helpful professor logo

15 Independent and Dependent Variable Examples

15 Independent and Dependent Variable Examples

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

Learn about our Editorial Process

15 Independent and Dependent Variable Examples

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

example of research title with independent and dependent variables

An independent variable (IV) is what is manipulated in a scientific experiment to determine its effect on the dependent variable (DV).

By varying the level of the independent variable and observing associated changes in the dependent variable, a researcher can conclude whether the independent variable affects the dependent variable or not.

This can provide very valuable information when studying just about any subject.

Because the researcher controls the level of the independent variable, it can be determined if the independent variable has a causal effect on the dependent variable.

The term causation is vitally important. Scientists want to know what causes changes in the dependent variable. The only way to do that is to manipulate the independent variable and observe any changes in the dependent variable.

Definition of Independent and Dependent Variables

The independent variable and dependent variable are used in a very specific type of scientific study called the experiment .

Although there are many variations of the experiment, generally speaking, it involves either the presence or absence of the independent variable and the observation of what happens to the dependent variable.

The research participants are randomly assigned to either receive the independent variable (called the treatment condition), or not receive the independent variable (called the control condition).

Other variations of an experiment might include having multiple levels of the independent variable.

If the independent variable affects the dependent variable, then it should be possible to observe changes in the dependent variable based on the presence or absence of the independent variable.  

Of course, there are a lot of issues to consider when conducting an experiment, but these are the basic principles.

These concepts should not be confused with predictor and outcome variables .

Examples of Independent and Dependent Variables

1. gatorade and improved athletic performance.

A sports medicine researcher has been hired by Gatorade to test the effects of its sports drink on athletic performance. The company wants to claim that when an athlete drinks Gatorade, their performance will improve.

If they can back up that claim with hard scientific data, that would be great for sales.

So, the researcher goes to a nearby university and randomly selects both male and female athletes from several sports: track and field, volleyball, basketball, and football. Each athlete will run on a treadmill for one hour while their heart rate is tracked.

All of the athletes are given the exact same amount of liquid to consume 30-minutes before and during their run. Half are given Gatorade, and the other half are given water, but no one knows what they are given because both liquids have been colored.

In this example, the independent variable is Gatorade, and the dependent variable is heart rate.  

2. Chemotherapy and Cancer

A hospital is investigating the effectiveness of a new type of chemotherapy on cancer. The researchers identified 120 patients with relatively similar types of cancerous tumors in both size and stage of progression.

The patients are randomly assigned to one of three groups: one group receives no chemotherapy, one group receives a low dose of chemotherapy, and one group receives a high dose of chemotherapy.

Each group receives chemotherapy treatment three times a week for two months, except for the no-treatment group. At the end of two months, the doctors measure the size of each patient’s tumor.

In this study, despite the ethical issues (remember this is just a hypothetical example), the independent variable is chemotherapy, and the dependent variable is tumor size.

3. Interior Design Color and Eating Rate

A well-known fast-food corporation wants to know if the color of the interior of their restaurants will affect how fast people eat. Of course, they would prefer that consumers enter and exit quickly to increase sales volume and profit.

So, they rent space in a large shopping mall and create three different simulated restaurant interiors of different colors. One room is painted mostly white with red trim and seats; one room is painted mostly white with blue trim and seats; and one room is painted mostly white with off-white trim and seats.

Next, they randomly select shoppers on Saturdays and Sundays to eat for free in one of the three rooms. Each shopper is given a box of the same food and drink items and sent to one of the rooms. The researchers record how much time elapses from the moment they enter the room to the moment they leave.

The independent variable is the color of the room, and the dependent variable is the amount of time spent in the room eating.

4. Hair Color and Attraction

A large multinational cosmetics company wants to know if the color of a woman’s hair affects the level of perceived attractiveness in males. So, they use Photoshop to manipulate the same image of a female by altering the color of her hair: blonde, brunette, red, and brown.

Next, they randomly select university males to enter their testing facilities. Each participant sits in front of a computer screen and responds to questions on a survey. At the end of the survey, the screen shows one of the photos of the female.

At the same time, software on the computer that utilizes the computer’s camera is measuring each male’s pupil dilation. The researchers believe that larger dilation indicates greater perceived attractiveness.

The independent variable is hair color, and the dependent variable is pupil dilation.

5. Mozart and Math

After many claims that listening to Mozart will make you smarter, a group of education specialists decides to put it to the test. So, first, they go to a nearby school in a middle-class neighborhood.

During the first three months of the academic year, they randomly select some 5th-grade classrooms to listen to Mozart during their lessons and exams. Other 5 th grade classrooms will not listen to any music during their lessons and exams.

The researchers then compare the scores of the exams between the two groups of classrooms.

Although there are a lot of obvious limitations to this hypothetical, it is the first step.

The independent variable is Mozart, and the dependent variable is exam scores.

6. Essential Oils and Sleep

A company that specializes in essential oils wants to examine the effects of lavender on sleep quality. They hire a sleep research lab to conduct the study. The researchers at the lab have their usual test volunteers sleep in individual rooms every night for one week.

The conditions of each room are all exactly the same, except that half of the rooms have lavender released into the rooms and half do not. While the study participants are sleeping, their heart rates and amount of time spent in deep sleep are recorded with high-tech equipment.

At the end of the study, the researchers compare the total amount of time spent in deep sleep of the lavender-room participants with the no lavender-room participants.

The independent variable in this sleep study is lavender, and the dependent variable is the total amount of time spent in deep sleep.

7. Teaching Style and Learning

A group of teachers is interested in which teaching method will work best for developing critical thinking skills.

So, they train a group of teachers in three different teaching styles : teacher-centered, where the teacher tells the students all about critical thinking; student-centered, where the students practice critical thinking and receive teacher feedback; and AI-assisted teaching, where the teacher uses a special software program to teach critical thinking.

At the end of three months, all the students take the same test that assesses critical thinking skills. The teachers then compare the scores of each of the three groups of students.

The independent variable is the teaching method, and the dependent variable is performance on the critical thinking test.

8. Concrete Mix and Bridge Strength

A chemicals company has developed three different versions of their concrete mix. Each version contains a different blend of specially developed chemicals. The company wants to know which version is the strongest.

So, they create three bridge molds that are identical in every way. They fill each mold with one of the different concrete mixtures. Next, they test the strength of each bridge by placing progressively more weight on its center until the bridge collapses.

In this study, the independent variable is the concrete mixture, and the dependent variable is the amount of weight at collapse.

9. Recipe and Consumer Preferences

People in the pizza business know that the crust is key. Many companies, large and small, will keep their recipe a top secret. Before rolling out a new type of crust, the company decides to conduct some research on consumer preferences.

The company has prepared three versions of their crust that vary in crunchiness, they are: a little crunchy, very crunchy, and super crunchy. They already have a pool of consumers that fit their customer profile and they often use them for testing.

Each participant sits in a booth and takes a bite of one version of the crust. They then indicate how much they liked it by pressing one of 5 buttons: didn’t like at all, liked, somewhat liked, liked very much, loved it.

The independent variable is the level of crust crunchiness, and the dependent variable is how much it was liked.

10. Protein Supplements and Muscle Mass

A large food company is considering entering the health and nutrition sector. Their R&D food scientists have developed a protein supplement that is designed to help build muscle mass for people that work out regularly.

The company approaches several gyms near its headquarters. They enlist the cooperation of over 120 gym rats that work out 5 days a week. Their muscle mass is measured, and only those with a lower level are selected for the study, leaving a total of 80 study participants.

They randomly assign half of the participants to take the recommended dosage of their supplement every day for three months after each workout. The other half takes the same amount of something that looks the same but actually does nothing to the body.

At the end of three months, the muscle mass of all participants is measured.

The independent variable is the supplement, and the dependent variable is muscle mass.  

11. Air Bags and Skull Fractures

In the early days of airbags , automobile companies conducted a great deal of testing. At first, many people in the industry didn’t think airbags would be effective at all. Fortunately, there was a way to test this theory objectively.

In a representative example: Several crash cars were outfitted with an airbag, and an equal number were not. All crash cars were of the same make, year, and model. Then the crash experts rammed each car into a crash wall at the same speed. Sensors on the crash dummy skulls allowed for a scientific analysis of how much damage a human skull would incur.

The amount of skull damage of dummies in cars with airbags was then compared with those without airbags.

The independent variable was the airbag and the dependent variable was the amount of skull damage.

12. Vitamins and Health

Some people take vitamins every day. A group of health scientists decides to conduct a study to determine if taking vitamins improves health.

They randomly select 1,000 people that are relatively similar in terms of their physical health. The key word here is “similar.”

Because the scientists have an unlimited budget (and because this is a hypothetical example, all of the participants have the same meals delivered to their homes (breakfast, lunch, and dinner), every day for one year.

In addition, the scientists randomly assign half of the participants to take a set of vitamins, supplied by the researchers every day for 1 year. The other half do not take the vitamins.

At the end of one year, the health of all participants is assessed, using blood pressure and cholesterol level as the key measurements.

In this highly unrealistic study, the independent variable is vitamins, and the dependent variable is health, as measured by blood pressure and cholesterol levels.

13. Meditation and Stress

Does practicing meditation reduce stress? If you have ever wondered if this is true or not, then you are in luck because there is a way to know one way or the other.

All we have to do is find 90 people that are similar in age, stress levels, diet and exercise, and as many other factors as we can think of.

Next, we randomly assign each person to either practice meditation every day, three days a week, or not at all. After three months, we measure the stress levels of each person and compare the groups.

How should we measure stress? Well, there are a lot of ways. We could measure blood pressure, or the amount of the stress hormone cortisol in their blood, or by using a paper and pencil measure such as a questionnaire that asks them how much stress they feel.

In this study, the independent variable is meditation and the dependent variable is the amount of stress (however it is measured).

14. Video Games and Aggression

When video games started to become increasingly graphic, it was a huge concern in many countries in the world. Educators, social scientists, and parents were shocked at how graphic games were becoming.

Since then, there have been hundreds of studies conducted by psychologists and other researchers. A lot of those studies used an experimental design that involved males of various ages randomly assigned to play a graphic or non-graphic video game.

Afterward, their level of aggression was measured via a wide range of methods, including direct observations of their behavior, their actions when given the opportunity to be aggressive, or a variety of other measures.

So many studies have used so many different ways of measuring aggression.

In these experimental studies, the independent variable was graphic video games, and the dependent variable was observed level of aggression.

15. Vehicle Exhaust and Cognitive Performance

Car pollution is a concern for a lot of reasons. In addition to being bad for the environment, car exhaust may cause damage to the brain and impair cognitive performance.

One way to examine this possibility would be to conduct an animal study. The research would look something like this: laboratory rats would be raised in three different rooms that varied in the degree of car exhaust circulating in the room: no exhaust, little exhaust, or a lot of exhaust.

After a certain period of time, perhaps several months, the effects on cognitive performance could be measured.

One common way of assessing cognitive performance in laboratory rats is by measuring the amount of time it takes to run a maze successfully. It would also be possible to examine the physical effects of car exhaust on the brain by conducting an autopsy.

In this animal study, the independent variable would be car exhaust and the dependent variable would be amount of time to run a maze.

Read Next: Extraneous Variables Examples

The experiment is an incredibly valuable way to answer scientific questions regarding the cause and effect of certain variables. By manipulating the level of an independent variable and observing corresponding changes in a dependent variable, scientists can gain an understanding of many phenomena.

For example, scientists can learn if graphic video games make people more aggressive, if mediation reduces stress, if Gatorade improves athletic performance, and even if certain medical treatments can cure cancer.

The determination of causality is the key benefit of manipulating the independent variable and them observing changes in the dependent variable. Other research methodologies can reveal factors that are related to the dependent variable or associated with the dependent variable, but only when the independent variable is controlled by the researcher can causality be determined.

Ferguson, C. J. (2010). Blazing Angels or Resident Evil? Can graphic video games be a force for good? Review of General Psychology, 14 (2), 68-81. https://doi.org/10.1037/a0018941

Flannelly, L. T., Flannelly, K. J., & Jankowski, K. R. (2014). Independent, dependent, and other variables in healthcare and chaplaincy research. Journal of Health Care Chaplaincy , 20 (4), 161–170. https://doi.org/10.1080/08854726.2014.959374

Manocha, R., Black, D., Sarris, J., & Stough, C.(2011). A randomized, controlled trial of meditation for work stress, anxiety and depressed mood in full-time workers. Evidence-Based Complementary and Alternative Medicine , vol. 2011, Article ID 960583. https://doi.org/10.1155/2011/960583

Rumrill, P. D., Jr. (2004). Non-manipulation quantitative designs. Work (Reading, Mass.) , 22 (3), 255–260.

Taylor, J. M., & Rowe, B. J. (2012). The “Mozart Effect” and the mathematical connection, Journal of College Reading and Learning, 42 (2), 51-66.  https://doi.org/10.1080/10790195.2012.10850354

Dave

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 23 Achieved Status Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Defense Mechanisms Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Theory of Planned Behavior Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 18 Adaptive Behavior Examples

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 23 Achieved Status Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Ableism Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 25 Defense Mechanisms Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 15 Theory of Planned Behavior Examples

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

example of research title with independent and dependent variables

Research Variables 101

Independent variables, dependent variables, control variables and more

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | January 2023

If you’re new to the world of research, especially scientific research, you’re bound to run into the concept of variables , sooner or later. If you’re feeling a little confused, don’t worry – you’re not the only one! Independent variables, dependent variables, confounding variables – it’s a lot of jargon. In this post, we’ll unpack the terminology surrounding research variables using straightforward language and loads of examples .

Overview: Variables In Research

1. ?
2. variables
3. variables
4. variables

5. variables
6. variables
7. variables
8. variables

What (exactly) is a variable?

The simplest way to understand a variable is as any characteristic or attribute that can experience change or vary over time or context – hence the name “variable”. For example, the dosage of a particular medicine could be classified as a variable, as the amount can vary (i.e., a higher dose or a lower dose). Similarly, gender, age or ethnicity could be considered demographic variables, because each person varies in these respects.

Within research, especially scientific research, variables form the foundation of studies, as researchers are often interested in how one variable impacts another, and the relationships between different variables. For example:

  • How someone’s age impacts their sleep quality
  • How different teaching methods impact learning outcomes
  • How diet impacts weight (gain or loss)

As you can see, variables are often used to explain relationships between different elements and phenomena. In scientific studies, especially experimental studies, the objective is often to understand the causal relationships between variables. In other words, the role of cause and effect between variables. This is achieved by manipulating certain variables while controlling others – and then observing the outcome. But, we’ll get into that a little later…

The “Big 3” Variables

Variables can be a little intimidating for new researchers because there are a wide variety of variables, and oftentimes, there are multiple labels for the same thing. To lay a firm foundation, we’ll first look at the three main types of variables, namely:

  • Independent variables (IV)
  • Dependant variables (DV)
  • Control variables

What is an independent variable?

Simply put, the independent variable is the “ cause ” in the relationship between two (or more) variables. In other words, when the independent variable changes, it has an impact on another variable.

For example:

  • Increasing the dosage of a medication (Variable A) could result in better (or worse) health outcomes for a patient (Variable B)
  • Changing a teaching method (Variable A) could impact the test scores that students earn in a standardised test (Variable B)
  • Varying one’s diet (Variable A) could result in weight loss or gain (Variable B).

It’s useful to know that independent variables can go by a few different names, including, explanatory variables (because they explain an event or outcome) and predictor variables (because they predict the value of another variable). Terminology aside though, the most important takeaway is that independent variables are assumed to be the “cause” in any cause-effect relationship. As you can imagine, these types of variables are of major interest to researchers, as many studies seek to understand the causal factors behind a phenomenon.

Need a helping hand?

example of research title with independent and dependent variables

What is a dependent variable?

While the independent variable is the “ cause ”, the dependent variable is the “ effect ” – or rather, the affected variable . In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable.

Keeping with the previous example, let’s look at some dependent variables in action:

  • Health outcomes (DV) could be impacted by dosage changes of a medication (IV)
  • Students’ scores (DV) could be impacted by teaching methods (IV)
  • Weight gain or loss (DV) could be impacted by diet (IV)

In scientific studies, researchers will typically pay very close attention to the dependent variable (or variables), carefully measuring any changes in response to hypothesised independent variables. This can be tricky in practice, as it’s not always easy to reliably measure specific phenomena or outcomes – or to be certain that the actual cause of the change is in fact the independent variable.

As the adage goes, correlation is not causation . In other words, just because two variables have a relationship doesn’t mean that it’s a causal relationship – they may just happen to vary together. For example, you could find a correlation between the number of people who own a certain brand of car and the number of people who have a certain type of job. Just because the number of people who own that brand of car and the number of people who have that type of job is correlated, it doesn’t mean that owning that brand of car causes someone to have that type of job or vice versa. The correlation could, for example, be caused by another factor such as income level or age group, which would affect both car ownership and job type.

To confidently establish a causal relationship between an independent variable and a dependent variable (i.e., X causes Y), you’ll typically need an experimental design , where you have complete control over the environmen t and the variables of interest. But even so, this doesn’t always translate into the “real world”. Simply put, what happens in the lab sometimes stays in the lab!

As an alternative to pure experimental research, correlational or “ quasi-experimental ” research (where the researcher cannot manipulate or change variables) can be done on a much larger scale more easily, allowing one to understand specific relationships in the real world. These types of studies also assume some causality between independent and dependent variables, but it’s not always clear. So, if you go this route, you need to be cautious in terms of how you describe the impact and causality between variables and be sure to acknowledge any limitations in your own research.

Free Webinar: Research Methodology 101

What is a control variable?

In an experimental design, a control variable (or controlled variable) is a variable that is intentionally held constant to ensure it doesn’t have an influence on any other variables. As a result, this variable remains unchanged throughout the course of the study. In other words, it’s a variable that’s not allowed to vary – tough life 🙂

As we mentioned earlier, one of the major challenges in identifying and measuring causal relationships is that it’s difficult to isolate the impact of variables other than the independent variable. Simply put, there’s always a risk that there are factors beyond the ones you’re specifically looking at that might be impacting the results of your study. So, to minimise the risk of this, researchers will attempt (as best possible) to hold other variables constant . These factors are then considered control variables.

Some examples of variables that you may need to control include:

  • Temperature
  • Time of day
  • Noise or distractions

Which specific variables need to be controlled for will vary tremendously depending on the research project at hand, so there’s no generic list of control variables to consult. As a researcher, you’ll need to think carefully about all the factors that could vary within your research context and then consider how you’ll go about controlling them. A good starting point is to look at previous studies similar to yours and pay close attention to which variables they controlled for.

Of course, you won’t always be able to control every possible variable, and so, in many cases, you’ll just have to acknowledge their potential impact and account for them in the conclusions you draw. Every study has its limitations , so don’t get fixated or discouraged by troublesome variables. Nevertheless, always think carefully about the factors beyond what you’re focusing on – don’t make assumptions!

 A control variable is intentionally held constant (it doesn't vary) to ensure it doesn’t have an influence on any other variables.

Other types of variables

As we mentioned, independent, dependent and control variables are the most common variables you’ll come across in your research, but they’re certainly not the only ones you need to be aware of. Next, we’ll look at a few “secondary” variables that you need to keep in mind as you design your research.

  • Moderating variables
  • Mediating variables
  • Confounding variables
  • Latent variables

Let’s jump into it…

What is a moderating variable?

A moderating variable is a variable that influences the strength or direction of the relationship between an independent variable and a dependent variable. In other words, moderating variables affect how much (or how little) the IV affects the DV, or whether the IV has a positive or negative relationship with the DV (i.e., moves in the same or opposite direction).

For example, in a study about the effects of sleep deprivation on academic performance, gender could be used as a moderating variable to see if there are any differences in how men and women respond to a lack of sleep. In such a case, one may find that gender has an influence on how much students’ scores suffer when they’re deprived of sleep.

It’s important to note that while moderators can have an influence on outcomes , they don’t necessarily cause them ; rather they modify or “moderate” existing relationships between other variables. This means that it’s possible for two different groups with similar characteristics, but different levels of moderation, to experience very different results from the same experiment or study design.

What is a mediating variable?

Mediating variables are often used to explain the relationship between the independent and dependent variable (s). For example, if you were researching the effects of age on job satisfaction, then education level could be considered a mediating variable, as it may explain why older people have higher job satisfaction than younger people – they may have more experience or better qualifications, which lead to greater job satisfaction.

Mediating variables also help researchers understand how different factors interact with each other to influence outcomes. For instance, if you wanted to study the effect of stress on academic performance, then coping strategies might act as a mediating factor by influencing both stress levels and academic performance simultaneously. For example, students who use effective coping strategies might be less stressed but also perform better academically due to their improved mental state.

In addition, mediating variables can provide insight into causal relationships between two variables by helping researchers determine whether changes in one factor directly cause changes in another – or whether there is an indirect relationship between them mediated by some third factor(s). For instance, if you wanted to investigate the impact of parental involvement on student achievement, you would need to consider family dynamics as a potential mediator, since it could influence both parental involvement and student achievement simultaneously.

Mediating variables can explain the relationship between the independent and dependent variable, including whether it's causal or not.

What is a confounding variable?

A confounding variable (also known as a third variable or lurking variable ) is an extraneous factor that can influence the relationship between two variables being studied. Specifically, for a variable to be considered a confounding variable, it needs to meet two criteria:

  • It must be correlated with the independent variable (this can be causal or not)
  • It must have a causal impact on the dependent variable (i.e., influence the DV)

Some common examples of confounding variables include demographic factors such as gender, ethnicity, socioeconomic status, age, education level, and health status. In addition to these, there are also environmental factors to consider. For example, air pollution could confound the impact of the variables of interest in a study investigating health outcomes.

Naturally, it’s important to identify as many confounding variables as possible when conducting your research, as they can heavily distort the results and lead you to draw incorrect conclusions . So, always think carefully about what factors may have a confounding effect on your variables of interest and try to manage these as best you can.

What is a latent variable?

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study. They’re also known as hidden or underlying variables , and what makes them rather tricky is that they can’t be directly observed or measured . Instead, latent variables must be inferred from other observable data points such as responses to surveys or experiments.

For example, in a study of mental health, the variable “resilience” could be considered a latent variable. It can’t be directly measured , but it can be inferred from measures of mental health symptoms, stress, and coping mechanisms. The same applies to a lot of concepts we encounter every day – for example:

  • Emotional intelligence
  • Quality of life
  • Business confidence
  • Ease of use

One way in which we overcome the challenge of measuring the immeasurable is latent variable models (LVMs). An LVM is a type of statistical model that describes a relationship between observed variables and one or more unobserved (latent) variables. These models allow researchers to uncover patterns in their data which may not have been visible before, thanks to their complexity and interrelatedness with other variables. Those patterns can then inform hypotheses about cause-and-effect relationships among those same variables which were previously unknown prior to running the LVM. Powerful stuff, we say!

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study.

Let’s recap

In the world of scientific research, there’s no shortage of variable types, some of which have multiple names and some of which overlap with each other. In this post, we’ve covered some of the popular ones, but remember that this is not an exhaustive list .

To recap, we’ve explored:

  • Independent variables (the “cause”)
  • Dependent variables (the “effect”)
  • Control variables (the variable that’s not allowed to vary)

If you’re still feeling a bit lost and need a helping hand with your research project, check out our 1-on-1 coaching service , where we guide you through each step of the research journey. Also, be sure to check out our free dissertation writing course and our collection of free, fully-editable chapter templates .

example of research title with independent and dependent variables

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

Fiona

Very informative, concise and helpful. Thank you

Ige Samuel Babatunde

Helping information.Thanks

Ancel George

practical and well-demonstrated

Michael

Very helpful and insightful

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Independent and Dependent Variables
  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Definitions

Dependent Variable The variable that depends on other factors that are measured. These variables are expected to change as a result of an experimental manipulation of the independent variable or variables. It is the presumed effect.

Independent Variable The variable that is stable and unaffected by the other variables you are trying to measure. It refers to the condition of an experiment that is systematically manipulated by the investigator. It is the presumed cause.

Cramer, Duncan and Dennis Howitt. The SAGE Dictionary of Statistics . London: SAGE, 2004; Penslar, Robin Levin and Joan P. Porter. Institutional Review Board Guidebook: Introduction . Washington, DC: United States Department of Health and Human Services, 2010; "What are Dependent and Independent Variables?" Graphic Tutorial.

Identifying Dependent and Independent Variables

Don't feel bad if you are confused about what is the dependent variable and what is the independent variable in social and behavioral sciences research . However, it's important that you learn the difference because framing a study using these variables is a common approach to organizing the elements of a social sciences research study in order to discover relevant and meaningful results. Specifically, it is important for these two reasons:

  • You need to understand and be able to evaluate their application in other people's research.
  • You need to apply them correctly in your own research.

A variable in research simply refers to a person, place, thing, or phenomenon that you are trying to measure in some way. The best way to understand the difference between a dependent and independent variable is that the meaning of each is implied by what the words tell us about the variable you are using. You can do this with a simple exercise from the website, Graphic Tutorial. Take the sentence, "The [independent variable] causes a change in [dependent variable] and it is not possible that [dependent variable] could cause a change in [independent variable]." Insert the names of variables you are using in the sentence in the way that makes the most sense. This will help you identify each type of variable. If you're still not sure, consult with your professor before you begin to write.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349;

Structure and Writing Style

The process of examining a research problem in the social and behavioral sciences is often framed around methods of analysis that compare, contrast, correlate, average, or integrate relationships between or among variables . Techniques include associations, sampling, random selection, and blind selection. Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent.

The variables should be outlined in the introduction of your paper and explained in more detail in the methods section . There are no rules about the structure and style for writing about independent or dependent variables but, as with any academic writing, clarity and being succinct is most important.

After you have described the research problem and its significance in relation to prior research, explain why you have chosen to examine the problem using a method of analysis that investigates the relationships between or among independent and dependent variables . State what it is about the research problem that lends itself to this type of analysis. For example, if you are investigating the relationship between corporate environmental sustainability efforts [the independent variable] and dependent variables associated with measuring employee satisfaction at work using a survey instrument, you would first identify each variable and then provide background information about the variables. What is meant by "environmental sustainability"? Are you looking at a particular company [e.g., General Motors] or are you investigating an industry [e.g., the meat packing industry]? Why is employee satisfaction in the workplace important? How does a company make their employees aware of sustainability efforts and why would a company even care that its employees know about these efforts?

Identify each variable for the reader and define each . In the introduction, this information can be presented in a paragraph or two when you describe how you are going to study the research problem. In the methods section, you build on the literature review of prior studies about the research problem to describe in detail background about each variable, breaking each down for measurement and analysis. For example, what activities do you examine that reflect a company's commitment to environmental sustainability? Levels of employee satisfaction can be measured by a survey that asks about things like volunteerism or a desire to stay at the company for a long time.

The structure and writing style of describing the variables and their application to analyzing the research problem should be stated and unpacked in such a way that the reader obtains a clear understanding of the relationships between the variables and why they are important. This is also important so that the study can be replicated in the future using the same variables but applied in a different way.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; “Case Example for Independent and Dependent Variables.” ORI Curriculum Examples. U.S. Department of Health and Human Services, Office of Research Integrity; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349; “Independent Variables and Dependent Variables.” Karl L. Wuensch, Department of Psychology, East Carolina University [posted email exchange]; “Variables.” Elements of Research. Dr. Camille Nebeker, San Diego State University.

  • << Previous: Design Flaws to Avoid
  • Next: Glossary of Research Terms >>
  • Last Updated: Aug 13, 2024 12:57 PM
  • URL: https://libguides.usc.edu/writingguide

Examples of Independent and Dependent Variables

What Are Independent and Dependent Variables?

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Both the independent variable and dependent variable are examined in an experiment using the scientific method , so it's important to know what they are and how to use them.

In a scientific experiment, you'll ultimately be changing or controlling the independent variable and measuring the effect on the dependent variable. This distinction is critical in evaluating and proving hypotheses.

Below you'll find more about these two types of variables, along with examples of each in sample science experiments, and an explanation of how to graph them to help visualize your data.

What Is an Independent Variable?

An independent variable is the condition that you change in an experiment. In other words, it is the variable you control. It is called independent because its value does not depend on and is not affected by the state of any other variable in the experiment. Sometimes you may hear this variable called the "controlled variable" because it is the one that is changed. Do not confuse it with a control variable , which is a variable that is purposely held constant so that it can't affect the outcome of the experiment.

  • What Is a Dependent Variable?

The dependent variable is the condition that you measure in an experiment. You are assessing how it responds to a change in the independent variable, so you can think of it as depending on the independent variable. Sometimes the dependent variable is called the "responding variable."

Independent and Dependent Variable Examples

  • In a study to determine whether the amount of time a student sleeps affects test scores, the independent variable is the amount of time spent sleeping while the dependent variable is the test score.
  • You want to compare brands of paper towels to see which holds the most liquid. The independent variable in your experiment would be the brand of paper towels. The dependent variable would be the amount of liquid absorbed by the paper towel.
  • In an experiment to determine how far people can see into the infrared part of the spectrum, the wavelength of light is the independent variable and whether the light is observed (the response) is the dependent variable.
  • If you want to know whether caffeine affects your appetite, the presence or absence of a given amount of caffeine would be the independent variable. How hungry you are would be the dependent variable.
  • You want to determine whether a chemical is essential for rat nutrition, so you design an experiment. The presence or absence of the chemical is the independent variable. The health of the rat (whether it lives and can reproduce) is the dependent variable. If you determine the substance is necessary for proper nutrition, a follow-up experiment might determine how much of the chemical is needed. Here, the amount of the chemical would be the independent variable, and the rat's health would be the dependent variable.

How Do You Tell Independent and Dependent Variables Apart?

If you are having a hard time identifying which variable is the independent variable and which is the dependent variable, remember the dependent variable is the one affected by a change in the independent variable. If you write out the variables in a sentence that shows cause and effect, the independent variable causes the effect on the dependent variable. If you have the variables in the wrong order, the sentence won't make sense.

Independent variable causes an effect on the dependent variable.

Example : How long you sleep (independent variable) affects your test score (dependent variable).

This makes sense, but:

Example : Your test score affects how long you sleep.

This doesn't really make sense (unless you can't sleep because you are worried you failed a test, but that would be a different experiment).

How to Plot Variables on a Graph

There is a standard method for graphing independent and dependent variables. The x-axis is the independent variable, while the y-axis is the dependent variable. You can use the DRY MIX acronym to help remember how to graph variables:

D  = dependent variable R  = responding variable Y  = graph on the vertical or y-axis

M  = manipulated variable I  = independent variable X  = graph on the horizontal or x-axis

Test your understanding with the scientific method quiz .

Key Takeaways

  • In scientific experiments, the independent variable is manipulated while the dependent variable is measured.
  • The independent variable, controlled by the experimenter, influences the dependent variable, which responds to changes. This dynamic forms the basis of cause-and-effect relationships.
  • Graphing independent and dependent variables follows a standard method in which the independent variable is plotted on the x-axis and the dependent variable on the y-axis.
  • Difference Between Independent and Dependent Variables
  • The Difference Between Control Group and Experimental Group
  • How to Write a Lab Report
  • What Is an Experiment? Definition and Design
  • How To Design a Science Fair Experiment
  • Boiling Points of Ethanol, Methanol, and Isopropyl Alcohol
  • 10 Examples of Heterogeneous and Homogeneous Mixtures
  • The Difference Between Homogeneous and Heterogeneous Mixtures
  • The Difference Between Intensive and Extensive Properties
  • Understanding Experimental Groups
  • Chemical Properties of Matter
  • Examples of Physical Changes
  • Commensalism Definition, Examples, and Relationships
  • Acidic Solution Definition
  • Understanding Endothermic and Exothermic Reactions

Independent and Dependent Variables

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In research, a variable is any characteristic, number, or quantity that can be measured or counted in experimental investigations . One is called the dependent variable, and the other is the independent variable.

In research, the independent variable is manipulated to observe its effect, while the dependent variable is the measured outcome. Essentially, the independent variable is the presumed cause, and the dependent variable is the observed effect.

Variables provide the foundation for examining relationships, drawing conclusions, and making predictions in research studies.

variables2

Independent Variable

In psychology, the independent variable is the variable the experimenter manipulates or changes and is assumed to directly affect the dependent variable.

It’s considered the cause or factor that drives change, allowing psychologists to observe how it influences behavior, emotions, or other dependent variables in an experimental setting. Essentially, it’s the presumed cause in cause-and-effect relationships being studied.

For example, allocating participants to drug or placebo conditions (independent variable) to measure any changes in the intensity of their anxiety (dependent variable).

In a well-designed experimental study , the independent variable is the only important difference between the experimental (e.g., treatment) and control (e.g., placebo) groups.

By changing the independent variable and holding other factors constant, psychologists aim to determine if it causes a change in another variable, called the dependent variable.

For example, in a study investigating the effects of sleep on memory, the amount of sleep (e.g., 4 hours, 8 hours, 12 hours) would be the independent variable, as the researcher might manipulate or categorize it to see its impact on memory recall, which would be the dependent variable.

Dependent Variable

In psychology, the dependent variable is the variable being tested and measured in an experiment and is “dependent” on the independent variable.

In psychology, a dependent variable represents the outcome or results and can change based on the manipulations of the independent variable. Essentially, it’s the presumed effect in a cause-and-effect relationship being studied.

An example of a dependent variable is depression symptoms, which depend on the independent variable (type of therapy).

In an experiment, the researcher looks for the possible effect on the dependent variable that might be caused by changing the independent variable.

For instance, in a study examining the effects of a new study technique on exam performance, the technique would be the independent variable (as it is being introduced or manipulated), while the exam scores would be the dependent variable (as they represent the outcome of interest that’s being measured).

Examples in Research Studies

For example, we might change the type of information (e.g., organized or random) given to participants to see how this might affect the amount of information remembered.

In this example, the type of information is the independent variable (because it changes), and the amount of information remembered is the dependent variable (because this is being measured).

Independent and Dependent Variables Examples

For the following hypotheses, name the IV and the DV.

1. Lack of sleep significantly affects learning in 10-year-old boys.

IV……………………………………………………

DV…………………………………………………..

2. Social class has a significant effect on IQ scores.

DV……………………………………………….…

3. Stressful experiences significantly increase the likelihood of headaches.

4. Time of day has a significant effect on alertness.

Operationalizing Variables

To ensure cause and effect are established, it is important that we identify exactly how the independent and dependent variables will be measured; this is known as operationalizing the variables.

Operational variables (or operationalizing definitions) refer to how you will define and measure a specific variable as it is used in your study. This enables another psychologist to replicate your research and is essential in establishing reliability (achieving consistency in the results).

For example, if we are concerned with the effect of media violence on aggression, then we need to be very clear about what we mean by the different terms. In this case, we must state what we mean by the terms “media violence” and “aggression” as we will study them.

Therefore, you could state that “media violence” is operationally defined (in your experiment) as ‘exposure to a 15-minute film showing scenes of physical assault’; “aggression” is operationally defined as ‘levels of electrical shocks administered to a second ‘participant’ in another room.

In another example, the hypothesis “Young participants will have significantly better memories than older participants” is not operationalized. How do we define “young,” “old,” or “memory”? “Participants aged between 16 – 30 will recall significantly more nouns from a list of twenty than participants aged between 55 – 70” is operationalized.

The key point here is that we have clarified what we mean by the terms as they were studied and measured in our experiment.

If we didn’t do this, it would be very difficult (if not impossible) to compare the findings of different studies to the same behavior.

Operationalization has the advantage of generally providing a clear and objective definition of even complex variables. It also makes it easier for other researchers to replicate a study and check for reliability .

For the following hypotheses, name the IV and the DV and operationalize both variables.

1. Women are more attracted to men without earrings than men with earrings.

I.V._____________________________________________________________

D.V. ____________________________________________________________

Operational definitions:

I.V. ____________________________________________________________

2. People learn more when they study in a quiet versus noisy place.

I.V. _________________________________________________________

D.V. ___________________________________________________________

3. People who exercise regularly sleep better at night.

Can there be more than one independent or dependent variable in a study?

Yes, it is possible to have more than one independent or dependent variable in a study.

In some studies, researchers may want to explore how multiple factors affect the outcome, so they include more than one independent variable.

Similarly, they may measure multiple things to see how they are influenced, resulting in multiple dependent variables. This allows for a more comprehensive understanding of the topic being studied.

What are some ethical considerations related to independent and dependent variables?

Ethical considerations related to independent and dependent variables involve treating participants fairly and protecting their rights.

Researchers must ensure that participants provide informed consent and that their privacy and confidentiality are respected. Additionally, it is important to avoid manipulating independent variables in ways that could cause harm or discomfort to participants.

Researchers should also consider the potential impact of their study on vulnerable populations and ensure that their methods are unbiased and free from discrimination.

Ethical guidelines help ensure that research is conducted responsibly and with respect for the well-being of the participants involved.

Can qualitative data have independent and dependent variables?

Yes, both quantitative and qualitative data can have independent and dependent variables.

In quantitative research, independent variables are usually measured numerically and manipulated to understand their impact on the dependent variable. In qualitative research, independent variables can be qualitative in nature, such as individual experiences, cultural factors, or social contexts, influencing the phenomenon of interest.

The dependent variable, in both cases, is what is being observed or studied to see how it changes in response to the independent variable.

So, regardless of the type of data, researchers analyze the relationship between independent and dependent variables to gain insights into their research questions.

Can the same variable be independent in one study and dependent in another?

Yes, the same variable can be independent in one study and dependent in another.

The classification of a variable as independent or dependent depends on how it is used within a specific study. In one study, a variable might be manipulated or controlled to see its effect on another variable, making it independent.

However, in a different study, that same variable might be the one being measured or observed to understand its relationship with another variable, making it dependent.

The role of a variable as independent or dependent can vary depending on the research question and study design.

Print Friendly, PDF & Email

  • Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Independent and Dependent Variables: Differences & Examples

By Jim Frost 15 Comments

Scientist at work on an experiment consider independent and dependent variables.

In this post, learn the definitions of independent and dependent variables, how to identify each type, how they differ between different types of studies, and see examples of them in use.

What is an Independent Variable?

Independent variables (IVs) are the ones that you include in the model to explain or predict changes in the dependent variable. The name helps you understand their role in statistical analysis. These variables are independent . In this context, independent indicates that they stand alone and other variables in the model do not influence them. The researchers are not seeking to understand what causes the independent variables to change.

Independent variables are also known as predictors, factors , treatment variables, explanatory variables, input variables, x-variables, and right-hand variables—because they appear on the right side of the equals sign in a regression equation. In notation, statisticians commonly denote them using Xs. On graphs, analysts place independent variables on the horizontal, or X, axis.

In machine learning, independent variables are known as features.

For example, in a plant growth study, the independent variables might be soil moisture (continuous) and type of fertilizer (categorical).

Statistical models will estimate effect sizes for the independent variables.

Relate post : Effect Sizes in Statistics

Including independent variables in studies

The nature of independent variables changes based on the type of experiment or study:

Controlled experiments : Researchers systematically control and set the values of the independent variables. In randomized experiments, relationships between independent and dependent variables tend to be causal. The independent variables cause changes in the dependent variable.

Observational studies : Researchers do not set the values of the explanatory variables but instead observe them in their natural environment. When the independent and dependent variables are correlated, those relationships might not be causal.

When you include one independent variable in a regression model, you are performing simple regression. For more than one independent variable, it is multiple regression. Despite the different names, it’s really the same analysis with the same interpretations and assumptions.

Determining which IVs to include in a statistical model is known as model specification. That process involves in-depth research and many subject-area, theoretical, and statistical considerations. At its most basic level, you’ll want to include the predictors you are specifically assessing in your study and confounding variables that will bias your results if you don’t add them—particularly for observational studies.

For more information about choosing independent variables, read my post about Specifying the Correct Regression Model .

Related posts : Randomized Experiments , Observational Studies , Covariates , and Confounding Variables

What is a Dependent Variable?

The dependent variable (DV) is what you want to use the model to explain or predict. The values of this variable depend on other variables. It is the outcome that you’re studying. It’s also known as the response variable, outcome variable, and left-hand variable. Statisticians commonly denote them using a Y. Traditionally, graphs place dependent variables on the vertical, or Y, axis.

For example, in the plant growth study example, a measure of plant growth is the dependent variable. That is the outcome of the experiment, and we want to determine what affects it.

How to Identify Independent and Dependent Variables

If you’re reading a study’s write-up, how do you distinguish independent variables from dependent variables? Here are some tips!

Identifying IVs

How statisticians discuss independent variables changes depending on the field of study and type of experiment.

In randomized experiments, look for the following descriptions to identify the independent variables:

  • Independent variables cause changes in another variable.
  • The researchers control the values of the independent variables. They are controlled or manipulated variables.
  • Experiments often refer to them as factors or experimental factors. In areas such as medicine, they might be risk factors.
  • Treatment and control groups are always independent variables. In this case, the independent variable is a categorical grouping variable that defines the experimental groups to which participants belong. Each group is a level of that variable.

In observational studies, independent variables are a bit different. While the researchers likely want to establish causation, that’s harder to do with this type of study, so they often won’t use the word “cause.” They also don’t set the values of the predictors. Some independent variables are the experiment’s focus, while others help keep the experimental results valid.

Here’s how to recognize independent variables in observational studies:

  • IVs explain the variability, predict, or correlate with changes in the dependent variable.
  • Researchers in observational studies must include confounding variables (i.e., confounders) to keep the statistical results valid even if they are not the primary interest of the study. For example, these might include the participants’ socio-economic status or other background information that the researchers aren’t focused on but can explain some of the dependent variable’s variability.
  • The results are adjusted or controlled for by a variable.

Regardless of the study type, if you see an estimated effect size, it is an independent variable.

Identifying DVs

Dependent variables are the outcome. The IVs explain the variability or causes changes in the DV. Focus on the “depends” aspect. The value of the dependent variable depends on the IVs. If Y depends on X, then Y is the dependent variable. This aspect applies to both randomized experiments and observational studies.

In an observational study about the effects of smoking, the researchers observe the subjects’ smoking status (smoker/non-smoker) and their lung cancer rates. It’s an observational study because they cannot randomly assign subjects to either the smoking or non-smoking group. In this study, the researchers want to know whether lung cancer rates depend on smoking status. Therefore, the lung cancer rate is the dependent variable.

In a randomized COVID-19 vaccine experiment , the researchers randomly assign subjects to the treatment or control group. They want to determine whether COVID-19 infection rates depend on vaccination status. Hence, the infection rate is the DV.

Note that a variable can be an independent variable in one study but a dependent variable in another. It depends on the context.

For example, one study might assess how the amount of exercise (IV) affects health (DV). However, another study might study the factors (IVs) that influence how much someone exercises (DV). The amount of exercise is an independent variable in one study but a dependent variable in the other!

How Analyses Use IVs and DVs

Regression analysis and ANOVA mathematically describe the relationships between each independent variable and the dependent variable. Typically, you want to determine how changes in one or more predictors associate with changes in the dependent variable. These analyses estimate an effect size for each independent variable.

Suppose researchers study the relationship between wattage, several types of filaments, and the output from a light bulb. In this study, light output is the dependent variable because it depends on the other two variables. Wattage (continuous) and filament type (categorical) are the independent variables.

After performing the regression analysis, the researchers will understand the nature of the relationship between these variables. How much does the light output increase on average for each additional watt? Does the mean light output differ by filament types? They will also learn whether these effects are statistically significant.

Related post : When to Use Regression Analysis

Graphing Independent and Dependent Variables

As I mentioned earlier, graphs traditionally display the independent variables on the horizontal X-axis and the dependent variable on the vertical Y-axis. The type of graph depends on the nature of the variables. Here are a couple of examples.

Suppose you experiment to determine whether various teaching methods affect learning outcomes. Teaching method is a categorical predictor that defines the experimental groups. To display this type of data, you can use a boxplot, as shown below.

Example boxplot that illustrates independent and dependent variables.

The groups are along the horizontal axis, while the dependent variable, learning outcomes, is on the vertical. From the graph, method 4 has the best results. A one-way ANOVA will tell you whether these results are statistically significant. Learn more about interpreting boxplots .

Now, imagine that you are studying people’s height and weight. Specifically, do height increases cause weight to increase? Consequently, height is the independent variable on the horizontal axis, and weight is the dependent variable on the vertical axis. You can use a scatterplot to display this type of data.

Example scatterplot that illustrates independent and dependent variables.

It appears that as height increases, weight tends to increase. Regression analysis will tell you if these results are statistically significant. Learn more about interpreting scatterplots .

Share this:

example of research title with independent and dependent variables

Reader Interactions

' src=

April 2, 2024 at 2:05 am

Hi again Jim

Thanks so much for taking an interest in New Zealand’s Equity Index.

Rather than me trying to explain what our Ministry of Education has done, here is a link to a fairly short paper. Scroll down to page 4 of this (if you have the inclination) – https://fyi.org.nz/request/21253/response/80708/attach/4/1301098%20Response%20and%20Appendix.pdf

The Equity Index is used to allocate only 4% of total school funding. The most advantaged 5% of schools get no “equity funding” and the other 95% get a share of the equity funding pool based on their index score. We are talking a maximum of around $1,000NZD per child per year for the most disadvantaged schools. The average amount is around $200-$300 per child per year.

My concern is that I thought the dependent variable is the thing you want to explain or predict using one or more independent variables. Choosing the form of dependent variable that gets a good fit seems to be answering the question “what can we predict well?” rather than “how do we best predict the factor of interest?” The factor is educational achievement and I think this should have been decided upon using theory rather than experimentation with the data.

As it turns out, the Ministry has chosen a measure of educational achievement that puts a heavy weight on achieving an “excellence” rating on a qualification and a much lower weight on simply gaining a qualification. My reading is that they have taken what our universities do when looking at which students to admit.

It doesn’t seem likely to me that a heavy weighting on excellent achievement is appropriate for targeting extra funding to schools with a lot of under-achieving students.

However, my stats knowledge isn’t extensive and it’s definitely rusty, so your thoughts are most helpful.

Regards Kathy Spencer

April 1, 2024 at 4:08 pm

Hi Jim, Great website, thank you.

I have been looking at New Zealand’s Equity Index which is used to allocate a small amount of extra funding to schools attended by children from disadvantaged backgrounds. The Index uses 37 socioeconomic measures relating to a child’s and their parents’ backgrounds that are found to be associated with educational achievement.

I was a bit surprised to read how they had decided on the dependent variable to be used as the measure of educational achievement, or dependent variable. Part of the process was as follows- “Each measure was tested to see the degree to which it could be predicted by the socioeconomic factors selected for the Equity Index.”

Any comment?

Many thanks Kathy Spencer

' src=

April 1, 2024 at 9:20 pm

That’s a very complex study and I don’t know much about it. So, that limits what I can say about it. But I’ll give you a few thoughts that come to mind.

This method is common in educational and social research, particularly when the goal is to understand or mitigate the impact of socioeconomic disparities on educational outcomes.

There are the usual concerns about not confusing correlation with causation. However, because this program seems to quantify barriers and then provide extra funding based on the index, I don’t think that’s a problem. They’re not attempting to adjust the socioeconomic measures so no worries about whether they’re directly causal or not.

I might have a small concern about cherry picking the model that happens to maximize the R-squared. Chasing the R-squared rather than having theory drive model selecting is often problematic. Chasing the best fit increases the likelihood that the model fits this specific dataset best by random chance rather than being truly the best. If so, it won’t perform as well outside the dataset used to fit the model. Hopefully, they validated the predicted ability of the model using other data.

However, I’m not sure if the extra funding is determined by the model? I don’t know if the index value is calculated separately outside the candidate models and then fed into the various models. Or does the choice of model affect how the index value is calculated? If it’s the former, then the funding doesn’t depend on a potentially cherry picked model. If the latter, it does.

So, I’m not really clear on the purpose of the model. I’m guessing they just want to validate their Equity Index. And maximizing the R-squared doesn’t really say it’s the best Index but it does at least show that it likely has some merit. I’d be curious how the took the 37 measures and combined them to one index. So, I have more questions than answers. I don’t mean that in a critical sense. Just that I know almost nothing about this program.

I’m curious, what was the outcome they picked? How high was the R-squared? And what were your concerns?

' src=

February 6, 2024 at 6:57 pm

Excellent explanation, thank you.

February 5, 2024 at 5:04 pm

Thank you for this insightful blog. Is it valid to use a dependent variable delivered from the mean of independent variables in multiple regression if you want to evaluate the influence of each unique independent variable on the dependent variables?

February 5, 2024 at 11:11 pm

It’s difficult to answer your question because I’m not sure what you mean that the DV is “delivered from the mean of IVs.” If you mean that multiple IVs explain changes in the DV’s mean, yes, that’s the standard use for multiple regression.

If you mean something else, please explain in further detail. Thanks!

February 6, 2024 at 6:32 am

What I meant is; the DV values used as parameters for multiple regression is basically calculated as the average of the IVs. For instance:

From 3 IVs (X1, X2, X3), Y is delivered as :

Y = (Sum of all IVs) / (3)

Then the resulting Y is used as the DV along with the initial IVs to compute the multiple regression.

February 6, 2024 at 2:17 pm

There are a couple of reasons why you shouldn’t do that.

For starters, Y-hat (the predicted value of the regression equation) is the mean of the DV given specific values of the IV. However, that mean is calculated by using the regression coefficients and constant in the regression equation. You don’t calculate the DV mean as the sum of the IVs divided by the number of IVs. Perhaps given a very specific subject-area context, using this approach might seem to make sense but there are other problems.

A critical problem is that the Y is now calculated using the IVs. Instead, the DVs should be measured outcomes and not calculated from IVs. This violates regression assumptions and produces questionable results.

Additionally, it complicates the interpretation. Because the DV is calculated from the IV, you know the regression analysis will find a relationship between them. But you have no idea if that relationship exists in the real world. This complication occurs because your results are based on forcing the DV to equal a function of the IVs and do not reflect real-world outcomes.

In short, DVs should be real-world outcomes that you measure! And be sure to keep your IVs and DV independent. Let the regression analysis estimate the regression equation from your data that contains measured DVs. Don’t use a function to force the DV to equal some function of the IVs because that’s the opposite direction of how regression works!

I hope that helps!

' src=

September 6, 2022 at 7:43 pm

Thank you for sharing.

' src=

March 3, 2022 at 1:59 am

Excellent explanation.

' src=

February 13, 2022 at 12:31 pm

Thanks a lot for creating this excellent blog. This is my go-to resource for Statistics.

I had been pondering over a question for sometime, it would be great if you could shed some light on this.

In linear and non-linear regression, should the distribution of independent and dependent variables be unskewed? When is there a need to transform the data (say, Box-Cox transformation), and do we transform the independent variables as well?

' src=

October 28, 2021 at 12:55 pm

If I use a independent variable (X) and it displays a low p-value <.05, why is it if I introduce another independent variable to regression the coefficient and p-value of Y that I used in first regression changes to look insignificant? The second variable that I introduced has a low p-value in regression.

October 29, 2021 at 11:22 pm

Keep in mind that the significance of each IV is calculated after accounting for the variance of all the other variables in the model, assuming you’re using the standard adjusted sums of squares rather than sequential sums of squares. The sums of squares (SS) is a measure of how much dependent variable variability that each IV accounts for. In the illustration below, I’ll assume you’re using the standard of adjusted SS.

So, let’s say that originally you have X1 in the model along with some other IVs. Your model estimates the significance of X1 after assessing the variability that the other IVs account for and finds that X1 is significant. Now, you add X2 to the model in addition to X1 and the other IVs. Now, when assessing X1, the model accounts for the variability of the IVs including the newly added X2. And apparently X2 explains a good portion of the variability. X1 is no longer able to account for that variability, which causes it to not be statistically significant.

In other words, X2 explains some of the variability that X1 previously explained. Because X1 no longer explains it, it is no longer significant.

Additionally, the significance of IVs is more likely to change when you add or remove IVs that are correlated. Correlated IVs is known as multicollinearity. Multicollinearity can be a problem when you have too much. Given the change in significance, I’d check your model for multicollinearity just to be safe! Click the link to read a post that wrote about that!

' src=

September 6, 2021 at 8:35 am

nice explanation

' src=

August 25, 2021 at 3:09 am

it is excellent explanation

Comments and Questions Cancel reply

example of research title with independent and dependent variables

Dependent vs. Independent Variables in Research

example of research title with independent and dependent variables

Introduction

Independent and dependent variables in research, can qualitative data have independent and dependent variables.

Experiments rely on capturing the relationship between independent and dependent variables to understand causal patterns. Researchers can observe what happens when they change a condition in their experiment or if there is any effect at all.

It's important to understand the difference between the independent variable and dependent variable. We'll look at the notion of independent and dependent variables in this article. If you are conducting experimental research, defining the variables in your study is essential for realizing rigorous research .

example of research title with independent and dependent variables

In experimental research, a variable refers to the phenomenon, person, or thing that is being measured and observed by the researcher. A researcher conducts a study to see how one variable affects another and make assertions about the relationship between different variables.

A typical research question in an experimental study addresses a hypothesized relationship between the independent variable manipulated by the researcher and the dependent variable that is the outcome of interest presumably influenced by the researcher's manipulation.

Take a simple experiment on plants as an example. Suppose you have a control group of plants on one side of a garden and an experimental group of plants on the other side. All things such as sunlight, water, and fertilizer being equal, both plants should be expected to grow at the same rate.

Now imagine that the plants in the experimental group are given a new plant fertilizer under the assumption that they will grow faster. Then you will need to measure the difference in growth between the two groups in your study.

In this case, the independent variable is the type of fertilizer used on your plants while the dependent variable is the rate of growth among your plants. If there is a significant difference in growth between the two groups, then your study provides support to suggest that the fertilizer causes higher rates of plant growth.

example of research title with independent and dependent variables

What is the key difference between independent and dependent variables?

The independent variable is the element in your study that you intentionally change, which is why it can also be referred to as the manipulated variable.

You manipulate this variable to see how it might affect the other variables you observe, all other factors being equal. This means that you can observe the cause and effect relationships between one independent variable and one or multiple dependent variables.

Independent variables are directly manipulated by the researcher, while dependent variables are not. They are "dependent" because they are affected by the independent variable in the experiment. Researchers can thus study how manipulating the independent variable leads to changes in the main outcome of interest being measured as the dependent variable.

Note that while you can have multiple dependent variables, it is challenging to establish research rigor for multiple independent variables. If you are making so many changes in an experiment, how do you know which change is responsible for the outcome produced by the study? Studying more than one independent variable would require running an experiment for each independent variable to isolate its effects on the dependent variable.

This being said, it is certainly possible to employ a study design that involves multiple independent and dependent variables, as is the case with what is called a factorial experiment. For example, a psychological study examining the effects of sleep and stress levels on work productivity and social interaction would have two independent variables and two dependent variables, respectively.

Such a study would be complex and require careful planning to establish the necessary research rigor , however. If possible, consider narrowing your research to the examination of one independent variable to make it more manageable and easier to understand.

Independent variable examples

Let's consider an experiment in the social studies. Suppose you want to determine the effectiveness of a new textbook compared to current textbooks in a particular school.

The new textbook is supposed to be better, but how can you prove it? Besides all the selling points that the textbook publisher makes, how do you know if the new textbook is any good? A rigorous study examining the effects of the textbook on classroom outcomes is in order.

The textbook given to students makes up the independent variable in your experimental study. The shift from the existing textbooks to the new one represents the manipulation of the independent variable in this study.

example of research title with independent and dependent variables

Dependent variable examples

In any experiment, the dependent variable is observed to measure how it is affected by changes to the independent variable. Outcomes such as test scores and other performance metrics can make up the data for the dependent variable.

Now that we are changing the textbook in the experiment above, we should examine if there are any effects.

To do this, we will need two classrooms of students. As best as possible, the two sets of students should be of similar proficiency (or at least of similar backgrounds) and placed within similar conditions for teaching and learning (e.g., physical space, lesson planning).

The control group in our study will be one set of students using the existing textbook. By examining their performance, we can establish a baseline. The performance of the experimental group, which is the set of students using the new textbook, can then be compared with the baseline performance.

As a result, the change in the test scores make up the data for our dependent variable. We cannot directly affect how well students perform on the test, but we can conclude from our experiment whether the use of the new textbook might impact students' performance.

example of research title with independent and dependent variables

Turn data into valuable insights with ATLAS.ti

Rely on our powerful data analysis interface for your research, starting with a free trial.

How do you know if a variable is independent or dependent?

We can typically think of an independent variable as something a researcher can directly change. In the above example, we can change the textbook used by the teacher in class. If we're talking about plants, we can change the fertilizer.

Conversely, the dependent variable is something that we do not directly influence or manipulate. Strictly speaking, we cannot directly manipulate a student's performance on a test or the rate of growth of a plant, not without other factors such as new teaching methods or new fertilizer, respectively.

Understanding the distinction between a dependent variable and an independent variable is key to experimental research. Ultimately, the distinction can be reduced to which element in a study has been directly influenced by the researcher.

Other variables

Given the potential complexities encountered in research, there is essential terminology for other variables in any experimental study. You might employ this terminology or encounter them while reading other research.

A control variable is any factor that the researcher tries to keep constant as the independent variable changes. In the plant experiment described earlier in this article, the sunlight and water are each a controlled variable while the type of fertilizer used is the manipulated variable across control and experimental groups.

To ensure research rigor, the researcher needs to keep these control variables constant to dispel any concerns that differences in growth rate were being driven by sunlight or water, as opposed to the fertilizer being used.

example of research title with independent and dependent variables

Extraneous variables refer to any unwanted influence on the dependent variable that may confound the analysis of the study. For example, if bugs or animals ate the plants in your fertilizer study, this was greatly impact the rates of plant growth. This is why it would be important to control the environment and protect it from such threats.

Finally, independent variables can go by different names such as subject variables or predictor variables. Dependent variables can also be referred to as the responding variable or outcome variable. Whatever the language, they all serve the same role of influencing the dependent variable in an experiment.

The use of the word " variables " is typically associated with quantitative and confirmatory research. Naturalistic qualitative research typically does not employ experimental designs or establish causality. Qualitative research often draws on observations , interviews , focus groups , and other forms of data collection that are allow researchers to study the naturally occurring "messiness" of the social world, rather than controlling all variables to isolate a cause-and-effect relationship.

In limited circumstances, the idea of experimental variables can apply to participant observations in ethnography , where the researcher should be mindful of their influence on the environment they are observing.

However, the experimental paradigm is best left to quantitative studies and confirmatory research questions. Qualitative researchers in the social sciences are oftentimes more interested in observing and describing socially-constructed phenomena rather than testing hypotheses .

Nonetheless, the notion of independent and dependent variables does hold important lessons for qualitative researchers. Even if they don't employ variables in their study design, qualitative researchers often observe how one thing affects another. A theoretical or conceptual framework can then suggest potential cause-and-effect relationships in their study.

example of research title with independent and dependent variables

With ATLAS.ti, insightful data analysis is at your fingertips

Download a free trial of ATLAS.ti to see how you can make the most of your data.

example of research title with independent and dependent variables

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Types of Variables in Research & Statistics | Examples

Types of Variables in Research & Statistics | Examples

Published on September 19, 2022 by Rebecca Bevans . Revised on June 21, 2023.

In statistical research , a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good experimental design .

If you want to test whether some plant species are more salt-tolerant than others, some key variables you might measure include the amount of salt you add to the water, the species of plants being studied, and variables related to plant health like growth and wilting .

You need to know which types of variables you are working with in order to choose appropriate statistical tests and interpret the results of your study.

You can usually identify the type of variable by asking two questions:

  • What type of data does the variable contain?
  • What part of the experiment does the variable represent?

Table of contents

Types of data: quantitative vs categorical variables, parts of the experiment: independent vs dependent variables, other common types of variables, other interesting articles, frequently asked questions about variables.

Data is a specific measurement of a variable – it is the value you record in your data sheet. Data is generally divided into two categories:

  • Quantitative data represents amounts
  • Categorical data represents groupings

A variable that contains quantitative data is a quantitative variable ; a variable that contains categorical data is a categorical variable . Each of these types of variables can be broken down into further types.

Quantitative variables

When you collect quantitative data, the numbers you record represent real amounts that can be added, subtracted, divided, etc. There are two types of quantitative variables: discrete and continuous .

Discrete vs continuous variables
Type of variable What does the data represent? Examples
Discrete variables (aka integer variables) Counts of individual items or values.
Continuous variables (aka ratio variables) Measurements of continuous or non-finite values.

Categorical variables

Categorical variables represent groupings of some kind. They are sometimes recorded as numbers, but the numbers represent categories rather than actual amounts of things.

There are three types of categorical variables: binary , nominal , and ordinal variables .

Binary vs nominal vs ordinal variables
Type of variable What does the data represent? Examples
Binary variables (aka dichotomous variables) Yes or no outcomes.
Nominal variables Groups with no rank or order between them.
Ordinal variables Groups that are ranked in a specific order. *

*Note that sometimes a variable can work as more than one type! An ordinal variable can also be used as a quantitative variable if the scale is numeric and doesn’t need to be kept as discrete integers. For example, star ratings on product reviews are ordinal (1 to 5 stars), but the average star rating is quantitative.

Example data sheet

To keep track of your salt-tolerance experiment, you make a data sheet where you record information about the variables in the experiment, like salt addition and plant health.

To gather information about plant responses over time, you can fill out the same data sheet every few days until the end of the experiment. This example sheet is color-coded according to the type of variable: nominal , continuous , ordinal , and binary .

Example data sheet showing types of variables in a plant salt tolerance experiment

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Experiments are usually designed to find out what effect one variable has on another – in our example, the effect of salt addition on plant growth.

You manipulate the independent variable (the one you think might be the cause ) and then measure the dependent variable (the one you think might be the effect ) to find out what this effect might be.

You will probably also have variables that you hold constant ( control variables ) in order to focus on your experimental treatment.

Independent vs dependent vs control variables
Type of variable Definition Example (salt tolerance experiment)
Independent variables (aka treatment variables) Variables you manipulate in order to affect the outcome of an experiment. The amount of salt added to each plant’s water.
Dependent variables (aka ) Variables that represent the outcome of the experiment. Any measurement of plant health and growth: in this case, plant height and wilting.
Control variables Variables that are held constant throughout the experiment. The temperature and light in the room the plants are kept in, and the volume of water given to each plant.

In this experiment, we have one independent and three dependent variables.

The other variables in the sheet can’t be classified as independent or dependent, but they do contain data that you will need in order to interpret your dependent and independent variables.

Example of a data sheet showing dependent and independent variables for a plant salt tolerance experiment.

What about correlational research?

When you do correlational research , the terms “dependent” and “independent” don’t apply, because you are not trying to establish a cause and effect relationship ( causation ).

However, there might be cases where one variable clearly precedes the other (for example, rainfall leads to mud, rather than the other way around). In these cases you may call the preceding variable (i.e., the rainfall) the predictor variable and the following variable (i.e. the mud) the outcome variable .

Once you have defined your independent and dependent variables and determined whether they are categorical or quantitative, you will be able to choose the correct statistical test .

But there are many other ways of describing variables that help with interpreting your results. Some useful types of variables are listed below.

Type of variable Definition Example (salt tolerance experiment)
A variable that hides the true effect of another variable in your experiment. This can happen when another variable is closely related to a variable you are interested in, but you haven’t controlled it in your experiment. Be careful with these, because confounding variables run a high risk of introducing a variety of to your work, particularly . Pot size and soil type might affect plant survival as much or more than salt additions. In an experiment you would control these potential confounders by holding them constant.
Latent variables A variable that can’t be directly measured, but that you represent via a proxy. Salt tolerance in plants cannot be measured directly, but can be inferred from measurements of plant health in our salt-addition experiment.
Composite variables A variable that is made by combining multiple variables in an experiment. These variables are created when you analyze data, not when you measure it. The three plant health variables could be combined into a single plant-health score to make it easier to present your findings.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic

Prevent plagiarism. Run a free check.

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 21). Types of Variables in Research & Statistics | Examples. Scribbr. Retrieved August 12, 2024, from https://www.scribbr.com/methodology/types-of-variables/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, independent vs. dependent variables | definition & examples, confounding variables | definition, examples & controls, control variables | what are they & why do they matter, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

Independent and Dependent Variables: Which Is Which?

author image

General Education

feature_variables.jpg

Independent and dependent variables are important for both math and science. If you don't understand what these two variables are and how they differ, you'll struggle to analyze an experiment or plot equations. Fortunately, we make learning these concepts easy!

In this guide, we break down what independent and dependent variables are , give examples of the variables in actual experiments, explain how to properly graph them, provide a quiz to test your skills, and discuss the one other important variable you need to know.

What Is an Independent Variable? What Is a Dependent Variable?

A variable is something you're trying to measure. It can be practically anything, such as objects, amounts of time, feelings, events, or ideas. If you're studying how people feel about different television shows, the variables in that experiment are television shows and feelings. If you're studying how different types of fertilizer affect how tall plants grow, the variables are type of fertilizer and plant height.

There are two key variables in every experiment: the independent variable and the dependent variable.

Independent variable: What the scientist changes or what changes on its own.

Dependent variable: What is being studied/measured.

The independent variable (sometimes known as the manipulated variable) is the variable whose change isn't affected by any other variable in the experiment. Either the scientist has to change the independent variable herself or it changes on its own; nothing else in the experiment affects or changes it. Two examples of common independent variables are age and time. There's nothing you or anything else can do to speed up or slow down time or increase or decrease age. They're independent of everything else.

The dependent variable (sometimes known as the responding variable) is what is being studied and measured in the experiment. It's what changes as a result of the changes to the independent variable. An example of a dependent variable is how tall you are at different ages. The dependent variable (height) depends on the independent variable (age).

An easy way to think of independent and dependent variables is, when you're conducting an experiment, the independent variable is what you change, and the dependent variable is what changes because of that. You can also think of the independent variable as the cause and the dependent variable as the effect.

It can be a lot easier to understand the differences between these two variables with examples, so let's look at some sample experiments below.

body_change-4.jpg

Examples of Independent and Dependent Variables in Experiments

Below are overviews of three experiments, each with their independent and dependent variables identified.

Experiment 1: You want to figure out which brand of microwave popcorn pops the most kernels so you can get the most value for your money. You test different brands of popcorn to see which bag pops the most popcorn kernels.

  • Independent Variable: Brand of popcorn bag (It's the independent variable because you are actually deciding the popcorn bag brands)
  • Dependent Variable: Number of kernels popped (This is the dependent variable because it's what you measure for each popcorn brand)

Experiment 2 : You want to see which type of fertilizer helps plants grow fastest, so you add a different brand of fertilizer to each plant and see how tall they grow.

  • Independent Variable: Type of fertilizer given to the plant
  • Dependent Variable: Plant height

Experiment 3: You're interested in how rising sea temperatures impact algae life, so you design an experiment that measures the number of algae in a sample of water taken from a specific ocean site under varying temperatures.

  • Independent Variable: Ocean temperature
  • Dependent Variable: The number of algae in the sample

For each of the independent variables above, it's clear that they can't be changed by other variables in the experiment. You have to be the one to change the popcorn and fertilizer brands in Experiments 1 and 2, and the ocean temperature in Experiment 3 cannot be significantly changed by other factors. Changes to each of these independent variables cause the dependent variables to change in the experiments.

Where Do You Put Independent and Dependent Variables on Graphs?

Independent and dependent variables always go on the same places in a graph. This makes it easy for you to quickly see which variable is independent and which is dependent when looking at a graph or chart. The independent variable always goes on the x-axis, or the horizontal axis. The dependent variable goes on the y-axis, or vertical axis.

Here's an example:

body_graph-3.jpg

As you can see, this is a graph showing how the number of hours a student studies affects the score she got on an exam. From the graph, it looks like studying up to six hours helped her raise her score, but as she studied more than that her score dropped slightly.

The amount of time studied is the independent variable, because it's what she changed, so it's on the x-axis. The score she got on the exam is the dependent variable, because it's what changed as a result of the independent variable, and it's on the y-axis. It's common to put the units in parentheses next to the axis titles, which this graph does.

There are different ways to title a graph, but a common way is "[Independent Variable] vs. [Dependent Variable]" like this graph. Using a standard title like that also makes it easy for others to see what your independent and dependent variables are.

Are There Other Important Variables to Know?

Independent and dependent variables are the two most important variables to know and understand when conducting or studying an experiment, but there is one other type of variable that you should be aware of: constant variables.

Constant variables (also known as "constants") are simple to understand: they're what stay the same during the experiment. Most experiments usually only have one independent variable and one dependent variable, but they will all have multiple constant variables.

For example, in Experiment 2 above, some of the constant variables would be the type of plant being grown, the amount of fertilizer each plant is given, the amount of water each plant is given, when each plant is given fertilizer and water, the amount of sunlight the plants receive, the size of the container each plant is grown in, and more. The scientist is changing the type of fertilizer each plant gets which in turn changes how much each plant grows, but every other part of the experiment stays the same.

In experiments, you have to test one independent variable at a time in order to accurately understand how it impacts the dependent variable. Constant variables are important because they ensure that the dependent variable is changing because, and only because, of the independent variable so you can accurately measure the relationship between the dependent and independent variables.

If you didn't have any constant variables, you wouldn't be able to tell if the independent variable was what was really affecting the dependent variable. For example, in the example above, if there were no constants and you used different amounts of water, different types of plants, different amounts of fertilizer and put the plants in windows that got different amounts of sun, you wouldn't be able to say how fertilizer type affected plant growth because there would be so many other factors potentially affecting how the plants grew.

body_plants.jpg

3 Experiments to Help You Understand Independent and Dependent Variables

If you're still having a hard time understanding the relationship between independent and dependent variable, it might help to see them in action. Here are three experiments you can try at home.

Experiment 1: Plant Growth Rates

One simple way to explore independent and dependent variables is to construct a biology experiment with seeds. Try growing some sunflowers and see how different factors affect their growth. For example, say you have ten sunflower seedlings, and you decide to give each a different amount of water each day to see if that affects their growth. The independent variable here would be the amount of water you give the plants, and the dependent variable is how tall the sunflowers grow.

Experiment 2: Chemical Reactions

Explore a wide range of chemical reactions with this chemistry kit . It includes 100+ ideas for experiments—pick one that interests you and analyze what the different variables are in the experiment!

Experiment 3: Simple Machines

Build and test a range of simple and complex machines with this K'nex kit . How does increasing a vehicle's mass affect its velocity? Can you lift more with a fixed or movable pulley? Remember, the independent variable is what you control/change, and the dependent variable is what changes because of that.

Quiz: Test Your Variable Knowledge

Can you identify the independent and dependent variables for each of the four scenarios below? The answers are at the bottom of the guide for you to check your work.

Scenario 1: You buy your dog multiple brands of food to see which one is her favorite.

Scenario 2: Your friends invite you to a party, and you decide to attend, but you're worried that staying out too long will affect how well you do on your geometry test tomorrow morning.

Scenario 3: Your dentist appointment will take 30 minutes from start to finish, but that doesn't include waiting in the lounge before you're called in. The total amount of time you spend in the dentist's office is the amount of time you wait before your appointment, plus the 30 minutes of the actual appointment

Scenario 4: You regularly babysit your little cousin who always throws a tantrum when he's asked to eat his vegetables. Over the course of the week, you ask him to eat vegetables four times.

Summary: Independent vs Dependent Variable

Knowing the independent variable definition and dependent variable definition is key to understanding how experiments work. The independent variable is what you change, and the dependent variable is what changes as a result of that. You can also think of the independent variable as the cause and the dependent variable as the effect.

When graphing these variables, the independent variable should go on the x-axis (the horizontal axis), and the dependent variable goes on the y-axis (vertical axis).

Constant variables are also important to understand. They are what stay the same throughout the experiment so you can accurately measure the impact of the independent variable on the dependent variable.

What's Next?

Independent and dependent variables are commonly taught in high school science classes. Read our guide to learn which science classes high school students should be taking.

Scoring well on standardized tests is an important part of having a strong college application. Check out our guides on the best study tips for the SAT and ACT.

Interested in science? Science Olympiad is a great extracurricular to include on your college applications, and it can help you win big scholarships. Check out our complete guide to winning Science Olympiad competitions.

Quiz Answers

1: Independent: dog food brands; Dependent: how much you dog eats

2: Independent: how long you spend at the party; Dependent: your exam score

3: Independent: Amount of time you spend waiting; Dependent: Total time you're at the dentist (the 30 minutes of appointment time is the constant)

4: Independent: Number of times your cousin is asked to eat vegetables; Dependent: number of tantrums

Want to improve your SAT score by 160 points or your ACT score by 4 points?   We've written a guide for each test about the top 5 strategies you must be using to have a shot at improving your score. Download them for free now:

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Illustration

  • Basics of Research Process
  • Methodology
  • What Are Independent and Dependent Variables: Definition, Difference & Examples
  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Research Paper Topics
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Research Paper Guides
  • Formatting Guides
  • Admission Guides
  • Dissertation & Thesis Guides

What Are Independent and Dependent Variables: Definition, Difference & Examples

Independent and Dependent Variables

Table of contents

Illustration

Use our free Readability checker

Independent variables and dependent variables are two types of variables used in research to understand the link between various factors, phenomena or events. Simply put, they are used to investigate causal relationships.

  • An independent variable is the one that is changed or manipulated by an experimenter.
  • A dependent variable is the one that responds to adjustments in an independent variable.

Effect of Independent Variable on Dependent Variable

Knowing the difference between independent and dependent variables is key to designing successful experiments. In this article, we will explain what independent and dependent variables mean in research, discuss their main peculiarities, and provide examples. Whether you're a student, researcher, or simply interested in learning more about experimental design, this blog from our research paper writing service will provide you with a comprehensive overview of cause-and-effect connection between variables.

Independent Variable vs Dependent Variable

When it comes to research, we can often observe a cause-and-effect connection between variables. The variable that produces the change is called an independent variable and the one that reacts to this change is referred to as a dependent variable. In other words, you will observe how alterations in one factor trigger changes in the other one. So if you maneuver your independent variable in research, the dependent variable will also be affected in some way.

Examples of Independent and Dependent Variables in Research

To illustrate this concept, let's consider dependent and independent variables examples. This will help us understand how these 2 factors interact in an experiment.

Independent Variable vs Dependent Variable Example

Imagine that you are investigating how different scents affect the mood. It’s completely up to you what fragrance to offer, but their self-reported mood scores are something you can only observe as a result of the scent exposure.  In this study, you decide to test five different fragrances: lavender, eucalyptus, citrus, vanilla, and a no scent (for control group ). You will expose Individuals to each scent in separate sessions and  conduct the survey  asking to rate their mood on a scale from 1 to 10. You then analyze  the answers to figure out if there is an association between the scent and the mood scores. In this scenario, the choice of fragrance is the independent variable, as it's a factor you can willingly adjust in the experiment. The self-reported mood scores are the dependent variable, as they represent the outcome you're interested in and depend on the determinant – the specific scent exposure.

What Is an Independent Variable: Definition

An independent variable is the one that is regulated or manipulated by an experimenter. It is also labeled as a predictor variable or explanatory variable, since it explains the effect on a dependent variable. Researchers can control it and manage its levels to isolate its impact on other variables. By scrutinizing occurring changes, researchers can gain insights into the cause-and-effect relationship.

Examples of independent variables in research studies might include the dose of drugs, the type of therapy, or the amount of exposure to a certain stimulus. It's important to note that the independent variable can take many forms, depending on your research question and study design .

Independent Variable Example

For example, if a researcher seeks to explore the effects of different teaching methods on student achievements, an independent variable would be the type of teaching technique (e.g. traditional lectures, inquiry-based teaching, kinesthetic learning).

How to Choose an Independent Variable?

Choosing an independent variable for a research study is a critical step in the experimental design process. Here are some considerations to keep in mind when selecting a predictor variable:

  • Relevance to a research question and study design
  • Presumed cause of observe changes
  • Manipulation or control by researchers
  • Measurability and ability to quantify the data.

>> Learn more: What Is a Controlled Experiment

Types of Independent Variables

While there are different ways to categorize predictors, here are some common types of independent variables used in research studies.

 

Experimental variables are variables that can be intentionally altered or managed. Researchers often use this type of predictor to deliberately manipulate it in order to test whether it has an effect on other variables. Scientists can manipulate experimental independent variables on various levels (e.g., low, medium, high). This allows us to determine whether this factor is responsible for any transformations in dependent variables and to what extent.

In a study examining the effects of a on , an experimental independent variable would be the administered to participants. Researchers would manipulate the dose to see whether it can relieve pain.

(quasi-independent variables)

Subject independent variables cannot be changed and are recorded as they naturally occur. These can be  participant's characteristics or attributes (e.g., age, gender, ethnicity). These characteristics are used to group participants or assess individual preferences. However, it is important to note that subject variables may introduce into a study. 

In an experiment on the impact of on , would be a subject variable. Researchers would record the ages of participants and analyze whether there is any difference in learning outcomes between different age groups.

Categorical variables have categories or groups as their values and cannot be quantified. These categories can be nominal (e.g., gender, race) or ordinal (e.g., education level, income level). Categorical independent variables can be manipulated by assigning participants to different categories or groups, such as treatment group vs. control group or male vs. female.

If you are testing the effects of on , would be a categorical independent variable. You would divide participants into male and female groups and examine whether there is any difference in social media usage between genders.

Continuous independent variables are the factors that can take on any value within a range. They can be measured on a numerical scale and can include decimal points or fractions.  Examples include age, height, and weight. Continuous independent variables can be changed by varying its value, such as extending the duration of an intervention.

If you are studying the influence of on , would be a continuous independent variable. Researchers would set a range for duration (e.g., 20 minutes to 40 minutes) and manipulate this value to investigate its impact on weight.

Dichotomous type of independent variable has only two possible values.  They are typically used to group participants in a study based on a binary characteristic or attribute. Examples include yes/no, true/false, and so on.

A study on the relationship between and may utilize as an independent variable to assess the impact of smoking on the incidence of lung cancer. By appointing participants into either smoker or non-smoker groups, a researcher can examine whether smoking has a causal effect on the development of lung cancer.

What Is a Dependent Variable: Definition?

A dependent variable in research is a factor that is influenced by the independent variable. It's also referred to as an outcome variable, response variable, or effect variable since it's what researchers measure as a result of their experiments. The values of this variable completely stem from the values of independent variables.

To define the causal connection between two factors,  researchers need to collect data from dependent variables and carry out statistical analyses . Data analysis helps to find out if the independent variable produces any effect. If any relation is established, researchers can further estimate the magnitude of influence the independent variable has on the dependent variable. This allows quantifying the strength of causal relationship between the two variables and drawing valid conclusions about causality.

Example of Dependent Variable

In a study investigating the influence of different advertising campaigns on product sales, a dependent variable would be the amount of products sold . This data can then be compared to make sure that various campaigns have different impacts on the sales numbers. If a significant difference is found, it would suggest that advertising campaigns do affect product sales, this will help researchers to draw meaningful conclusions that can be applied in marketing or business.

How to Select a Dependent Variable?

It's important to select the right dependent variable in an experiment to make sure that your study goes smoothly. Here are some things you should keep in mind when choosing your response variable:

  • Relevance to the independent variable
  • Sensitivity to changes in causal factors
  • Measurability and reproducibility
  • Availability of reliable data.

What Is the Difference Between Independent and Dependent Variables?

Understanding the difference between an independent and dependent variable lays the foundation for accurate results and interpretation.

Supposed cause

Supposed effect

Purposely varied or manipulated by researchers

Changes in line with variations in the independent variable

To test its impact on the dependent variable

To measure or observe the effect of the independent variable on the outcome of the study

Usually controlled or selected by the researcher and can have multiple levels or categories

Dependent on the values of the independent variable in an experiment and recorded by the researcher

How to Identify Independent and Dependent Variables?

Identifying the independent and dependent variables is a crucial step in research design, as it helps researchers to understand the potential link.  In this section, we will discuss some strategies for recognizing independent and dependent variables in research.

  • Define your research question(s) The first step is to develop a research question. This will help to clarify which variables are relevant to your study and what relationships are being examined.
  • Consider keywords As you review your research question and study design, pay attention to wording. There might be words related to influence (e.g.  "cause," "affect," "impact," "change") or effect (e.g., "result," "outcome," "correlate," "predict,").
  • Look for causality Identify which variable is being manipulated and which variable is being measured as a result of this manipulation.
  • Conduct analysis Organize and experiment and analyze the data to confirm if any association really exists.

Independent Variable and Dependent Variable in Experiment

Let's explore real-world examples of independent and dependent variables in research studies. These examples will illustrate what  causal links are identified in a variety of experimental contexts.

How does exercise affect heart rate?

Exercise intensity

Heart rate

How does caffeine impact memory recall?

Caffeine consumption

Memory recall

Does exposure to violent media increase aggression in children?

Exposure to violent media

Aggressive behavior in children

Does living in a high-crime neighborhood affect residents' perceptions of safety and trust in their community?

Neighborhood crime rate

Perceptions of safety and trust

How does the concentration of salt affect water density?

Salt concentration

Water density

Does age have an impact on job satisfaction levels?

Age

Job satisfaction levels

How to Visualize an Independent and Dependent Variable on a Graph?

When it comes to handling data in a quantitative study , visualizing cause-and-effect relationships between variables can be helpful. Graphs are a great way to show the influence of an independent variable on a dependent variable over some time or within certain conditions. By plotting the data, researchers can compare different scenarios more easily.

When visualizing the association between your cause and effect, it's important to choose a graph that is appropriate for the type of variables being explored. Here are some guidelines:

2 Continuous independent and dependent variables

An independent variable is plotted on the x-axis, while a dependent variable is plotted on the y-axis. Each data point represents a unique observation, and the placement of the point indicates the value of the independent and dependent variables for that observation.

Categorical independent variable and a continuous dependent variable

The cause is located on the x-axis, and each category is displayed by a separate bar. The height of each bar indicates the mean value of the dependent variable for that category.

Distribution of a continuous dependent variable for different levels of a categorical independent variable

An independent variable is displayed on the x-axis, and each group is represented by an individual box. The height of boxes indicates the interquartile range of your dependent variable for that category, and the whiskers show the range of data.

2 Continuous variables over time

The predictor (usually time) is placed on the x-axis, while the outcome is depicted on the y-axis. Each data point demonstrates a measurement taken at a specific point in time, and the line connecting the points showcases the trend in data over time.

Let’s review this example to see how this works. 

Example of Independent and Dependent Variables on a Graph

Suppose we are conducting a study to determine whether higher education levels influence the income level in the United States. After organizing a cross-sectional survey and gathering data , you will need to put this information on a bar chart. In this case, our independent variable (education level) will fall into 4 categories : high school , bachelor's degree , master's degree , and doctoral degree . On a graph, each category will correspond to the income level on the y-axis.

Independent and Dependent Variables on a Graph

Bottom Line on Independent vs Dependent Variable

It's important to recognize the difference between independent and dependent variables when designing or analyzing experiments. Before collecting any data, you should determine how different factors interact with one another to generate the influence. It's essential that you properly identify a causal link, since this is a foundation of the whole scientific study which guarantees the validity of your research results.

Illustration

Entrust your task to our professional paper writing services . Our team of experts is committed to providing students with high-quality papers completed in a timely manner. Contact us today to get started!

FAQ About Independent and Dependent Variables

1. what are the characteristics of an independent variable.

An independent variable is a type of predictor variable that has the following characteristics:

  • Can be modified or controlled
  • Must have at least 2 levels or values
  • Used to foresee or explain variation in the dependent variable
  • Precedes the dependent variable in time.

2. What are the characteristics of a dependent variable?

A dependent variable is a type of outcome variable that has such features:

  • Can't be altered or controlled
  • Reacts to changes in the independent variable
  • Follows the independent variable in time.

3. Which variable is measured in an experiment?

A dependent variable is what researchers measure as an outcome of an experiment. As a rule of thumb, this is a variable that is of most interest in a research study.

4. Which variable is manipulated in research?

In research, an independent variable is the one that is purposely manipulated or controlled by an experimenter. This is done in order to observe potential variations in a dependent variable.

5. Where does an independent variable go on a graph?

In a graph, an independent variable is typically shown on the x-axis.

6. Where does a dependent variable go on a graph?

A dependent variable is usually shown on the y-axis on a graph. It is typically used to illustrate variation in the data due to changes in the independent variable.

7. Why are independent and dependent variables significant?

Independent and dependent variables are important because they allow researchers to measure the relationship between two or more different factors. Having a clear understanding of how these variables influence one another can be useful in making predictions, and forming educated conclusions about how different phenomena work.

8. Can one variable be independent and dependent at the same time?

It's not typical for a single variable to be both independent and dependent at the same time within the context of a single research study. However, this can only be true if a reciprocal relationship occurs. In this case, two variables are directly linked to each other in such a way that changes in either one cause an immediate reaction in the other. For example, if temperature increases, air pressure decreases and vice versa. Both temperature and air pressure can simultaneously be dependent and independent variables. But usually, you will study one variable as independent and the other one as dependent at a time.

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

Research design

The context in which variables are being studied can influence whether a variable is recognized as a cause or as an effect. For example, in one study, a variable might be independent, while in another study, the same variable might be dependent.

American Psychological Association

Title Page Setup

A title page is required for all APA Style papers. There are both student and professional versions of the title page. Students should use the student version of the title page unless their instructor or institution has requested they use the professional version. APA provides a student title page guide (PDF, 199KB) to assist students in creating their title pages.

Student title page

The student title page includes the paper title, author names (the byline), author affiliation, course number and name for which the paper is being submitted, instructor name, assignment due date, and page number, as shown in this example.

diagram of a student page

Title page setup is covered in the seventh edition APA Style manuals in the Publication Manual Section 2.3 and the Concise Guide Section 1.6

example of research title with independent and dependent variables

Related handouts

  • Student Title Page Guide (PDF, 263KB)
  • Student Paper Setup Guide (PDF, 3MB)

Student papers do not include a running head unless requested by the instructor or institution.

Follow the guidelines described next to format each element of the student title page.

Paper title

Place the title three to four lines down from the top of the title page. Center it and type it in bold font. Capitalize of the title. Place the main title and any subtitle on separate double-spaced lines if desired. There is no maximum length for titles; however, keep titles focused and include key terms.

Author names

Place one double-spaced blank line between the paper title and the author names. Center author names on their own line. If there are two authors, use the word “and” between authors; if there are three or more authors, place a comma between author names and use the word “and” before the final author name.

Cecily J. Sinclair and Adam Gonzaga

Author affiliation

For a student paper, the affiliation is the institution where the student attends school. Include both the name of any department and the name of the college, university, or other institution, separated by a comma. Center the affiliation on the next double-spaced line after the author name(s).

Department of Psychology, University of Georgia

Course number and name

Provide the course number as shown on instructional materials, followed by a colon and the course name. Center the course number and name on the next double-spaced line after the author affiliation.

PSY 201: Introduction to Psychology

Instructor name

Provide the name of the instructor for the course using the format shown on instructional materials. Center the instructor name on the next double-spaced line after the course number and name.

Dr. Rowan J. Estes

Assignment due date

Provide the due date for the assignment. Center the due date on the next double-spaced line after the instructor name. Use the date format commonly used in your country.

October 18, 2020
18 October 2020

Use the page number 1 on the title page. Use the automatic page-numbering function of your word processing program to insert page numbers in the top right corner of the page header.

1

Professional title page

The professional title page includes the paper title, author names (the byline), author affiliation(s), author note, running head, and page number, as shown in the following example.

diagram of a professional title page

Follow the guidelines described next to format each element of the professional title page.

Paper title

Place the title three to four lines down from the top of the title page. Center it and type it in bold font. Capitalize of the title. Place the main title and any subtitle on separate double-spaced lines if desired. There is no maximum length for titles; however, keep titles focused and include key terms.

Author names

 

Place one double-spaced blank line between the paper title and the author names. Center author names on their own line. If there are two authors, use the word “and” between authors; if there are three or more authors, place a comma between author names and use the word “and” before the final author name.

Francesca Humboldt

When different authors have different affiliations, use superscript numerals after author names to connect the names to the appropriate affiliation(s). If all authors have the same affiliation, superscript numerals are not used (see Section 2.3 of the for more on how to set up bylines and affiliations).

Tracy Reuter , Arielle Borovsky , and Casey Lew-Williams

Author affiliation

 

For a professional paper, the affiliation is the institution at which the research was conducted. Include both the name of any department and the name of the college, university, or other institution, separated by a comma. Center the affiliation on the next double-spaced line after the author names; when there are multiple affiliations, center each affiliation on its own line.

 

Department of Nursing, Morrigan University

When different authors have different affiliations, use superscript numerals before affiliations to connect the affiliations to the appropriate author(s). Do not use superscript numerals if all authors share the same affiliations (see Section 2.3 of the for more).

Department of Psychology, Princeton University
Department of Speech, Language, and Hearing Sciences, Purdue University

Author note

Place the author note in the bottom half of the title page. Center and bold the label “Author Note.” Align the paragraphs of the author note to the left. For further information on the contents of the author note, see Section 2.7 of the .

n/a

The running head appears in all-capital letters in the page header of all pages, including the title page. Align the running head to the left margin. Do not use the label “Running head:” before the running head.

Prediction errors support children’s word learning

Use the page number 1 on the title page. Use the automatic page-numbering function of your word processing program to insert page numbers in the top right corner of the page header.

1

IMAGES

  1. How to identify independent and dependent research variables

    example of research title with independent and dependent variables

  2. PPT

    example of research title with independent and dependent variables

  3. Types of Research Variable in Research with Example

    example of research title with independent and dependent variables

  4. INDEPENDENT VARIABLE VS. DEPENDENT VARIABLE (WITH SAMPLE RESEARCH TITLE)

    example of research title with independent and dependent variables

  5. Difference Between Independent and Dependent Variable

    example of research title with independent and dependent variables

  6. List of Independent and Dependent Variables Used for Research (with

    example of research title with independent and dependent variables

COMMENTS

  1. 15 Independent and Dependent Variable Examples (2024)

    An independent variable (IV) is what is manipulated in a scientific experiment to determine its effect on the dependent variable (DV). By varying the level of the independent variable and observing associated changes in the dependent variable, a researcher can conclude whether the independent variable affects the dependent variable or not.

  2. Independent & Dependent Variables (With Examples)

    Learn about the most popular variables in scientific research, including independent, dependent, control, moderating and mediating variables.

  3. Independent vs. Dependent Variables

    The independent variable is the cause. Its value is independent of other variables in your study. The dependent variable is the effect. Its value depends on changes in the independent variable. Example: Independent and dependent variables. You design a study to test whether changes in room temperature have an effect on math test scores.

  4. Independent Variable Vs. Dependent Variable (With Sample Research Title

    INDEPENDENT VARIABLE VS. DEPENDENT VARIABLE (WITH SAMPLE RESEARCH TITLE) Doc Ed Padama 224K subscribers Subscribed 1.1K 62K views 1 year ago #researchwriting #researchtvindia #researchdesign ...more

  5. Independent vs Dependent Variables: Definitions & Examples

    Variables in research and statistics are of different types—independent, dependent, quantitative (discrete or continuous), qualitative (nominal/categorical, ordinal), intervening, moderating, extraneous, confounding, control, and composite. In this article we compare the first two types—independent vs dependent variables.

  6. Independent and Dependent Variables Examples

    Get examples of independent and dependent variables. Learn how to distinguish between the two types of variables and identify them in an experiment.

  7. Independent and Dependent Variables

    Identifying Dependent and Independent Variables Don't feel bad if you are confused about what is the dependent variable and what is the independent variable in social and behavioral sciences research.

  8. Independent and Dependent Variable Examples

    Get the definitions for independent and dependent variables, examples of each type of variable, and an explanation of how to graph them.

  9. Independent and Dependent Variables

    In research, the independent variable is manipulated to observe its effect, while the dependent variable is the measured outcome. Essentially, the independent variable is the presumed cause, and the dependent variable is the observed effect. Variables provide the foundation for examining relationships, drawing conclusions, and making ...

  10. Independent and Dependent Variables, Explained With Examples

    In experiments that test cause and effect, two types of variables come into play. One is an independent variable and the other is a dependent variable, and together they play an integral role in research design.

  11. Independent and Dependent Variables: Differences & Examples

    In this post, learn the definitions of independent and dependent variables, how to identify each type, how they differ between different types of studies, and see examples of them in use.

  12. Research Variables 101: Dependent, Independent, Control ...

    Learn about the most popular types of variables in research, including dependent, independent and control variables - as well as mediating, moderating and confounding variables.

  13. Independent vs. Dependent Variables: What's the Difference?

    A simple explanation of the difference between independent and dependent variables, including several examples of each.

  14. How to Easily Identify Independent and Dependent Variables in Research

    This guide discusses how to identify independent and dependent variables effectively and incorporate their description within the body of a research paper.

  15. Variables in Research

    Compare the independent variable and dependent variable in research. See other types of variables in research, including confounding and extraneous...

  16. Dependent & Independent Variables

    It's important to understand the difference between the independent variable and dependent variable. We'll look at the notion of independent and dependent variables in this article. If you are conducting experimental research, defining the variables in your study is essential for realizing rigorous research.

  17. Types of Variables in Research & Statistics

    Variables can be defined by the type of data (quantitative or categorical) and by the part of the experiment (independent or dependent).

  18. Independent vs. Dependent Variables

    What are examples of independent and dependent variables? Independent variables are typically the primary focus of an experiment and are those which a researcher varies between experimental groups.

  19. Independent and Dependent Variables: Which Is Which?

    Confused about the difference between independent and dependent variables? Learn the dependent and independent variable definitions and how to keep them straight.

  20. Independent Variables (Definition + 43 Examples)

    The independent variable is the catalyst, the initial spark that sets the wheels of research in motion. Dependent Variable. The dependent variable is the outcome we observe and measure. It's the altered flavor of the soup that results from the chef's culinary experiments.

  21. Independent and Dependent Variables

    Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent. The variables should be outlined in the introduction of your paper and explained in more detail in the methods section. There are no ...

  22. Independent and Dependent Variable Examples Across Different

    Reviewing independent and dependent variable examples can be the key to grasping what makes these concepts different. Explore these simple explanations here.

  23. Independent vs Dependent Variables: Definition & Examples

    Learn what independent and dependent variables are and how to identify them in research. Discover differences between two variables and find examples.

  24. Title Page Setup

    The professional title page includes the paper title, author names (the byline), author affiliation(s), author note, running head, and page number, as shown in the following example. Follow the guidelines described next to format each element of the professional title page.