between two things (e.g., medication and headaches) is dependent on a third factor. For example, the medication might increase the probability of a headache only when you’ve had a cup of coffee. The relationship of the medication and headaches is conditional on the presence of coffee.

Understanding and using conditional probabilities is essential to scientific thinking because it is so important in reasoning about what causes what. But people’s success in thinking this way depends on the particulars of how the question is presented. Studies show that adults sometimes use conditional probabilities successfully, 9 but fail to do so with many problems that call for it. 10 Even trained scientists are open to pitfalls in reasoning about conditional probabilities (as well as other types of reasoning). Physicians are known to discount or misinterpret new patient data that conflict with a diagnosis they have in mind, 11 and Ph.D.- level scientists are prey to faulty reasoning when faced with a problem embedded in an unfamiliar context. 12

And yet, young children are sometimes able to reason about conditional probabilities. In one experiment, 13 the researchers showed 3-year-olds a box and told them it was a “blicket detector” that would play music if a blicket were placed on top. The child then saw one of the two sequences shown below in which blocks are placed on the blicket detector. At the end of the sequence, the child was asked whether each block was a blicket. In other words, the child was to use conditional reasoning to infer which block caused the music to play.

Note that the relationship between each individual block (yellow cube and blue cylinder) and the music is the same in sequences 1 and 2. In either sequence, the child sees the yellow cube associated with music three times, and the blue cylinder associated with the absence of music once and the presence of music twice. What differs between the first and second sequence is the relationship between the blue and yellow blocks, and therefore, the conditional probability of each block being a blicket. Three-year-olds understood the importance of conditional probabilities.For sequence 1, they said the yellow cube was a blicket, but the blue cylinder was not; for sequence 2, they chose equally between the two blocks.

This body of studies has been summarized simply: Children are not as dumb as you might think, and adults (even trained scientists) are not as smart as you might think.What’s going on? One issue is that the common conception of critical thinking or scientific thinking (or historical thinking) as a set of skills is not accurate. Critical thinking does not have certain characteristics normally associated with skills — in particular, being able to use that skill at any time. If I told you that I learned to read music, for example, you would expect, correctly, that I could use my new skill (i.e., read music) whenever I wanted. But critical thinking is very different. As we saw in the discussion of conditional probabilities, people can engage in some types of critical thinking without training, but even with extensive training, they will sometimes fail to think critically. This understanding that critical thinking is not a skill is vital.‡ It tells us that teaching students to think critically probably lies in small part in showing them new ways of thinking, and in large part in enabling them to deploy the right type of thinking at the right time.

Returning to our focus on science, we’re ready to address a key question: Can students be taught when to engage in scientific thinking? Sort of. It is easier than trying to teach general critical thinking, but not as easy as we would like. Recall that when we were discussing problem solving, we found that students can learn metacognitive strategies that help them look past the surface structure of a problem and identify its deep structure, thereby getting them a step closer to figuring out a solution. Essentially the same thing can happen with scientific thinking. Students can learn certain metacognitive strategies that will cue them to think scientifically. But, as with problem solving, the metacognitive strategies only tell the students what they should do — they do not provide the knowledge that students need to actually do it. The good news is that within a content area like science, students have more context cues to help them figure out which metacognitive strategy to use, and teachers have a clearer idea of what domain knowledge they must teach to enable students to do what the strategy calls for.

For example, two researchers 14 taught second-, third-, and fourth-graders the scientific concept behind controlling variables; that is, of keeping everything in two comparison conditions the same, except for the one variable that is the focus of investigation. The experimenters gave explicit instruction about this strategy for conducting experiments and then had students practice with a set of materials (e.g., springs) to answer a specific question (e.g., which of these factors determine how far a spring will stretch: length, coil diameter, wire diameter, or weight?). The experimenters found that students not only understood the concept of controlling variables, they were able to apply it seven months later with different materials and a different experimenter, although the older children showed more robust transfer than the younger children. In this case, the students recognized that they were designing an experiment and that cued them to recall the metacognitive strategy, “When I design experiments, I should try to control variables.” Of course, succeeding in controlling all of the relevant variables is another matter-that depends on knowing which variables may matter and how they could vary.

Experts in teaching science recommend that scientific reasoning be taught in the context of rich subject matter knowledge. A committee of prominent science educators brought together by the National Research Council put it plainly: “Teaching content alone is not likely to lead to proficiency in science, nor is engaging in inquiry experiences devoid of meaningful science content.”

The committee drew this conclusion based on evidence that background knowledge is necessary to engage in scientific thinking. For example, knowing that one needs a control group in an experiment is important. Like having two comparison conditions, having a control group in addition to an experimental group helps you focus on the variable you want to study. But knowing that you need a control group is not the same as being able to create one. Since it’s not always possible to have two groups that are exactly alike, knowing which factors can vary between groups and which must not vary is one example of necessary background knowledge. In experiments measuring how quickly subjects can respond, for example, control groups must be matched for age, because age affects response speed, but they need not be perfectly matched for gender.

More formal experimental work verifies that background knowledge is necessary to reason scientifically. For example, consider devising a research hypothesis. One could generate multiple hypotheses for any given situation. Suppose you know that car A gets better gas mileage than car B and you’d like to know why. There are many differences between the cars, so which will you investigate first? Engine size? Tire pressure? A key determinant of the hypothesis you select is plausibility. You won’t choose to investigate a difference between cars A and B that you think is unlikely to contribute to gas mileage (e.g., paint color), but if someone provides a reason to make this factor more plausible (e.g., the way your teenage son’s driving habits changed after he painted his car red), you are more likely to say that this now-plausible factor should be investigated. 16 One’s judgment about the plausibility of a factor being important is based on one’s knowledge of the domain.

Other data indicate that familiarity with the domain makes it easier to juggle different factors simultaneously, which in turn allows you to construct experiments that simultaneously control for more factors. For example, in one experiment, 17 eighth-graders completed two tasks. In one, they were to manipulate conditions in a computer simulation to keep imaginary creatures alive. In the other, they were told that they had been hired by a swimming pool company to evaluate how the surface area of swimming pools was related to the cooling rate of its water. Students were more adept at designing experiments for the first task than the second, which the researchers interpreted as being due to students’ familiarity with the relevant variables. Students are used to thinking about factors that might influence creatures’ health (e.g., food, predators), but have less experience working with factors that might influence water temperature (e.g., volume, surface area). Hence, it is not the case that “controlling variables in an experiment” is a pure process that is not affected by subjects’ knowledge of those variables.

Prior knowledge and beliefs not only influence which hypotheses one chooses to test, they influence how one interprets data from an experiment. In one experiment, 18 undergraduates were evaluated for their knowledge of electrical circuits. Then they participated in three weekly, 1.5-hour sessions during which they designed and conducted experiments using a computer simulation of circuitry, with the goal of learning how circuitry works. The results showed a strong relationship between subjects’ initial knowledge and how much subjects learned in future sessions, in part due to how the subjects interpreted the data from the experiments they had conducted. Subjects who started with more and better integrated knowledge planned more informative experiments and made better use of experimental outcomes.

Other studies have found similar results, and have found that anomalous, or unexpected, outcomes may be particularly important in creating new knowledge-and particularly dependent upon prior knowledge. 19 Data that seem odd because they don’t fit one’s mental model of the phenomenon under investigation are highly informative. They tell you that your understanding is incomplete, and they guide the development of new hypotheses. But you could only recognize the outcome of an experiment as anomalous if you had some expectation of how it would turn out. And that expectation would be based on domain knowledge, as would your ability to create a new hypothesis that takes the anomalous outcome into account.

The idea that scientific thinking must be taught hand in hand with scientific content is further supported by research on scientific problem solving; that is, when students calculate an answer to a textbook-like problem, rather than design their own experiment. A meta-analysis 20 of 40 experiments investigating methods for teaching scientific problem solving showed that effective approaches were those that focused on building complex, integrated knowledge bases as part of problem solving, for example by including exercises like concept mapping. Ineffective approaches focused exclusively on the strategies to be used in problem solving while ignoring the knowledge necessary for the solution.

What do all these studies boil down to? First, critical thinking (as well as scientific thinking and other domain-based thinking) is not a skill. There is not a set of critical thinking skills that can be acquired and deployed regardless of context. Second, there are metacognitive strategies that, once learned, make critical thinking more likely. Third, the ability to think critically (to actually do what the metacognitive strategies call for) depends on domain knowledge and practice. For teachers, the situation is not hopeless, but no one should underestimate the difficulty of teaching students to think critically.

Liked it? Share it!

Visit our sister websites:, reading rockets launching young readers (opens in a new window), start with a book read. explore. learn (opens in a new window), colorín colorado helping ells succeed (opens in a new window), ld online all about learning disabilities (opens in a new window), reading universe all about teaching reading and writing (opens in a new window).

Get the Reddit app

A place to post an opinion you accept may be flawed, in an effort to understand other perspectives on the issue. Enter with a mindset for conversation, not debate.

CMV: There should be a mandatory critical thinking and debate class taught at some point in primary and secondary education

I took a critical thinking class in college and it taught me so much about how to evaluate arguments and positions and think of different ways to approach problems, as well as developed my empathy sensors. Also, learning about how to spot fallacies was a super fun part of the class and is really helpful in arguing.

Now I think that college was a little too late to even have a class like that and I had wished that through elementary school, middle school, AND high school that I had been continuously exposed to this so I can keep my mental swords sharp.

I see way too many people nowadays believing in the first things that they see without evaluating whether it is actually true or an acceptable argument or whatnot and I really cannot think of a downside to having this as a class taught at every level of public education.

Just for clarification, I am mainly talking about the US since I don’t know what Europe’s public ed curriculum usually consists of.

EDIT: It seems like a lot of people are commenting about the dissatisfaction of debating classes. I’ve never taken a debate class so I don’t know what it entails but I just thought about it as in the realm of not speech and debate / competitive debating but rather just HOW to effectively argue with someone and learning about things like the Code of Intellectual Conduct. Lots of good discussion though surprised this got so much traction.

By continuing, you agree to our User Agreement and acknowledge that you understand the Privacy Policy .

Enter the 6-digit code from your authenticator app

You’ve set up two-factor authentication for this account.

Enter a 6-digit backup code

Create your username and password.

Reddit is anonymous, so your username is what you’ll go by here. Choose wisely—because once you get a name, you can’t change it.

Reset your password

Enter your email address or username and we’ll send you a link to reset your password

Check your inbox

An email with a link to reset your password was sent to the email address associated with your account

Choose a Reddit account to continue

41+ Critical Thinking Examples (Definition + Practices)

practical psychology logo

Critical thinking is an essential skill in our information-overloaded world, where figuring out what is fact and fiction has become increasingly challenging.

But why is critical thinking essential? Put, critical thinking empowers us to make better decisions, challenge and validate our beliefs and assumptions, and understand and interact with the world more effectively and meaningfully.

Critical thinking is like using your brain's "superpowers" to make smart choices. Whether it's picking the right insurance, deciding what to do in a job, or discussing topics in school, thinking deeply helps a lot. In the next parts, we'll share real-life examples of when this superpower comes in handy and give you some fun exercises to practice it.

Critical Thinking Process Outline

a woman thinking

Critical thinking means thinking clearly and fairly without letting personal feelings get in the way. It's like being a detective, trying to solve a mystery by using clues and thinking hard about them.

It isn't always easy to think critically, as it can take a pretty smart person to see some of the questions that aren't being answered in a certain situation. But, we can train our brains to think more like puzzle solvers, which can help develop our critical thinking skills.

Here's what it looks like step by step:

Spotting the Problem: It's like discovering a puzzle to solve. You see that there's something you need to figure out or decide.

Collecting Clues: Now, you need to gather information. Maybe you read about it, watch a video, talk to people, or do some research. It's like getting all the pieces to solve your puzzle.

Breaking It Down: This is where you look at all your clues and try to see how they fit together. You're asking questions like: Why did this happen? What could happen next?

Checking Your Clues: You want to make sure your information is good. This means seeing if what you found out is true and if you can trust where it came from.

Making a Guess: After looking at all your clues, you think about what they mean and come up with an answer. This answer is like your best guess based on what you know.

Explaining Your Thoughts: Now, you tell others how you solved the puzzle. You explain how you thought about it and how you answered. 

Checking Your Work: This is like looking back and seeing if you missed anything. Did you make any mistakes? Did you let any personal feelings get in the way? This step helps make sure your thinking is clear and fair.

And remember, you might sometimes need to go back and redo some steps if you discover something new. If you realize you missed an important clue, you might have to go back and collect more information.

Critical Thinking Methods

Just like doing push-ups or running helps our bodies get stronger, there are special exercises that help our brains think better. These brain workouts push us to think harder, look at things closely, and ask many questions.

It's not always about finding the "right" answer. Instead, it's about the journey of thinking and asking "why" or "how." Doing these exercises often helps us become better thinkers and makes us curious to know more about the world.

Now, let's look at some brain workouts to help us think better:

1. "What If" Scenarios

Imagine crazy things happening, like, "What if there was no internet for a month? What would we do?" These games help us think of new and different ideas.

Pick a hot topic. Argue one side of it and then try arguing the opposite. This makes us see different viewpoints and think deeply about a topic.

3. Analyze Visual Data

Check out charts or pictures with lots of numbers and info but no explanations. What story are they telling? This helps us get better at understanding information just by looking at it.

4. Mind Mapping

Write an idea in the center and then draw lines to related ideas. It's like making a map of your thoughts. This helps us see how everything is connected.

There's lots of mind-mapping software , but it's also nice to do this by hand.

5. Weekly Diary

Every week, write about what happened, the choices you made, and what you learned. Writing helps us think about our actions and how we can do better.

6. Evaluating Information Sources

Collect stories or articles about one topic from newspapers or blogs. Which ones are trustworthy? Which ones might be a little biased? This teaches us to be smart about where we get our info.

There are many resources to help you determine if information sources are factual or not.

7. Socratic Questioning

This way of thinking is called the Socrates Method, named after an old-time thinker from Greece. It's about asking lots of questions to understand a topic. You can do this by yourself or chat with a friend.

Start with a Big Question:

"What does 'success' mean?"

Dive Deeper with More Questions:

"Why do you think of success that way?" "Do TV shows, friends, or family make you think that?" "Does everyone think about success the same way?"

"Can someone be a winner even if they aren't rich or famous?" "Can someone feel like they didn't succeed, even if everyone else thinks they did?"

Look for Real-life Examples:

"Who is someone you think is successful? Why?" "Was there a time you felt like a winner? What happened?"

Think About Other People's Views:

"How might a person from another country think about success?" "Does the idea of success change as we grow up or as our life changes?"

Think About What It Means:

"How does your idea of success shape what you want in life?" "Are there problems with only wanting to be rich or famous?"

Look Back and Think:

"After talking about this, did your idea of success change? How?" "Did you learn something new about what success means?"

socratic dialogue statues

8. Six Thinking Hats 

Edward de Bono came up with a cool way to solve problems by thinking in six different ways, like wearing different colored hats. You can do this independently, but it might be more effective in a group so everyone can have a different hat color. Each color has its way of thinking:

White Hat (Facts): Just the facts! Ask, "What do we know? What do we need to find out?"

Red Hat (Feelings): Talk about feelings. Ask, "How do I feel about this?"

Black Hat (Careful Thinking): Be cautious. Ask, "What could go wrong?"

Yellow Hat (Positive Thinking): Look on the bright side. Ask, "What's good about this?"

Green Hat (Creative Thinking): Think of new ideas. Ask, "What's another way to look at this?"

Blue Hat (Planning): Organize the talk. Ask, "What should we do next?"

When using this method with a group:

  • Explain all the hats.
  • Decide which hat to wear first.
  • Make sure everyone switches hats at the same time.
  • Finish with the Blue Hat to plan the next steps.

9. SWOT Analysis

SWOT Analysis is like a game plan for businesses to know where they stand and where they should go. "SWOT" stands for Strengths, Weaknesses, Opportunities, and Threats.

There are a lot of SWOT templates out there for how to do this visually, but you can also think it through. It doesn't just apply to businesses but can be a good way to decide if a project you're working on is working.

Strengths: What's working well? Ask, "What are we good at?"

Weaknesses: Where can we do better? Ask, "Where can we improve?"

Opportunities: What good things might come our way? Ask, "What chances can we grab?"

Threats: What challenges might we face? Ask, "What might make things tough for us?"

Steps to do a SWOT Analysis:

  • Goal: Decide what you want to find out.
  • Research: Learn about your business and the world around it.
  • Brainstorm: Get a group and think together. Talk about strengths, weaknesses, opportunities, and threats.
  • Pick the Most Important Points: Some things might be more urgent or important than others.
  • Make a Plan: Decide what to do based on your SWOT list.
  • Check Again Later: Things change, so look at your SWOT again after a while to update it.

Now that you have a few tools for thinking critically, let’s get into some specific examples.

Everyday Examples

Life is a series of decisions. From the moment we wake up, we're faced with choices – some trivial, like choosing a breakfast cereal, and some more significant, like buying a home or confronting an ethical dilemma at work. While it might seem that these decisions are disparate, they all benefit from the application of critical thinking.

10. Deciding to buy something

Imagine you want a new phone. Don't just buy it because the ad looks cool. Think about what you need in a phone. Look up different phones and see what people say about them. Choose the one that's the best deal for what you want.

11. Deciding what is true

There's a lot of news everywhere. Don't believe everything right away. Think about why someone might be telling you this. Check if what you're reading or watching is true. Make up your mind after you've looked into it.

12. Deciding when you’re wrong

Sometimes, friends can have disagreements. Don't just get mad right away. Try to see where they're coming from. Talk about what's going on. Find a way to fix the problem that's fair for everyone.

13. Deciding what to eat

There's always a new diet or exercise that's popular. Don't just follow it because it's trendy. Find out if it's good for you. Ask someone who knows, like a doctor. Make choices that make you feel good and stay healthy.

14. Deciding what to do today

Everyone is busy with school, chores, and hobbies. Make a list of things you need to do. Decide which ones are most important. Plan your day so you can get things done and still have fun.

15. Making Tough Choices

Sometimes, it's hard to know what's right. Think about how each choice will affect you and others. Talk to people you trust about it. Choose what feels right in your heart and is fair to others.

16. Planning for the Future

Big decisions, like where to go to school, can be tricky. Think about what you want in the future. Look at the good and bad of each choice. Talk to people who know about it. Pick what feels best for your dreams and goals.

choosing a house

Job Examples

17. solving problems.

Workers brainstorm ways to fix a machine quickly without making things worse when a machine breaks at a factory.

18. Decision Making

A store manager decides which products to order more of based on what's selling best.

19. Setting Goals

A team leader helps their team decide what tasks are most important to finish this month and which can wait.

20. Evaluating Ideas

At a team meeting, everyone shares ideas for a new project. The group discusses each idea's pros and cons before picking one.

21. Handling Conflict

Two workers disagree on how to do a job. Instead of arguing, they talk calmly, listen to each other, and find a solution they both like.

22. Improving Processes

A cashier thinks of a faster way to ring up items so customers don't have to wait as long.

23. Asking Questions

Before starting a big task, an employee asks for clear instructions and checks if they have the necessary tools.

24. Checking Facts

Before presenting a report, someone double-checks all their information to make sure there are no mistakes.

25. Planning for the Future

A business owner thinks about what might happen in the next few years, like new competitors or changes in what customers want, and makes plans based on those thoughts.

26. Understanding Perspectives

A team is designing a new toy. They think about what kids and parents would both like instead of just what they think is fun.

School Examples

27. researching a topic.

For a history project, a student looks up different sources to understand an event from multiple viewpoints.

28. Debating an Issue

In a class discussion, students pick sides on a topic, like school uniforms, and share reasons to support their views.

29. Evaluating Sources

While writing an essay, a student checks if the information from a website is trustworthy or might be biased.

30. Problem Solving in Math

When stuck on a tricky math problem, a student tries different methods to find the answer instead of giving up.

31. Analyzing Literature

In English class, students discuss why a character in a book made certain choices and what those decisions reveal about them.

32. Testing a Hypothesis

For a science experiment, students guess what will happen and then conduct tests to see if they're right or wrong.

33. Giving Peer Feedback

After reading a classmate's essay, a student offers suggestions for improving it.

34. Questioning Assumptions

In a geography lesson, students consider why certain countries are called "developed" and what that label means.

35. Designing a Study

For a psychology project, students plan an experiment to understand how people's memories work and think of ways to ensure accurate results.

36. Interpreting Data

In a science class, students look at charts and graphs from a study, then discuss what the information tells them and if there are any patterns.

Critical Thinking Puzzles

critical thinking tree

Not all scenarios will have a single correct answer that can be figured out by thinking critically. Sometimes we have to think critically about ethical choices or moral behaviors. 

Here are some mind games and scenarios you can solve using critical thinking. You can see the solution(s) at the end of the post.

37. The Farmer, Fox, Chicken, and Grain Problem

A farmer is at a riverbank with a fox, a chicken, and a grain bag. He needs to get all three items across the river. However, his boat can only carry himself and one of the three items at a time. 

Here's the challenge:

  • If the fox is left alone with the chicken, the fox will eat the chicken.
  • If the chicken is left alone with the grain, the chicken will eat the grain.

How can the farmer get all three items across the river without any item being eaten? 

38. The Rope, Jar, and Pebbles Problem

You are in a room with two long ropes hanging from the ceiling. Each rope is just out of arm's reach from the other, so you can't hold onto one rope and reach the other simultaneously. 

Your task is to tie the two rope ends together, but you can't move the position where they hang from the ceiling.

You are given a jar full of pebbles. How do you complete the task?

39. The Two Guards Problem

Imagine there are two doors. One door leads to certain doom, and the other leads to freedom. You don't know which is which.

In front of each door stands a guard. One guard always tells the truth. The other guard always lies. You don't know which guard is which.

You can ask only one question to one of the guards. What question should you ask to find the door that leads to freedom?

40. The Hourglass Problem

You have two hourglasses. One measures 7 minutes when turned over, and the other measures 4 minutes. Using just these hourglasses, how can you time exactly 9 minutes?

41. The Lifeboat Dilemma

Imagine you're on a ship that's sinking. You get on a lifeboat, but it's already too full and might flip over. 

Nearby in the water, five people are struggling: a scientist close to finding a cure for a sickness, an old couple who've been together for a long time, a mom with three kids waiting at home, and a tired teenager who helped save others but is now in danger. 

You can only save one person without making the boat flip. Who would you choose?

42. The Tech Dilemma

You work at a tech company and help make a computer program to help small businesses. You're almost ready to share it with everyone, but you find out there might be a small chance it has a problem that could show users' private info. 

If you decide to fix it, you must wait two more months before sharing it. But your bosses want you to share it now. What would you do?

43. The History Mystery

Dr. Amelia is a history expert. She's studying where a group of people traveled long ago. She reads old letters and documents to learn about it. But she finds some letters that tell a different story than what most people believe. 

If she says this new story is true, it could change what people learn in school and what they think about history. What should she do?

The Role of Bias in Critical Thinking

Have you ever decided you don’t like someone before you even know them? Or maybe someone shared an idea with you that you immediately loved without even knowing all the details. 

This experience is called bias, which occurs when you like or dislike something or someone without a good reason or knowing why. It can also take shape in certain reactions to situations, like a habit or instinct. 

Bias comes from our own experiences, what friends or family tell us, or even things we are born believing. Sometimes, bias can help us stay safe, but other times it stops us from seeing the truth.

Not all bias is bad. Bias can be a mechanism for assessing our potential safety in a new situation. If we are biased to think that anything long, thin, and curled up is a snake, we might assume the rope is something to be afraid of before we know it is just a rope.

While bias might serve us in some situations (like jumping out of the way of an actual snake before we have time to process that we need to be jumping out of the way), it often harms our ability to think critically.

How Bias Gets in the Way of Good Thinking

Selective Perception: We only notice things that match our ideas and ignore the rest. 

It's like only picking red candies from a mixed bowl because you think they taste the best, but they taste the same as every other candy in the bowl. It could also be when we see all the signs that our partner is cheating on us but choose to ignore them because we are happy the way we are (or at least, we think we are).

Agreeing with Yourself: This is called “ confirmation bias ” when we only listen to ideas that match our own and seek, interpret, and remember information in a way that confirms what we already think we know or believe. 

An example is when someone wants to know if it is safe to vaccinate their children but already believes that vaccines are not safe, so they only look for information supporting the idea that vaccines are bad.

Thinking We Know It All: Similar to confirmation bias, this is called “overconfidence bias.” Sometimes we think our ideas are the best and don't listen to others. This can stop us from learning.

Have you ever met someone who you consider a “know it”? Probably, they have a lot of overconfidence bias because while they may know many things accurately, they can’t know everything. Still, if they act like they do, they show overconfidence bias.

There's a weird kind of bias similar to this called the Dunning Kruger Effect, and that is when someone is bad at what they do, but they believe and act like they are the best .

Following the Crowd: This is formally called “groupthink”. It's hard to speak up with a different idea if everyone agrees. But this can lead to mistakes.

An example of this we’ve all likely seen is the cool clique in primary school. There is usually one person that is the head of the group, the “coolest kid in school”, and everyone listens to them and does what they want, even if they don’t think it’s a good idea.

How to Overcome Biases

Here are a few ways to learn to think better, free from our biases (or at least aware of them!).

Know Your Biases: Realize that everyone has biases. If we know about them, we can think better.

Listen to Different People: Talking to different kinds of people can give us new ideas.

Ask Why: Always ask yourself why you believe something. Is it true, or is it just a bias?

Understand Others: Try to think about how others feel. It helps you see things in new ways.

Keep Learning: Always be curious and open to new information.

city in a globe connection

In today's world, everything changes fast, and there's so much information everywhere. This makes critical thinking super important. It helps us distinguish between what's real and what's made up. It also helps us make good choices. But thinking this way can be tough sometimes because of biases. These are like sneaky thoughts that can trick us. The good news is we can learn to see them and think better.

There are cool tools and ways we've talked about, like the "Socratic Questioning" method and the "Six Thinking Hats." These tools help us get better at thinking. These thinking skills can also help us in school, work, and everyday life.

We’ve also looked at specific scenarios where critical thinking would be helpful, such as deciding what diet to follow and checking facts.

Thinking isn't just a skill—it's a special talent we improve over time. Working on it lets us see things more clearly and understand the world better. So, keep practicing and asking questions! It'll make you a smarter thinker and help you see the world differently.

Critical Thinking Puzzles (Solutions)

The farmer, fox, chicken, and grain problem.

  • The farmer first takes the chicken across the river and leaves it on the other side.
  • He returns to the original side and takes the fox across the river.
  • After leaving the fox on the other side, he returns the chicken to the starting side.
  • He leaves the chicken on the starting side and takes the grain bag across the river.
  • He leaves the grain with the fox on the other side and returns to get the chicken.
  • The farmer takes the chicken across, and now all three items -- the fox, the chicken, and the grain -- are safely on the other side of the river.

The Rope, Jar, and Pebbles Problem

  • Take one rope and tie the jar of pebbles to its end.
  • Swing the rope with the jar in a pendulum motion.
  • While the rope is swinging, grab the other rope and wait.
  • As the swinging rope comes back within reach due to its pendulum motion, grab it.
  • With both ropes within reach, untie the jar and tie the rope ends together.

The Two Guards Problem

The question is, "What would the other guard say is the door to doom?" Then choose the opposite door.

The Hourglass Problem

  • Start both hourglasses. 
  • When the 4-minute hourglass runs out, turn it over.
  • When the 7-minute hourglass runs out, the 4-minute hourglass will have been running for 3 minutes. Turn the 7-minute hourglass over. 
  • When the 4-minute hourglass runs out for the second time (a total of 8 minutes have passed), the 7-minute hourglass will run for 1 minute. Turn the 7-minute hourglass again for 1 minute to empty the hourglass (a total of 9 minutes passed).

The Boat and Weights Problem

Take the cat over first and leave it on the other side. Then, return and take the fish across next. When you get there, take the cat back with you. Leave the cat on the starting side and take the cat food across. Lastly, return to get the cat and bring it to the other side.

The Lifeboat Dilemma

There isn’t one correct answer to this problem. Here are some elements to consider:

  • Moral Principles: What values guide your decision? Is it the potential greater good for humanity (the scientist)? What is the value of long-standing love and commitment (the elderly couple)? What is the future of young children who depend on their mothers? Or the selfless bravery of the teenager?
  • Future Implications: Consider the future consequences of each choice. Saving the scientist might benefit millions in the future, but what moral message does it send about the value of individual lives?
  • Emotional vs. Logical Thinking: While it's essential to engage empathy, it's also crucial not to let emotions cloud judgment entirely. For instance, while the teenager's bravery is commendable, does it make him more deserving of a spot on the boat than the others?
  • Acknowledging Uncertainty: The scientist claims to be close to a significant breakthrough, but there's no certainty. How does this uncertainty factor into your decision?
  • Personal Bias: Recognize and challenge any personal biases, such as biases towards age, profession, or familial status.

The Tech Dilemma

Again, there isn’t one correct answer to this problem. Here are some elements to consider:

  • Evaluate the Risk: How severe is the potential vulnerability? Can it be easily exploited, or would it require significant expertise? Even if the circumstances are rare, what would be the consequences if the vulnerability were exploited?
  • Stakeholder Considerations: Different stakeholders will have different priorities. Upper management might prioritize financial projections, the marketing team might be concerned about the product's reputation, and customers might prioritize the security of their data. How do you balance these competing interests?
  • Short-Term vs. Long-Term Implications: While launching on time could meet immediate financial goals, consider the potential long-term damage to the company's reputation if the vulnerability is exploited. Would the short-term gains be worth the potential long-term costs?
  • Ethical Implications : Beyond the financial and reputational aspects, there's an ethical dimension to consider. Is it right to release a product with a known vulnerability, even if the chances of it being exploited are low?
  • Seek External Input: Consulting with cybersecurity experts outside your company might be beneficial. They could provide a more objective risk assessment and potential mitigation strategies.
  • Communication: How will you communicate the decision, whatever it may be, both internally to your team and upper management and externally to your customers and potential users?

The History Mystery

Dr. Amelia should take the following steps:

  • Verify the Letters: Before making any claims, she should check if the letters are actual and not fake. She can do this by seeing when and where they were written and if they match with other things from that time.
  • Get a Second Opinion: It's always good to have someone else look at what you've found. Dr. Amelia could show the letters to other history experts and see their thoughts.
  • Research More: Maybe there are more documents or letters out there that support this new story. Dr. Amelia should keep looking to see if she can find more evidence.
  • Share the Findings: If Dr. Amelia believes the letters are true after all her checks, she should tell others. This can be through books, talks, or articles.
  • Stay Open to Feedback: Some people might agree with Dr. Amelia, and others might not. She should listen to everyone and be ready to learn more or change her mind if new information arises.

Ultimately, Dr. Amelia's job is to find out the truth about history and share it. It's okay if this new truth differs from what people used to believe. History is about learning from the past, no matter the story.

Related posts:

  • Experimenter Bias (Definition + Examples)
  • Hasty Generalization Fallacy (31 Examples + Similar Names)
  • Ad Hoc Fallacy (29 Examples + Other Names)
  • Confirmation Bias (Examples + Definition)
  • Equivocation Fallacy (26 Examples + Description)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

This discussion is now closed.

  • What are some tips for reducing test anxiety?
  • SHOULD i PICK ENGLISH lit A LEVEL
  • Going from a C to A in english lit A-level
  • SQA Nat 5 English - Critical Reading - 7th May 2024 [Exam Chat]
  • Choosing A-level courses
  • Is ChatGPT a Friend or foe?
  • A level Economics or A level Psychology???
  • A level+ 2024 Results Day Countdown - Hub is open! #FindYourFuture
  • What is OCR English lit like at A level
  • Slight confusion of optical fiber refraction
  • English Literature A level Feminist Critical Theory
  • Writing an English Lit personal statement
  • How competitive is PCDA?
  • What makes attractive extroverts feel entitled to whine about their partners?
  • How to get my grades up fast?
  • I got two 6s in Biology and Physics GCSE??? Should i do resits summer 2024
  • help please: history, chem and bio
  • OCR A-Level Religious Studies Paper 3 (H573/03) 26th June 2023 [Exam Chat]

How hard is Critical Thinking? Should I do it?

Related discussions.

Last reply 1 day ago

Last reply 2 days ago

Last reply 5 days ago

Last reply 1 week ago

Last reply 2 weeks ago

Last reply 3 weeks ago

Articles for you

Personal statement secrets – universities reveal all

Personal statement secrets – universities reveal all

What students wish they’d known about postgrad study

What students wish they’d known about postgrad study

Finding a university place in Ucas Clearing 2024: 10 top tips to help you get ready

Finding a university place in Ucas Clearing 2024: 10 top tips to help you get ready

Top 10 tips for Ucas Clearing 2024

IMAGES

  1. Critical thinking: an essential skill for every student

    how hard is critical thinking class

  2. Critical Thinking: A Guide For The Classroom And Beyond

    how hard is critical thinking class

  3. 16 Characteristics of a Critical Thinking Classroom

    how hard is critical thinking class

  4. Critical Thinking Skills Chart

    how hard is critical thinking class

  5. How to Improve Critical Thinking

    how hard is critical thinking class

  6. CRITICAL THINKING STRATEGIES-PPT

    how hard is critical thinking class

COMMENTS

  1. Critical Thinking: Why Is It So Hard to Teach?

    Decades of cognitive research point to a disappointing answer: not really. People who have sought to teach critical thinking have assumed that it is a skill, like riding a bicycle, and that, like other skills, once you learn it, you can apply it in any situation. Research from cognitive science shows that thinking is not that sort of skill.

  2. What Are Critical Thinking Skills and Why Are They Important?

    According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills. Very helpful in promoting creativity. Important for self-reflection.

  3. Critical Thinking in the Classroom: A Guide for Teachers

    Critical thinking is a key skill that goes far beyond the four walls of a classroom. It equips students to better understand and interact with the world around them. Here are some reasons why fostering critical thinking is important: Making Informed Decisions: Critical thinking enables students to evaluate the pros and cons of a situation ...

  4. Can We Teach Critical Thinking?

    We can think of critical thinking as a general, non-domain specific, skill. In this view critical thinking is a general skill that can be developed and then applied in a range of situations and scenarios. It's a general mode of thinking or being and refers to a relatively stable trait of an individual. People can therefore be good or bad ...

  5. PDF Critical Thinking

    Critical thinking is novel in that you don't simply remember a solution or a. situation that is similar enough to guide you. For example, solving a complex but familiar physics prob-lem by applying a multi-step algo-rithm isn't critical thinking because you are really drawing on memory to solve the problem.

  6. Teaching, Measuring & Assessing Critical Thinking Skills

    Yes, We Can Define, Teach, and Assess Critical Thinking Skills. Critical thinking is a thing. We can define it; we can teach it; and we can assess it. While the idea of teaching critical thinking has been bandied around in education circles since at least the time of John Dewey, it has taken greater prominence in the education debates with the ...

  7. Teaching Critical Thinking Skills in Middle and High School

    Teach Reasoning Skills. Reasoning skills are another key component of critical thinking, involving the abilities to think logically, evaluate evidence, identify assumptions, and analyze arguments. Students who learn how to use reasoning skills will be better equipped to make informed decisions, form and defend opinions, and solve problems.

  8. Developing critical thinking skills in the classroom

    In order to become a well-rounded person who has developed critical thinking skills, students must first understand the importance of developing these skills. This means teaching students how to analyze data, evaluate arguments, and draw conclusions from evidence. This article will help teachers teach critical thinking skills in the class room.

  9. Why is critical thinking difficult?

    Poor critical thinking leads to poor arguments. For these reasons, argumentative prose imposes a heavy cognitive load on the reader. Students are obliged to work hard to discover how an argument works before they can even begin to critique it. This is especially difficult for those who have reading difficulties such as dyslexia.

  10. PHIL102: Introduction to Critical Thinking and Logic

    Free Certificate. This course will introduce you to critical thinking, informal logic, and a small amount of formal logic. Its purpose is to provide you with the basic tools of analytical reasoning, which will give you a distinctive edge in a wide variety of careers and courses of study. While many university courses focus on presenting content ...

  11. What is critical thinking?

    Critical thinking is a kind of thinking in which you question, analyse, interpret , evaluate and make a judgement about what you read, hear, say, or write. The term critical comes from the Greek word kritikos meaning "able to judge or discern". Good critical thinking is about making reliable judgements based on reliable information.

  12. Introduction to Critical Thinking

    Introduction to Critical Thinking. This introductory-level course is designed to help learners define and identify critical thinking and reasoning skills and develop those skills. Critical thinking is an intellectual model for reasoning through issues to reach well-founded conclusions. It may be the single most valuable skill that one can bring ...

  13. Is Critical Thinking a Soft Skill?

    Top 10 Hard Skills: Blockchain, cloud computing, analytical reasoning, artificial intelligence, UX design, business analysis, affiliate marketing, sales, scientific computing, video production. Soft skills are personal habits and traits that shape how you work, on your own and with others.". I discussed what critical thinking is and whether ...

  14. Sophia Online Courses for College Credit

    Take Critical Thinking online at your own pace. In this class, students will learn how to think more critically by questioning assumptions and biases and being aware of fallacies. Students will learn to interpret and write deductive and inductive arguments and apply to real-life situations. Start your free trial.

  15. Does College Teach Critical Thinking? A Meta-Analysis

    Abstract. Educators view critical thinking as an essential skill, yet it remains unclear how effectively it is being taught in college. This meta-analysis synthesizes research on gains in critical thinking skills and attitudinal dispositions over various time frames in college. The results suggest that both critical thinking skills and ...

  16. Critical Thinking Is About Asking Better Questions

    Critical thinking is the ability to analyze and effectively break down an issue in order to make a decision or find a solution. At the heart of critical thinking is the ability to formulate deep ...

  17. 13 Easy Steps To Improve Your Critical Thinking Skills

    6. Ask lots of open-ended questions. Curiosity is a key trait of critical thinkers, so channel your inner child and ask lots of "who," "what," and "why" questions. 7. Find your own reputable ...

  18. Critical Thinking: Why Is It So Hard to Teach?

    Critical thinking depends on knowing relevant content very well and thinking about it, repeatedly. ... I will describe the nature of critical thinking, explain why it is so hard to do and to teach, and explore how students acquire a specific type of critical thinking: thinking scientifically. ... Imagine a seventh-grade math class immersed in ...

  19. 'Why is this hard, to have critical thinking?' Exploring the factors

    Critical thinking is a difficult concept to define, but is nevertheless generally agreed to be an intrinsic part of higher education (Davies and Barnett, 2015; ... The class then examined how group identity can lead to confirmation bias, mistrust of outside expertise and cognitive dissonance, with reference to climate change. ...

  20. CMV: There should be a mandatory critical thinking and debate class

    Critical thinking doesn't have to be taught in a class. It can be taught through experience. Critical thinking is used in every subject, so we should use that to our advantage. We don't need to have another class dedicated to a single topic. We need to start integrating classes and ideas together to show students how what they are learning is used.

  21. 41+ Critical Thinking Examples (Definition + Practices)

    Take one rope and tie the jar of pebbles to its end. Swing the rope with the jar in a pendulum motion. While the rope is swinging, grab the other rope and wait. As the swinging rope comes back within reach due to its pendulum motion, grab it. With both ropes within reach, untie the jar and tie the rope ends together.

  22. Full article: Cultivating Critical Thinking Skills: a Pedagogical Study

    3 English classes involve the study of rhetoric, which is the art and practice of forming well-structured arguments intricately connected to critical thinking. Philosophy classes require that students identify weaknesses and fallacies in arguments while refining the presentation of information, also emphasizing the need for persuasive ...

  23. How hard is Critical Thinking? Should I do it?

    Well Critical Thinking can be learnt 20 mins before the exam since there's hardly any content and the rest is down to logical thinking. Lessons can help you with logical thinking but I would think most university applicants can do this. If you want, then do it but don't go in expecting a fun challenging course because for most people it's neither. Also specifically about the TSA for Oxbridge ...