lim x โ†’ 1 1 x โˆ’ 1 x โˆ’ 1 = โˆ’1 lim x โ†’ 1 1 x โˆ’ 1 x โˆ’ 1 = โˆ’1

lim x โ†’ 2 h ( x ) = โˆ’1 . lim x โ†’ 2 h ( x ) = โˆ’1 .

lim x โ†’ 2 | x 2 โˆ’ 4 | x โˆ’ 2 lim x โ†’ 2 | x 2 โˆ’ 4 | x โˆ’ 2 does not exist.

a. lim x โ†’ 2 โˆ’ | x 2 โˆ’ 4 | x โˆ’ 2 = โˆ’4 ; lim x โ†’ 2 โˆ’ | x 2 โˆ’ 4 | x โˆ’ 2 = โˆ’4 ; b. lim x โ†’ 2 + | x 2 โˆ’ 4 | x โˆ’ 2 = 4 lim x โ†’ 2 + | x 2 โˆ’ 4 | x โˆ’ 2 = 4

a. lim x โ†’ 0 โˆ’ 1 x 2 = + โˆž ; lim x โ†’ 0 โˆ’ 1 x 2 = + โˆž ; b. lim x โ†’ 0 + 1 x 2 = + โˆž ; lim x โ†’ 0 + 1 x 2 = + โˆž ; c. lim x โ†’ 0 1 x 2 = + โˆž lim x โ†’ 0 1 x 2 = + โˆž

a. lim x โ†’ 2 โˆ’ 1 ( x โˆ’ 2 ) 3 = โˆ’ โˆž ; lim x โ†’ 2 โˆ’ 1 ( x โˆ’ 2 ) 3 = โˆ’ โˆž ; b. lim x โ†’ 2 + 1 ( x โˆ’ 2 ) 3 = + โˆž ; lim x โ†’ 2 + 1 ( x โˆ’ 2 ) 3 = + โˆž ; c. lim x โ†’ 2 1 ( x โˆ’ 2 ) 3 lim x โ†’ 2 1 ( x โˆ’ 2 ) 3 DNE. The line x = 2 x = 2 is the vertical asymptote of f ( x ) = 1 / ( x โˆ’ 2 ) 3 . f ( x ) = 1 / ( x โˆ’ 2 ) 3 .

Does not exist.

11 10 11 10

lim x โ†’ โˆ’1 โˆ’ f ( x ) = โˆ’1 lim x โ†’ โˆ’1 โˆ’ f ( x ) = โˆ’1

f is not continuous at 1 because f ( 1 ) = 2 โ‰  3 = lim x โ†’ 1 f ( x ) . f ( 1 ) = 2 โ‰  3 = lim x โ†’ 1 f ( x ) .

f ( x ) f ( x ) is continuous at every real number.

Discontinuous at 1; removable

[ โˆ’3 , + โˆž ) [ โˆ’3 , + โˆž )

f ( 0 ) = 1 > 0 , f ( 1 ) = โˆ’2 < 0 ; f ( x ) f ( 0 ) = 1 > 0 , f ( 1 ) = โˆ’2 < 0 ; f ( x ) is continuous over [ 0 , 1 ] . [ 0 , 1 ] . It must have a zero on this interval.

Let ฮต > 0 ; ฮต > 0 ; choose ฮด = ฮต 3 ; ฮด = ฮต 3 ; assume 0 < | x โˆ’ 2 | < ฮด . 0 < | x โˆ’ 2 | < ฮด .

Thus, | ( 3 x โˆ’ 2 ) โˆ’ 4 | = | 3 x โˆ’ 6 | = | 3 | ยท | x โˆ’ 2 | < 3 ยท ฮด = 3 ยท ( ฮต / 3 ) = ฮต . | ( 3 x โˆ’ 2 ) โˆ’ 4 | = | 3 x โˆ’ 6 | = | 3 | ยท | x โˆ’ 2 | < 3 ยท ฮด = 3 ยท ( ฮต / 3 ) = ฮต .

Therefore, lim x โ†’ 2 3 x โˆ’ 2 = 4 . lim x โ†’ 2 3 x โˆ’ 2 = 4 .

Choose ฮด = min { 9 โˆ’ ( 3 โˆ’ ฮต ) 2 , ( 3 + ฮต ) 2 โˆ’ 9 } . ฮด = min { 9 โˆ’ ( 3 โˆ’ ฮต ) 2 , ( 3 + ฮต ) 2 โˆ’ 9 } .

| x 2 โˆ’ 1 | = | x โˆ’ 1 | ยท | x + 1 | < ฮต / 3 ยท 3 = ฮต | x 2 โˆ’ 1 | = | x โˆ’ 1 | ยท | x + 1 | < ฮต / 3 ยท 3 = ฮต

ฮด = ฮต 2 ฮด = ฮต 2

Section 2.1 Exercises

a. 2.2100000; b. 2.0201000; c. 2.0020010; d. 2.0002000; e. (1.1000000, 2.2100000); f. (1.0100000, 2.0201000); g. (1.0010000, 2.0020010); h. (1.0001000, 2.0002000); i. 2.1000000; j. 2.0100000; k. 2.0010000; l. 2.0001000

y = 2 x y = 2 x

a. 2.0248457; b. 2.0024984; c. 2.0002500; d. 2.0000250; e. (4.1000000,2.0248457); f. (4.0100000,2.0024984); g. (4.0010000,2.0002500); h. (4.00010000,2.0000250); i. 0.24845673; j. 0.24984395; k. 0.24998438; l. 0.24999844

y = x 4 + 1 y = x 4 + 1

a. โˆ’0.95238095; b. โˆ’0.99009901; c. โˆ’0.99502488; d. โˆ’0.99900100; e. (โˆ’1;.0500000,โˆ’0;.95238095); f. (โˆ’1;.0100000,โˆ’0;.9909901); g. (โˆ’1;.0050000,โˆ’0;.99502488); h. (1.0010000,โˆ’0;.99900100); i. โˆ’0.95238095; j. โˆ’0.99009901; k. โˆ’0.99502488; l. โˆ’0.99900100

y = โˆ’ x โˆ’ 2 y = โˆ’ x โˆ’ 2

โˆ’49 m/sec (velocity of the ball is 49 m/sec downward)

Under, 1 unit 2 ; over: 4 unit 2 . The exact area of the two triangles is 1 2 ( 1 ) ( 1 ) + 1 2 ( 2 ) ( 2 ) = 2.5 units 2 . 1 2 ( 1 ) ( 1 ) + 1 2 ( 2 ) ( 2 ) = 2.5 units 2 .

Under, 0.96 unit 2 ; over, 1.92 unit 2 . The exact area of the semicircle with radius 1 is ฯ€ ( 1 ) 2 2 = ฯ€ 2 ฯ€ ( 1 ) 2 2 = ฯ€ 2 unit 2 .

Approximately 1.3333333 unit 2

Section 2.2 Exercises

lim x โ†’ 1 f ( x ) lim x โ†’ 1 f ( x ) does not exist because lim x โ†’ 1 โˆ’ f ( x ) = โˆ’2 โ‰  lim x โ†’ 1 + f ( x ) = 2 . lim x โ†’ 1 โˆ’ f ( x ) = โˆ’2 โ‰  lim x โ†’ 1 + f ( x ) = 2 .

lim x โ†’ 0 ( 1 + x ) 1 / x = 2.7183 lim x โ†’ 0 ( 1 + x ) 1 / x = 2.7183

a. 1.98669331; b. 1.99986667; c. 1.99999867; d. 1.99999999; e. 1.98669331; f. 1.99986667; g. 1.99999867; h. 1.99999999; lim x โ†’ 0 sin 2 x x = 2 lim x โ†’ 0 sin 2 x x = 2

lim x โ†’ 0 sin a x x = a lim x โ†’ 0 sin a x x = a

a. โˆ’0.80000000; b. โˆ’0.98000000; c. โˆ’0.99800000; d. โˆ’0.99980000; e. โˆ’1.2000000; f. โˆ’1.0200000; g. โˆ’1.0020000; h. โˆ’1.0002000; lim x โ†’ 1 ( 1 โˆ’ 2 x ) = โˆ’1 lim x โ†’ 1 ( 1 โˆ’ 2 x ) = โˆ’1

a. โˆ’37.931934; b. โˆ’3377.9264; c. โˆ’333,777.93; d. โˆ’33,337,778; e. โˆ’29.032258; f. โˆ’3289.0365; g. โˆ’332,889.04; h. โˆ’33,328,889 lim x โ†’ 0 z โˆ’ 1 z 2 ( z + 3 ) = โˆ’ โˆž lim x โ†’ 0 z โˆ’ 1 z 2 ( z + 3 ) = โˆ’ โˆž

a. 0.13495277; b. 0.12594300; c. 0.12509381; d. 0.12500938; e. 0.11614402; f. 0.12406794; g. 0.12490631; h. 0.12499063; โˆด lim x โ†’ 2 1 โˆ’ 2 x x 2 โˆ’ 4 = 0.1250 = 1 8 โˆด lim x โ†’ 2 1 โˆ’ 2 x x 2 โˆ’ 4 = 0.1250 = 1 8

a. 10.00000; b. 100.00000; c. 1000.0000; d. 10,000.000; Guess: lim ฮฑ โ†’ 0 + 1 ฮฑ cos ( ฯ€ ฮฑ ) = โˆž , lim ฮฑ โ†’ 0 + 1 ฮฑ cos ( ฯ€ ฮฑ ) = โˆž , actual: DNE

False; lim x โ†’ โˆ’2 + f ( x ) = + โˆž lim x โ†’ โˆ’2 + f ( x ) = + โˆž

False; lim x โ†’ 6 f ( x ) lim x โ†’ 6 f ( x ) DNE since lim x โ†’ 6 โˆ’ f ( x ) = 2 lim x โ†’ 6 โˆ’ f ( x ) = 2 and lim x โ†’ 6 + f ( x ) = 5 . lim x โ†’ 6 + f ( x ) = 5 .

Answers may vary.

a. ฯ 2 ฯ 2 b. ฯ 1 ฯ 1 c. DNE unless ฯ 1 = ฯ 2 . ฯ 1 = ฯ 2 . As you approach x SF x SF from the left, you are in the high-density area of the shock. When you approach from the right, you have not experienced the โ€œshockโ€ yet and are at a lower density.

Section 2.3 Exercises

Use constant multiple law and difference law: lim x โ†’ 0 ( 4 x 2 โˆ’ 2 x + 3 ) = 4 lim x โ†’ 0 x 2 โˆ’ 2 lim x โ†’ 0 x + lim x โ†’ 0 3 = 3 lim x โ†’ 0 ( 4 x 2 โˆ’ 2 x + 3 ) = 4 lim x โ†’ 0 x 2 โˆ’ 2 lim x โ†’ 0 x + lim x โ†’ 0 3 = 3

Use root law: lim x โ†’ โˆ’2 x 2 โˆ’ 6 x + 3 = lim x โ†’ โˆ’2 ( x 2 โˆ’ 6 x + 3 ) = 19 lim x โ†’ โˆ’2 x 2 โˆ’ 6 x + 3 = lim x โ†’ โˆ’2 ( x 2 โˆ’ 6 x + 3 ) = 19

โˆ’ 5 7 โˆ’ 5 7

lim x โ†’ 4 x 2 โˆ’ 16 x โˆ’ 4 = 16 โˆ’ 16 4 โˆ’ 4 = 0 0 ; lim x โ†’ 4 x 2 โˆ’ 16 x โˆ’ 4 = 16 โˆ’ 16 4 โˆ’ 4 = 0 0 ; then, lim x โ†’ 4 x 2 โˆ’ 16 x โˆ’ 4 = lim x โ†’ 4 ( x + 4 ) ( x โˆ’ 4 ) x โˆ’ 4 = 8 lim x โ†’ 4 x 2 โˆ’ 16 x โˆ’ 4 = lim x โ†’ 4 ( x + 4 ) ( x โˆ’ 4 ) x โˆ’ 4 = 8

lim x โ†’ 6 3 x โˆ’ 18 2 x โˆ’ 12 = 18 โˆ’ 18 12 โˆ’ 12 = 0 0 ; lim x โ†’ 6 3 x โˆ’ 18 2 x โˆ’ 12 = 18 โˆ’ 18 12 โˆ’ 12 = 0 0 ; then, lim x โ†’ 6 3 x โˆ’ 18 2 x โˆ’ 12 = lim x โ†’ 6 3 ( x โˆ’ 6 ) 2 ( x โˆ’ 6 ) = 3 2 lim x โ†’ 6 3 x โˆ’ 18 2 x โˆ’ 12 = lim x โ†’ 6 3 ( x โˆ’ 6 ) 2 ( x โˆ’ 6 ) = 3 2

lim x โ†’ 9 t โˆ’ 9 t โˆ’ 3 = 9 โˆ’ 9 3 โˆ’ 3 = 0 0 ; lim x โ†’ 9 t โˆ’ 9 t โˆ’ 3 = 9 โˆ’ 9 3 โˆ’ 3 = 0 0 ; then, lim t โ†’ 9 t โˆ’ 9 t โˆ’ 3 = lim t โ†’ 9 t โˆ’ 9 t โˆ’ 3 t + 3 t + 3 = lim t โ†’ 9 ( t + 3 ) = 6 lim t โ†’ 9 t โˆ’ 9 t โˆ’ 3 = lim t โ†’ 9 t โˆ’ 9 t โˆ’ 3 t + 3 t + 3 = lim t โ†’ 9 ( t + 3 ) = 6

lim ฮธ โ†’ ฯ€ sin ฮธ tan ฮธ = sin ฯ€ tan ฯ€ = 0 0 ; lim ฮธ โ†’ ฯ€ sin ฮธ tan ฮธ = sin ฯ€ tan ฯ€ = 0 0 ; then, lim ฮธ โ†’ ฯ€ sin ฮธ tan ฮธ = lim ฮธ โ†’ ฯ€ sin ฮธ sin ฮธ cos ฮธ = lim ฮธ โ†’ ฯ€ cos ฮธ = โˆ’1 lim ฮธ โ†’ ฯ€ sin ฮธ tan ฮธ = lim ฮธ โ†’ ฯ€ sin ฮธ sin ฮธ cos ฮธ = lim ฮธ โ†’ ฯ€ cos ฮธ = โˆ’1

lim x โ†’ 1 / 2 2 x 2 + 3 x โˆ’ 2 2 x โˆ’ 1 = 1 2 + 3 2 โˆ’ 2 1 โˆ’ 1 = 0 0 ; lim x โ†’ 1 / 2 2 x 2 + 3 x โˆ’ 2 2 x โˆ’ 1 = 1 2 + 3 2 โˆ’ 2 1 โˆ’ 1 = 0 0 ; then, lim x โ†’ 1 / 2 2 x 2 + 3 x โˆ’ 2 2 x โˆ’ 1 = lim x โ†’ 1 / 2 ( 2 x โˆ’ 1 ) ( x + 2 ) 2 x โˆ’ 1 = 5 2 lim x โ†’ 1 / 2 2 x 2 + 3 x โˆ’ 2 2 x โˆ’ 1 = lim x โ†’ 1 / 2 ( 2 x โˆ’ 1 ) ( x + 2 ) 2 x โˆ’ 1 = 5 2

lim x โ†’ 6 2 f ( x ) g ( x ) = 2 lim x โ†’ 6 f ( x ) lim x โ†’ 6 g ( x ) = 72 lim x โ†’ 6 2 f ( x ) g ( x ) = 2 lim x โ†’ 6 f ( x ) lim x โ†’ 6 g ( x ) = 72

lim x โ†’ 6 ( f ( x ) + 1 3 g ( x ) ) = lim x โ†’ 6 f ( x ) + 1 3 lim x โ†’ 6 g ( x ) = 7 lim x โ†’ 6 ( f ( x ) + 1 3 g ( x ) ) = lim x โ†’ 6 f ( x ) + 1 3 lim x โ†’ 6 g ( x ) = 7

lim x โ†’ 6 g ( x ) โˆ’ f ( x ) = lim x โ†’ 6 g ( x ) โˆ’ lim x โ†’ 6 f ( x ) = 5 lim x โ†’ 6 g ( x ) โˆ’ f ( x ) = lim x โ†’ 6 g ( x ) โˆ’ lim x โ†’ 6 f ( x ) = 5

lim x โ†’ 6 [ ( x + 1 ) f ( x ) ] = ( lim x โ†’ 6 ( x + 1 ) ) ( lim x โ†’ 6 f ( x ) ) = 28 lim x โ†’ 6 [ ( x + 1 ) f ( x ) ] = ( lim x โ†’ 6 ( x + 1 ) ) ( lim x โ†’ 6 f ( x ) ) = 28

lim x โ†’ โˆ’3 โˆ’ ( f ( x ) โˆ’ 3 g ( x ) ) = lim x โ†’ โˆ’3 โˆ’ f ( x ) โˆ’ 3 lim x โ†’ โˆ’3 โˆ’ g ( x ) = 0 + 6 = 6 lim x โ†’ โˆ’3 โˆ’ ( f ( x ) โˆ’ 3 g ( x ) ) = lim x โ†’ โˆ’3 โˆ’ f ( x ) โˆ’ 3 lim x โ†’ โˆ’3 โˆ’ g ( x ) = 0 + 6 = 6

lim x โ†’ โˆ’5 2 + g ( x ) f ( x ) = 2 + ( lim x โ†’ โˆ’5 g ( x ) ) lim x โ†’ โˆ’5 f ( x ) = 2 + 0 2 = 1 lim x โ†’ โˆ’5 2 + g ( x ) f ( x ) = 2 + ( lim x โ†’ โˆ’5 g ( x ) ) lim x โ†’ โˆ’5 f ( x ) = 2 + 0 2 = 1

lim x โ†’ 1 f ( x ) โˆ’ g ( x ) 3 = lim x โ†’ 1 f ( x ) โˆ’ lim x โ†’ 1 g ( x ) 3 = 2 + 5 3 = 7 3 lim x โ†’ 1 f ( x ) โˆ’ g ( x ) 3 = lim x โ†’ 1 f ( x ) โˆ’ lim x โ†’ 1 g ( x ) 3 = 2 + 5 3 = 7 3

lim x โ†’ โˆ’9 ( x f ( x ) + 2 g ( x ) ) = ( lim x โ†’ โˆ’9 x ) ( lim x โ†’ โˆ’9 f ( x ) ) + 2 lim x โ†’ โˆ’9 ( g ( x ) ) = ( โˆ’9 ) ( 6 ) + 2 ( 4 ) = โˆ’46 lim x โ†’ โˆ’9 ( x f ( x ) + 2 g ( x ) ) = ( lim x โ†’ โˆ’9 x ) ( lim x โ†’ โˆ’9 f ( x ) ) + 2 lim x โ†’ โˆ’9 ( g ( x ) ) = ( โˆ’9 ) ( 6 ) + 2 ( 4 ) = โˆ’46

The limit is zero.

b. โˆž. The magnitude of the electric field as you approach the particle q becomes infinite. It does not make physical sense to evaluate negative distance.

Section 2.4 Exercises

The function is defined for all x in the interval ( 0 , โˆž ) . ( 0 , โˆž ) .

Removable discontinuity at x = 0 ; x = 0 ; infinite discontinuity at x = 1 x = 1

Infinite discontinuity at x = ln 2 x = ln 2

Infinite discontinuities at x = ( 2 k + 1 ) ฯ€ 4 , x = ( 2 k + 1 ) ฯ€ 4 , for k = 0 , ยฑ 1 , ยฑ 2 , ยฑ 3 ,โ€ฆ k = 0 , ยฑ 1 , ยฑ 2 , ยฑ 3 ,โ€ฆ

No. It is a removable discontinuity.

Yes. It is continuous.

k = โˆ’5 k = โˆ’5

k = โˆ’1 k = โˆ’1

k = 16 3 k = 16 3

Since both s and y = t y = t are continuous everywhere, then h ( t ) = s ( t ) โˆ’ t h ( t ) = s ( t ) โˆ’ t is continuous everywhere and, in particular, it is continuous over the closed interval [ 2 , 5 ] . [ 2 , 5 ] . Also, h ( 2 ) = 3 > 0 h ( 2 ) = 3 > 0 and h ( 5 ) = โˆ’3 < 0 . h ( 5 ) = โˆ’3 < 0 . Therefore, by the IVT, there is a value x = c x = c such that h ( c ) = 0 . h ( c ) = 0 .

The function f ( x ) = 2 x โˆ’ x 3 f ( x ) = 2 x โˆ’ x 3 is continuous over the interval [ 1.25 , 1.375 ] [ 1.25 , 1.375 ] and has opposite signs at the endpoints.

b. It is not possible to redefine f ( 1 ) f ( 1 ) since the discontinuity is a jump discontinuity.

Answers may vary; see the following example:

False. It is continuous over ( โˆ’ โˆž , 0 ) โˆช ( 0 , โˆž ) . ( โˆ’ โˆž , 0 ) โˆช ( 0 , โˆž ) .

False. Consider f ( x ) = { x if x โ‰  0 4 if x = 0 . f ( x ) = { x if x โ‰  0 4 if x = 0 .

False. IVT only says that there is at least one solution; it does not guarantee that there is exactly one. Consider f ( x ) = cos ( x ) f ( x ) = cos ( x ) on [ โˆ’ ฯ€ , 2 ฯ€ ] . [ โˆ’ ฯ€ , 2 ฯ€ ] .

False. The IVT does not work in reverse! Consider ( x โˆ’ 1 ) 2 ( x โˆ’ 1 ) 2 over the interval [ โˆ’2 , 2 ] . [ โˆ’2 , 2 ] .

R = 0.0001519 m R = 0.0001519 m

D = 345,826 km D = 345,826 km

For all values of a , f ( a ) a , f ( a ) is defined, lim ฮธ โ†’ a f ( ฮธ ) lim ฮธ โ†’ a f ( ฮธ ) exists, and lim ฮธ โ†’ a f ( ฮธ ) = f ( a ) . lim ฮธ โ†’ a f ( ฮธ ) = f ( a ) . Therefore, f ( ฮธ ) f ( ฮธ ) is continuous everywhere.

Section 2.5 Exercises

For every ฮต > 0 , ฮต > 0 , there exists a ฮด > 0 , ฮด > 0 , so that if 0 < | t โˆ’ b | < ฮด , 0 < | t โˆ’ b | < ฮด , then | g ( t ) โˆ’ M | < ฮต | g ( t ) โˆ’ M | < ฮต

For every ฮต > 0 , ฮต > 0 , there exists a ฮด > 0 , ฮด > 0 , so that if 0 < | x โˆ’ a | < ฮด , 0 < | x โˆ’ a | < ฮด , then | ฯ† ( x ) โˆ’ A | < ฮต | ฯ† ( x ) โˆ’ A | < ฮต

ฮด โ‰ค 0.25 ฮด โ‰ค 0.25

ฮด โ‰ค 2 ฮด โ‰ค 2

ฮด โ‰ค 1 ฮด โ‰ค 1

ฮด < 0.3900 ฮด < 0.3900

Let ฮด = ฮต . ฮด = ฮต . If 0 < | x โˆ’ 3 | < ฮต , 0 < | x โˆ’ 3 | < ฮต , then | x + 3 โˆ’ 6 | = | x โˆ’ 3 | < ฮต . | x + 3 โˆ’ 6 | = | x โˆ’ 3 | < ฮต .

Let ฮด = ฮต 4 . ฮด = ฮต 4 . If 0 < | x | < ฮต 4 , 0 < | x | < ฮต 4 , then | x 4 | = x 4 < ฮต . | x 4 | = x 4 < ฮต .

Let ฮด = ฮต 2 . ฮด = ฮต 2 . If 5 โˆ’ ฮต 2 < x < 5 , 5 โˆ’ ฮต 2 < x < 5 , then | 5 โˆ’ x | = 5 โˆ’ x < ฮต . | 5 โˆ’ x | = 5 โˆ’ x < ฮต .

Let ฮด = ฮต / 5 . ฮด = ฮต / 5 . If 1 โˆ’ ฮต / 5 < x < 1 , 1 โˆ’ ฮต / 5 < x < 1 , then | f ( x ) โˆ’ 3 | = 5 x โˆ’ 5 < ฮต . | f ( x ) โˆ’ 3 | = 5 x โˆ’ 5 < ฮต .

Let ฮด = 3 M . ฮด = 3 M . If 0 < | x + 1 | < 3 M , 0 < | x + 1 | < 3 M , then f ( x ) = 3 ( x + 1 ) 2 > M . f ( x ) = 3 ( x + 1 ) 2 > M .

0.328 cm, ฮต = 8 , ฮด = 0.33 , a = 12 , L = 144 ฮต = 8 , ฮด = 0.33 , a = 12 , L = 144

lim x โ†’ a f x + lim x โ†’ a g x = L + M lim x โ†’ a f x + lim x โ†’ a g x = L + M

Review Exercises

False. A removable discontinuity is possible.

8 / 7 8 / 7

2 / 3 2 / 3

Since โˆ’1 โ‰ค cos ( 2 ฯ€ x ) โ‰ค 1 , โˆ’1 โ‰ค cos ( 2 ฯ€ x ) โ‰ค 1 , then โˆ’ x 2 โ‰ค x 2 cos ( 2 ฯ€ x ) โ‰ค x 2 . โˆ’ x 2 โ‰ค x 2 cos ( 2 ฯ€ x ) โ‰ค x 2 . Since lim x โ†’ 0 x 2 = 0 = lim x โ†’ 0 โˆ’ x 2 , lim x โ†’ 0 x 2 = 0 = lim x โ†’ 0 โˆ’ x 2 , it follows that lim x โ†’ 0 x 2 cos ( 2 ฯ€ x ) = 0 . lim x โ†’ 0 x 2 cos ( 2 ฯ€ x ) = 0 .

[ 2 , โˆž ] [ 2 , โˆž ]

c = โˆ’1 c = โˆ’1

ฮด = ฮต 3 ฮด = ฮต 3

0 m / sec 0 m / sec

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction
  • Authors: Gilbert Strang, Edwin โ€œJedโ€ Herman
  • Publisher/website: OpenStax
  • Book title: Calculus Volume 1
  • Publication date: Mar 30, 2016
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/calculus-volume-1/pages/1-introduction
  • Section URL: https://openstax.org/books/calculus-volume-1/pages/chapter-2

ยฉ Jul 25, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

IMAGES

  1. Homework 1

    ap calculus 2.1 homework

  2. SanfordFlipMath AP Calculus 2.1-4 Limits Practice Test #7

    ap calculus 2.1 homework

  3. Ap Calculus Calculus Problems Worksheet / AP Calculus AB/BC Two page

    ap calculus 2.1 homework

  4. Calculus 2.1 Notes

    ap calculus 2.1 homework

  5. AP Calculus 2 8.1 notes 3

    ap calculus 2.1 homework

  6. Calc

    ap calculus 2.1 homework

VIDEO

  1. AP Calculus AB

  2. Calculus 1

  3. SanfordFlipMath AP Calculus 2.1C RoC

  4. Avon High School

  5. SanfordFlipMath AP Calculus 2.1-4 Limits Practice Test #s 1-6

  6. SanfordFlipMath AP Calculus 2.1-4 Limits Practice Test #7

COMMENTS

  1. PDF AP Calculus AB Unit 2 Limits and Continuity

    Unit 2 - Limits and Continuity. AP Calculus AB -Worksheet 7 Introduction to Limits. There are no great limits to growth because there are no limits of human intelligence, imagination, and wonder. - Ronald Reagan. Answer the following questions. 1. For the function.

  2. Calculus

    For both AB and BC courses. This version follows CollegeBoard's Course and Exam Description. It was built for a 45-minute class period that meets every day, so the lessons are shorter than our Calculus Version #2. Version #2. . Covers all topics for the AP Calculus AB exam, but was built for a 90-minute class that meets every other day. This ...

  3. PDF AP CALCULUS BC Section 2.1 HOMEWORK SHOW ALL WORK IN YOUR NOTEBOOK 1

    Find the slope of the tangent line at the indicated point. c. Find the equation of the tangent line through the indicated point. 2. 1 + x 2 + x = ) x ( f ( โˆ’ 3 ,4) 3. f ( x ) =. 1 โˆ’ x (5,2) 4. Find the derivative of the following functions using the limit process. Then, sketch the function and its derivative on the axes shown below.

  4. 2.1 A Preview of Calculus

    Learning Objectives. 2.1.1 Describe the tangent problem and how it led to the idea of a derivative.; 2.1.2 Explain how the idea of a limit is involved in solving the tangent problem.; 2.1.3 Recognize a tangent to a curve at a point as the limit of secant lines.; 2.1.4 Identify instantaneous velocity as the limit of average velocity over a small time interval.; 2.1.5 Describe the area problem ...

  5. PDF AP Calculus

    AP Calculus (Mr. Surowski) Homework from Chapter 2 Sept. 5 (2.1): 1-20 (yep, they're all important!) 21-25, 31, 32, 40-42, 51, 52. Sept. 9 (2.2): 1-12, 15, 16, 17-22 (at each vertical asymptote of the functions in #17-22, ๏ฌnd the corresponding one-sided limits. Where the two-sided limits

  6. AB Calculus

    Complete 2.1 AP Style Questions. Videos: Limits Intro; Estimating Limits from Graphs; ... Key Homework 2019-20. Videos: Intro to Velocity and Acceleration; ... 6.4 Fundamental Theorem of Calculus and 6.5 Trapezoid Sum. 6.4 Notes 6.5 Notes. 6.4 Complete Notes 6.5 Complete Notes FTC FRQ Key.

  7. Calculus for the AP Course

    Find step-by-step solutions and answers to Calculus for the AP Course - 9781464142260, as well as thousands of textbooks so you can move forward with confidence. ... Section 2-1: Rates of Change and the Derivative. Section 2-2: The Derivative as a Function. ... AP Practice Exam, Section 2. Page 284: Assess Your Understanding. Page 287: AP ...

  8. AP Calculus AB 2.1-2.2 Quiz Flashcards

    AP Calculus AB 2.1-2.2 Quiz. slope=. Click the card to flip ๐Ÿ‘†. derivative and instantaneous rate of change. Click the card to flip ๐Ÿ‘†. 1 / 16.

  9. PDF AP Calculus

    AP Calculus (Mr. Surowski) Homework from Chapter 2โ€”The Concept of a Limit Lesson 1 (2.1): 1-20, 31, 32, 40-44. Limits For review purposes: ... Lesson 3 (2.2): 1-12, 15, 16, 17-22 (at each vertical asymptote Limits involving of the functions in #17-22, ๏ฌnd the corresponding

  10. 2.1E: Exercises for Section 2.1

    3) Use the value in the preceding exercise to find the equation of the tangent line at point P. Graph f(x) and the tangent line. Answer. For the exercises 4-6, points P(1, 1) and Q(x, y) are on the graph of the function f(x) = x3. 4) [T] Complete the following table with the appropriate values: y -coordinate of Q, the point Q(x, y), and the ...

  11. PDF APPC 2.1 Solutions

    Microsoft Word - APPC 2.1 Solutions. 2.1 Change in Arithmetic and Geometric Sequences. AP Precalculus. Find an equation that gives the. th term of each sequence. Use the initial value. of the sequence in your equation.

  12. 2.1: A Preview of Calculus

    1. Figure 2.1.1 2.1. 1: The rate of change of a linear function is constant in each of these three graphs, with the constant determined by the slope. As we move from left to right along the graph of f(x) = โˆ’2x โˆ’ 3 f ( x) = โˆ’ 2 x โˆ’ 3, we see that the graph decreases at a constant rate.

  13. PDF AP Calculus (BC) AP Calculus (BC) Chapters 2-3: Limits and the Derivative

    Homework for Chapters 2-3 Lesson 1 Limits (2.1): 1-20, 31, 32, 40-44. ... (2.2): 1-12, 15, 16, 17-22 ... 2Exercises like this are actually quite popular among the AP Calculus multiple-choice problems. Homework for Chapters 2-3 cont'd Lesson 7 Differentiation rules

  14. 1.2 Rates of Change

    Support us and buy the AP Pre-Calculus workbook with all the packets in one nice spiral bound book. 1.2.A Compare the rates of change at two points using average rates of change near the points. 1.2.B Describe how two quantities vary together at different points and over different intervals of a function. *APยฎ is a trademark registered and ...

  15. New AP Calculus AB/BC

    This first chapter involves the fundamental calculus elements of limits. While limits are not typically found on the AP test, they are essential in developing and understanding the major concepts of calculus: derivatives & integrals. These notes cover the properties of limits including: how to evaluate limits numerically, algebraically, and ...

  16. Calculus I

    http://CoolMathGuy.com - This is a sample clip from the Calculus I course on CoolMathGuy.com. You may view this entire section for free at CoolMathGuy.com

  17. Answer Key Chapter 2

    This free textbook is an OpenStax resource written to increase student access to high-quality, peer-reviewed learning materials.

  18. AP Calculus AB

    AP Exam Information. Enrolling in AP Calculus comes with the understanding that you will take the AP exam in May. The 2019 test will be given. ๏ปฟ. May 5, 2020. If you do not plan on taking the AP Exam, we must have a conversation about it first. My goal is for each of you to receive credit by passing the AP Exam. That means we strive for a five!!!

  19. AP Precalculus

    Studying AP Precalculus in Advanced Placement? On Studocu you will find 356 assignments, 163 class notes, 85 practice materials and much more for. ... AP Calculus - Derivative Homework Review 2. 2 pages. 2020/2021. None. 2020/2021 None. Save. 1st Semester Final Exam Review; AP Precalc HW 3B.A; Free Response Practice #24 & #23;

  20. Chapter 2.1 Solutions

    Step-by-step solution. Step 1 of 7. Consider the tank holding 1000 gallons of water, and the water drains from the bottom of the tank in half an hour. Consider the table showing the volume V of water remaining in the tank after t minutes; (a) The objective is to find the slopes of the secant line PQ where P is the point on the graph of V and Q ...

  21. AP Calculus

    AP Calculus - Limit and Continuity Homework 8; 1st Semester Final Exam Review; AP Precalc HW 3B.A; Free Response Practice #24 & #23; CH 8 Notes; Chapter 5 Test B Unit Circle Trig 2022-2023; Related documents. Ch2 Test 2022-2023A - Test; Chapter 3 Test D 2022-2023; Chapter 3 Test C 2022-2023;