• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Descriptive Research in Psychology

Sometimes you need to dig deeper than the pure statistics

John Loeppky is a freelance journalist based in Regina, Saskatchewan, Canada, who has written about disability and health for outlets of all kinds.

descriptive research methods in psychology

FG Trade / E+/ Getty

Types of Descriptive Research and the Methods Used

  • Advantages & Limitations of Descriptive Research

Best Practices for Conducting Descriptive Research

Descriptive research is one of the key tools needed in any psychology researcher’s toolbox in order to create and lead a project that is both equitable and effective. Because psychology, as a field, loves definitions, let’s start with one. The University of Minnesota’s Introduction to Psychology defines this type of research as one that is “...designed to provide a snapshot of the current state of affairs.” That's pretty broad, so what does that mean in practice? Dr. Heather Derry-Vick (PhD) , an assistant professor in psychiatry at Hackensack Meridian School of Medicine, helps us put it into perspective. "Descriptive research really focuses on defining, understanding, and measuring a phenomenon or an experience," she says. "Not trying to change a person's experience or outcome, or even really looking at the mechanisms for why that might be happening, but more so describing an experience or a process as it unfolds naturally.”

Within the descriptive research methodology there are multiple types, including the following.

Descriptive Survey Research

This involves going beyond a typical tool like a LIkert Scale —where you typically place your response to a prompt on a one to five scale. We already know that scales like this can be ineffective, particularly when studying pain, for example.

When that's the case, using a descriptive methodology can help dig deeper into how a person is thinking, feeling, and acting rather than simply quantifying it in a way that might be unclear or confusing.

Descriptive Observational Research

Think of observational research like an ethically-focused version of people-watching. One example would be watching the patterns of children on a playground—perhaps when looking at a concept like risky play or seeking to observe social behaviors between children of different ages.

Descriptive Case Study Research

A descriptive approach to a case study is akin to a biography of a person, honing in on the experiences of a small group to extrapolate to larger themes. We most commonly see descriptive case studies when those in the psychology field are using past clients as an example to illustrate a point.

Correlational Descriptive Research

While descriptive research is often about the here and now, this form of the methodology allows researchers to make connections between groups of people. As an example from her research, Derry-Vick says she uses this method to identify how gender might play a role in cancer scan anxiety, aka scanxiety.

Dr. Derry-Vick's research uses surveys and interviews to get a sense of how cancer patients are feeling and what they are experiencing both in the course of their treatment and in the lead-up to their next scan, which can be a significant source of stress.

David Marlon, PsyD, MBA , who works as a clinician and as CEO at Vegas Stronger, and whose research focused on leadership styles at community-based clinics, says that using descriptive research allowed him to get beyond the numbers.

In his case, that includes data points like how many unhoused people found stable housing over a certain period or how many people became drug-free—and identify the reasons for those changes.

Those [data points] are some practical, quantitative tools that are helpful. But when I question them on how safe they feel, when I question them on the depth of the bond or the therapeutic alliance, when I talk to them about their processing of traumas,  wellbeing...these are things that don't really fall on to a yes, no, or even on a Likert scale.

For the portion of his thesis that was focused on descriptive research, Marlon used semi-structured interviews to look at the how and the why of transformational leadership and its impact on clinics’ clients and staff.

Advantages & Limitations of Descriptive Research

So, if the advantages of using descriptive research include that it centers the research participants, gives us a clear picture of what is happening to a person in a particular moment,  and gives us very nuanced insights into how a particular situation is being perceived by the very person affected, are there drawbacks? Yes, there are. Dr. Derry-Vick says that it’s important to keep in mind that just because descriptive research tells us something is happening doesn’t mean it necessarily leads us to the resolution of a given problem.

I think that, by design, the descriptive research might not tell you why a phenomenon is happening. So it might tell you, very well, how often it's happening, or what the levels are, or help you understand it in depth. But that may or may not always tell you information about the causes or mechanisms for why something is happening.

Another limitation she identifies is that it also can’t tell you, on its own, whether a particular treatment pathway is having the desired effect.

“Descriptive research in and of itself can't really tell you whether a specific approach is going to be helpful until you take in a different approach to actually test it.”

Marlon, who believes in a multi-disciplinary approach, says that his subfield—addictions—is one where descriptive research had its limits, but helps readers go beyond preconceived notions of what addictions treatment looks and feels like when it is effective. “If we talked to and interviewed and got descriptive information from the clinicians and the clients, a much more precise picture would be painted, showing the need for a client's specific multidisciplinary approach augmented with a variety of modalities," he says. "If you tried to look at my discipline in a pure quantitative approach , it wouldn't begin to tell the real story.”

Because you’re controlling far fewer variables than other forms of research, it’s important to identify whether those you are describing, your study participants, should be informed that they are part of a study.

For example, if you’re observing and describing who is buying what in a grocery store to identify patterns, then you might not need to identify yourself.

However, if you’re asking people about their fear of certain treatment, or how their marginalized identities impact their mental health in a particular way, there is far more of a pressure to think deeply about how you, as the researcher, are connected to the people you are researching.

Many descriptive research projects use interviews as a form of research gathering and, as a result, descriptive research that is focused on this type of data gathering also has ethical and practical concerns attached. Thankfully, there are plenty of guides from established researchers about how to best conduct these interviews and/or formulate surveys .

While descriptive research has its limits, it is commonly used by researchers to get a clear vantage point on what is happening in a given situation.

Tools like surveys, interviews, and observation are often employed to dive deeper into a given issue and really highlight the human element in psychological research. At its core, descriptive research is rooted in a collaborative style that allows deeper insights when used effectively.

University of Minnesota. Introduction to Psychology .

By John Loeppky John Loeppky is a freelance journalist based in Regina, Saskatchewan, Canada, who has written about disability and health for outlets of all kinds.

descriptive research methods in psychology

  • NeuroLaunch

Descriptive Methods in Psychology: Unveiling Research Techniques and Applications

  • Research Methods in Psychology
  • NeuroLaunch editorial team
  • September 15, 2024
  • Leave a Comment

Table of Contents

From the unspoken depths of the human mind to the observable behaviors that shape our world, descriptive methods in psychology unveil the intricate tapestry of the human experience. These methods serve as the bedrock of psychological research, offering a window into the complexities of human behavior, cognition, and emotion. But what exactly are descriptive methods, and why are they so crucial to our understanding of the human psyche?

At its core, descriptive methods in psychology encompass a range of techniques used to systematically observe, document, and analyze human behavior and mental processes. Unlike their experimental counterparts, which manipulate variables to establish cause-and-effect relationships, descriptive methods aim to paint a comprehensive picture of phenomena as they naturally occur.

Imagine, if you will, a curious psychologist perched on a park bench, notebook in hand, observing the ebb and flow of human interactions around them. This scene captures the essence of descriptive research – a meticulous effort to capture the nuances of human behavior in its natural habitat.

The importance of these methods in psychological research cannot be overstated. They provide the foundation upon which theories are built, hypotheses are formed, and interventions are designed. By offering rich, detailed accounts of human experiences, descriptive methods allow researchers to identify patterns, generate new ideas, and formulate questions that drive the field forward.

But how do descriptive methods differ from their experimental cousins? Picture two chefs in a kitchen. The experimental chef carefully measures ingredients, adjusts cooking temperatures, and controls every variable to create a specific dish. The descriptive chef, on the other hand, observes the natural cooking process, taking detailed notes on the ingredients used, the techniques employed, and the resulting flavors – without interfering with the process itself.

Types of Descriptive Methods in Psychology: A Smorgasbord of Techniques

Just as a master chef has a variety of tools at their disposal, psychologists employ a diverse array of descriptive methods to explore the human mind. Let’s take a culinary tour through these techniques, shall we?

First on our menu is the observational method. Like a food critic savoring every bite, researchers using this approach carefully observe and record behavior in natural settings. This could involve watching children interact on a playground, studying facial expressions during conversations, or even observing online behavior in social media interactions.

Next, we have case studies – the psychological equivalent of a deep dive into a single, exquisite dish. These in-depth investigations focus on individual subjects or small groups, providing rich, detailed accounts of unique psychological phenomena. Think of the famous case of Phineas Gage, whose personality dramatically changed after a railroad spike pierced his brain, revolutionizing our understanding of the frontal lobe’s role in personality.

Moving on to surveys and questionnaires, we find ourselves at the buffet of psychological research. These methods allow researchers to gather large amounts of data from diverse populations, offering a broad view of attitudes, beliefs, and behaviors. It’s like asking hundreds of diners about their favorite dishes to understand food preferences on a grand scale.

Archival research, our next course, involves digging into existing records and documents. It’s akin to a food historian poring over ancient cookbooks and menus to understand culinary trends of the past. Psychologists might examine school records, medical files, or historical documents to glean insights into human behavior and societal changes over time.

Last but not least, we have content analysis – the process of systematically analyzing written, spoken, or visual communication. Imagine a culinary critic dissecting food reviews to understand trends in gastronomy. Similarly, psychologists might analyze social media posts, news articles, or therapy transcripts to identify patterns in language use, emotional expression, or cultural attitudes.

Observational Methods: A Closer Look at the Art of Watching

Let’s zoom in on observational methods, shall we? These techniques are the binoculars through which psychologists view the wild safari of human behavior. Observational methods in psychology come in various flavors, each offering a unique perspective on the human experience.

Naturalistic observation is the vanilla ice cream of observational methods – simple, classic, and incredibly versatile. Here, researchers observe behavior in its natural environment without any interference. Picture a psychologist sitting in a busy café, discreetly noting how people interact, their body language, and their coffee-ordering habits. It’s like being a fly on the wall, but with a notepad and a keen eye for detail.

Participant observation, on the other hand, is more like a spicy curry – it requires the researcher to immerse themselves in the environment they’re studying. Imagine an anthropologist living with a remote tribe to understand their customs and beliefs. In psychology, this might involve a researcher joining a support group to study group dynamics or working in a daycare to observe child development up close.

Structured observation is the precise soufflé of observational methods. It involves carefully planned observations with predetermined categories of behavior to record. Think of a researcher in a classroom, ticking boxes on a checklist every time a student raises their hand or speaks out of turn. It’s systematic, it’s organized, and it produces quantifiable data that can be statistically analyzed.

Now, like any good recipe, observational methods have their strengths and weaknesses. On the plus side, they offer a window into real-world behavior, capturing the nuances and complexities that might be lost in a controlled laboratory setting. They’re particularly useful for studying behaviors that would be unethical or impractical to manipulate experimentally.

However, observational methods aren’t without their limitations. Observer bias can creep in, like a sneaky pinch of salt that alters the entire flavor of a dish. Researchers might unconsciously focus on behaviors that confirm their hypotheses, overlooking contradictory evidence. Moreover, the mere presence of an observer can alter behavior – much like how you might eat more politely when dining with your in-laws.

Despite these challenges, observational methods remain a crucial ingredient in the recipe of psychological research. They provide the raw, unfiltered data that forms the basis for theories and hypotheses, serving as a springboard for more focused, experimental studies.

Case Studies: Diving Deep into the Human Psyche

Ah, case studies – the psychological equivalent of a gourmet tasting menu. These in-depth investigations offer a rich, multi-course exploration of individual experiences, providing insights that broader studies might miss. Let’s dig in, shall we?

Single-subject designs focus on one individual, much like a chef crafting a bespoke dish for a discerning patron. These studies involve repeated observations of a single person over time, often used to track the progress of therapy or the effects of a specific intervention. It’s like watching a caterpillar transform into a butterfly, documenting every fascinating stage of the metamorphosis.

Multiple-case designs, on the other hand, are more like a carefully curated flight of wines. They involve studying several individuals or groups, allowing researchers to identify patterns and themes across different cases. This approach can be particularly powerful in fields like clinical psychology, where comparing the experiences of multiple patients can shed light on the nuances of a particular disorder or treatment approach.

The strengths of case studies lie in their ability to provide rich, detailed accounts of psychological phenomena. They’re like high-definition cameras, capturing the subtle expressions and gestures that might be missed in a wide-angle shot. Case studies are particularly valuable for studying rare conditions or unique circumstances that don’t lend themselves to large-scale research.

However, like a delicate soufflé, case studies have their vulnerabilities. The small sample size makes it difficult to generalize findings to broader populations. It’s a bit like trying to understand the entire culinary world based on one exquisite meal. Moreover, researcher bias can creep in, potentially skewing the interpretation of the data.

Despite these limitations, case studies have played a pivotal role in the history of psychology. Who could forget the famous case of “Little Hans,” which shaped Freud’s theories of psychosexual development? Or the tragic story of Phineas Gage, whose personality change after a brain injury revolutionized our understanding of the frontal lobe’s role in personality and decision-making?

These landmark cases serve as a reminder of the power of in-depth, qualitative research in advancing our understanding of the human mind. They’re the secret ingredients that add depth and flavor to the rich stew of psychological knowledge.

Surveys and Questionnaires: Casting a Wide Net in the Sea of Human Experience

Now, let’s turn our attention to surveys and questionnaires – the all-you-can-eat buffet of psychological research methods. These tools allow researchers to gather large amounts of data from diverse populations, offering a broad view of attitudes, beliefs, and behaviors. It’s like conducting a massive taste test to understand the flavor preferences of an entire city.

The survey method in psychology comes in various forms, each designed to elicit different types of information. Closed-ended questions are like multiple-choice menus, offering respondents a set of predefined options to choose from. These are great for gathering quantitative data that can be easily analyzed statistically.

Open-ended questions, on the other hand, are more like asking diners to describe their ideal meal. They allow respondents to answer in their own words, providing rich, qualitative data that can uncover unexpected insights and nuances.

Likert scales, those ubiquitous “strongly disagree” to “strongly agree” options, are the spice rack of surveys. They allow researchers to measure the intensity of attitudes or opinions, adding depth and flavor to the data collected.

The design and administration of surveys is an art in itself. It’s like crafting the perfect menu – you need to consider the order of questions, the wording, and even the visual layout to ensure you’re getting accurate, unbiased responses. Online surveys have revolutionized this process, making it easier than ever to reach large, diverse populations. However, they also bring new challenges, such as ensuring representative samples and dealing with the potential for low response rates.

Analyzing survey data is where the real magic happens. It’s like a master chef tasting and adjusting a complex sauce. Researchers use statistical techniques to identify patterns, correlations, and trends in the data. They might look for relationships between variables, compare responses across different demographic groups, or track changes in attitudes over time.

Survey research in psychology has its strengths and limitations. On the plus side, it allows researchers to gather large amounts of data relatively quickly and inexpensively. It’s particularly useful for studying attitudes, beliefs, and self-reported behaviors that might be difficult to observe directly.

However, surveys rely on self-report, which can be as unreliable as asking someone to accurately recall everything they ate last week. People may not always be honest, may misremember, or may be influenced by social desirability bias – the tendency to give answers that make them look good.

Despite these challenges, surveys and questionnaires remain a staple in the psychological research diet. They provide valuable insights into the thoughts, feelings, and experiences of large populations, helping to paint a broad picture of human psychology.

Applications of Descriptive Methods in Psychology: From the Clinic to the Classroom

Now that we’ve sampled the various flavors of descriptive methods, let’s explore how these techniques are applied across different areas of psychology. It’s like watching a master chef adapt their skills to create dishes for different cuisines.

In clinical psychology, descriptive methods are the bread and butter of diagnosis and treatment. Clinicians use structured interviews and behavioral observations to assess symptoms and track treatment progress. Case studies of individual patients often provide valuable insights into rare disorders or unique treatment approaches. It’s like a medical detective story, piecing together clues to understand and treat complex psychological conditions.

Developmental psychologists use observational methods to study how children grow and change over time. They might observe infants’ reactions to new stimuli, track language development in toddlers, or use longitudinal surveys to follow adolescents’ social and emotional development. It’s like watching a time-lapse video of a plant growing from seed to flower, capturing each stage of development in exquisite detail.

Social psychologists employ a smorgasbord of descriptive methods to study human interaction and group behavior. They might use naturalistic observation to study crowd behavior at sporting events, conduct surveys to measure attitudes towards social issues, or analyze social media content to understand online communication patterns. It’s like being a culinary anthropologist, studying the social rituals and customs around food in different cultures.

In organizational psychology, surveys and questionnaires are the main course. Researchers use these tools to measure employee satisfaction, assess organizational culture, and evaluate the effectiveness of training programs. It’s akin to a restaurant critic sampling dishes from every section of the menu to provide a comprehensive review.

Cross-cultural psychology relies heavily on descriptive methods to understand how cultural factors influence behavior and mental processes. Researchers might use participant observation to immerse themselves in different cultures, conduct surveys to compare attitudes across countries, or analyze cultural artifacts to understand societal values. It’s like exploring a global food market, sampling dishes from around the world to understand the rich diversity of human experience.

Conclusion: The Continuing Feast of Psychological Research

As we come to the end of our culinary tour of descriptive methods in psychology, let’s take a moment to savor the rich flavors we’ve experienced. From the subtle notes of naturalistic observation to the complex bouquet of case studies, from the broad palette of surveys to the deep umami of archival research, these methods form the foundation of our understanding of the human mind and behavior.

The key takeaway? There’s no one-size-fits-all approach in psychological research. Just as a skilled chef chooses their techniques based on the ingredients at hand and the dish they want to create, psychologists must select the most appropriate methods for their research questions. Sometimes, a mixed-methods approach – combining different descriptive techniques or blending descriptive and experimental methods – can provide the most comprehensive understanding of a phenomenon.

Looking to the future, we can expect to see new flavors added to the menu of psychological methods . Advances in technology are opening up exciting possibilities for data collection and analysis. Big data and machine learning algorithms might allow researchers to analyze vast amounts of naturally occurring behavioral data. Virtual reality could provide new ways to conduct controlled observations in realistic settings.

Yet, amidst these innovations, the core principles of descriptive research remain as crucial as ever. The careful observation, detailed documentation, and thoughtful analysis that characterize these methods will continue to be essential ingredients in the recipe of psychological understanding.

As we close this exploration, let’s remember that behind every statistic, every case study, every survey response, there’s a human story. Research methods in psychology are not just dry, academic tools – they’re the means by which we unravel the mysteries of the human experience, one observation at a time.

So, the next time you find yourself people-watching in a café, or pondering the results of a public opinion poll, or engrossed in a documentary about an extraordinary individual, remember – you’re engaging in a form of descriptive research. You’re participating in the grand, ongoing feast of human understanding. Bon appétit!

References:

1. Coolican, H. (2014). Research Methods and Statistics in Psychology. Psychology Press.

2. Creswell, J. W., & Poth, C. N. (2016). Qualitative Inquiry and Research Design: Choosing Among Five Approaches. SAGE Publications.

3. Goodwin, C. J., & Goodwin, K. A. (2016). Research in Psychology: Methods and Design. John Wiley & Sons.

4. Kazdin, A. E. (2011). Single-case research designs: Methods for clinical and applied settings. Oxford University Press.

5. Leedy, P. D., & Ormrod, J. E. (2015). Practical Research: Planning and Design. Pearson.

6. Mehl, M. R., & Conner, T. S. (Eds.). (2012). Handbook of Research Methods for Studying Daily Life. Guilford Press.

7. Mertens, D. M. (2014). Research and Evaluation in Education and Psychology: Integrating Diversity With Quantitative, Qualitative, and Mixed Methods. SAGE Publications.

8. Ritchie, J., Lewis, J., Nicholls, C. M., & Ormston, R. (Eds.). (2013). Qualitative Research Practice: A Guide for Social Science Students and Researchers. SAGE.

9. Shaughnessy, J. J., Zechmeister, E. B., & Zechmeister, J. S. (2014). Research Methods in Psychology. McGraw-Hill Education.

10. Yin, R. K. (2017). Case Study Research and Applications: Design and Methods. SAGE Publications.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

descriptive research methods in psychology

  • Privacy Policy
  • Terms of Service
  • Cookie Policy

About NeuroLaunch

  • Copyright Notice
  • Accessibility Statement
  • Advertise With Us
  • Mental Health

7 Descriptive Research

Psychologists use descriptive, experimental, and correlational methods to conduct research. Descriptive, or qualitative, methods include the case study, naturalistic observation, surveys, archival research, longitudinal research, and cross-sectional research.

Descriptive Research

There are many research methods available to psychologists in their efforts to understand, describe, and explain behavior and the cognitive and biological processes that underlie it. Some methods rely on observational techniques. Other approaches involve interactions between the researcher and the individuals who are being studied—ranging from a series of simple questions to extensive, in-depth interviews—to well-controlled experiments.

The three main categories of psychological research are descriptive, correlational, and experimental research. Research studies that do not test specific relationships between variables are called descriptive, or qualitative, studies . These studies are used to describe general or specific behaviors and attributes that are observed and measured. In the early stages of research it might be difficult to form a hypothesis, especially when there is not any existing literature in the area. In these situations designing an experiment would be premature, as the question of interest is not yet clearly defined as a hypothesis. Often a researcher will begin with a non-experimental approach, such as a descriptive study, to gather more information about the topic before designing an experiment or correlational study to address a specific hypothesis.

Video 1.  Descriptive Research Design  provides explanation and examples for quantitative descriptive research. A closed-captioned version of this video is available here .

Descriptive research is distinct from correlational research , in which psychologists formally test whether a relationship exists between two or more variables. Experimental research goes a step further beyond descriptive and correlational research and randomly assigns people to different conditions, using hypothesis testing to make inferences about how these conditions affect behavior. It aims to determine if one variable directly impacts and causes another. Correlational and experimental research both typically use hypothesis testing, whereas descriptive research does not.

Each of these research methods has unique strengths and weaknesses, and each method may only be appropriate for certain types of research questions. For example, studies that rely primarily on observation produce incredible amounts of information, but the ability to apply this information to the larger population is somewhat limited because of small sample sizes. Survey research, on the other hand, allows researchers to easily collect data from relatively large samples. While this allows for results to be generalized to the larger population more easily, the information that can be collected on any given survey is somewhat limited and subject to problems associated with any type of self-reported data. Some researchers conduct archival research by using existing records. While this can be a fairly inexpensive way to collect data that can provide insight into a number of research questions, researchers using this approach have no control on how or what kind of data was collected.

Correlational research can find a relationship between two variables, but the only way a researcher can claim that the relationship between the variables is cause and effect is to perform an experiment. In experimental research, which will be discussed later in the text, there is a tremendous amount of control over variables of interest. While this is a powerful approach, experiments are often conducted in very artificial settings. This calls into question the validity of experimental findings with regard to how they would apply in real-world settings. In addition, many of the questions that psychologists would like to answer cannot be pursued through experimental research because of ethical concerns.

Data Collection

Regardless of the method of research, data collection will be necessary. The method of data collection selected will primarily depend on the type of information the researcher needs for their study; however, other factors, such as time, resources, and even ethical considerations can influence the selection of a data collection method. All of these factors need to be considered when selecting a data collection method because each method has unique strengths and weaknesses. We will discuss the uses and assessment of the most common data collection methods: observation, surveys, archival data, and tests.

Observation

If you want to understand how behavior occurs, one of the best ways to gain information is to simply observe the behavior in its natural context. However, people might change their behavior in unexpected ways if they know they are being observed. How do researchers obtain accurate information when people tend to hide their natural behavior? As an example, imagine that your professor asks everyone in your class to raise their hand if they always wash their hands after using the restroom. Chances are that almost everyone in the classroom will raise their hand, but do you think hand washing after every trip to the restroom is really that universal?

This is very similar to the phenomenon mentioned earlier in this module: many individuals do not feel comfortable answering a question honestly. But if we are committed to finding out the facts about handwashing, we have other options available to us.

Suppose we send a classmate into the restroom to actually watch whether everyone washes their hands after using the restroom. Will our observer blend into the restroom environment by wearing a white lab coat, sitting with a clipboard, and staring at the sinks? We want our researcher to be inconspicuous—perhaps standing at one of the sinks pretending to put in contact lenses while secretly recording the relevant information. This type of observational study is called naturalistic observation : observing behavior in its natural setting. To better understand peer exclusion, Suzanne Fanger collaborated with colleagues at the University of Texas to observe the behavior of preschool children on a playground. How did the observers remain inconspicuous over the duration of the study? They equipped a few of the children with wireless microphones (which the children quickly forgot about) and observed while taking notes from a distance. Also, the children in that particular preschool (a “laboratory preschool”) were accustomed to having observers on the playground (Fanger, Frankel, & Hazen, 2012).

A photograph shows two police cars driving, one with its lights flashing.

It is critical that the observer be as unobtrusive and as inconspicuous as possible: when people know they are being watched, they are less likely to behave naturally. If you have any doubt about this, ask yourself how your driving behavior might differ in two situations: In the first situation, you are driving down a deserted highway during the middle of the day; in the second situation, you are being followed by a police car down the same deserted highway (Figure 1).

It should be pointed out that naturalistic observation is not limited to research involving humans. Indeed, some of the best-known examples of naturalistic observation involve researchers going into the field to observe various kinds of animals in their own environments. As with human studies, the researchers maintain their distance and avoid interfering with the animal subjects so as not to influence their natural behaviors. Scientists have used this technique to study social hierarchies and interactions among animals ranging from ground squirrels to gorillas. The information provided by these studies is invaluable in understanding how those animals organize socially and communicate with one another. The anthropologist Jane Goodall, for example, spent nearly five decades observing the behavior of chimpanzees in Africa (Figure 2). As an illustration of the types of concerns that a researcher might encounter in naturalistic observation, some scientists criticized Goodall for giving the chimps names instead of referring to them by numbers—using names was thought to undermine the emotional detachment required for the objectivity of the study (McKie, 2010).

(a) A photograph shows Jane Goodall speaking from a lectern. (b) A photograph shows a chimpanzee’s face.

The greatest benefit of naturalistic observation is the validity, or accuracy, of information collected unobtrusively in a natural setting. Having individuals behave as they normally would in a given situation means that we have a higher degree of ecological validity, or realism, than we might achieve with other research approaches. Therefore, our ability to generalize the findings of the research to real-world situations is enhanced. If done correctly, we need not worry about people or animals modifying their behavior simply because they are being observed. Sometimes, people may assume that reality programs give us a glimpse into authentic human behavior. However, the principle of inconspicuous observation is violated as reality stars are followed by camera crews and are interviewed on camera for personal confessionals. Given that environment, we must doubt how natural and realistic their behaviors are.

The major downside of naturalistic observation is that they are often difficult to set up and control. In our restroom study, what if you stood in the restroom all day prepared to record people’s handwashing behavior and no one came in? Or, what if you have been closely observing a troop of gorillas for weeks only to find that they migrated to a new place while you were sleeping in your tent? The benefit of realistic data comes at a cost. As a researcher, you have no control of when (or if) you have behavior to observe. In addition, this type of observational research often requires significant investments of time, money, and a good dose of luck.

Sometimes studies involve structured observation. In these cases, people are observed while engaging in set, specific tasks. An excellent example of structured observation comes from Strange Situation by Mary Ainsworth (you will read more about this in the module on lifespan development). The Strange Situation is a procedure used to evaluate attachment styles that exist between an infant and caregiver. In this scenario, caregivers bring their infants into a room filled with toys. The Strange Situation involves a number of phases, including a stranger coming into the room, the caregiver leaving the room, and the caregiver’s return to the room. The infant’s behavior is closely monitored at each phase, but it is the behavior of the infant upon being reunited with the caregiver that is most telling in terms of characterizing the infant’s attachment style with the caregiver.

Another potential problem in observational research is observer bias . Generally, people who act as observers are closely involved in the research project and may unconsciously skew their observations to fit their research goals or expectations. To protect against this type of bias, researchers should have clear criteria established for the types of behaviors recorded and how those behaviors should be classified. In addition, researchers often compare observations of the same event by multiple observers, in order to test inter-rater reliability : a measure of reliability that assesses the consistency of observations by different observers.

Often, psychologists develop surveys as a means of gathering data. Surveys are lists of questions to be answered by research participants, and can be delivered as paper-and-pencil questionnaires, administered electronically, or conducted verbally (Figure 3). Generally, the survey itself can be completed in a short time, and the ease of administering a survey makes it easy to collect data from a large number of people.

Surveys allow researchers to gather data from larger samples than may be afforded by other research methods . A sample is a subset of individuals selected from a population , which is the overall group of individuals that the researchers are interested in. Researchers study the sample and seek to generalize their findings to the population.

A sample online survey reads, “Dear visitor, your opinion is important to us. We would like to invite you to participate in a short survey to gather your opinions and feedback on your news consumption habits. The survey will take approximately 10-15 minutes. Simply click the “Yes” button below to launch the survey. Would you like to participate?” Two buttons are labeled “yes” and “no.”

There is both strength and weakness of the survey in comparison to case studies. By using surveys, we can collect information from a larger sample of people. A larger sample is better able to reflect the actual diversity of the population, thus allowing better generalizability. Therefore, if our sample is sufficiently large and diverse, we can assume that the data we collect from the survey can be generalized to the larger population with more certainty than the information collected through a case study. However, given the greater number of people involved, we are not able to collect the same depth of information on each person that would be collected in a case study.

Another potential weakness of surveys is something we touched on earlier in this module: people don’t always give accurate responses. They may lie, misremember, or answer questions in a way that they think makes them look good. For example, people may report drinking less alcohol than is actually the case.

Any number of research questions can be answered through the use of surveys. One real-world example is the research conducted by Jenkins, Ruppel, Kizer, Yehl, and Griffin (2012) about the backlash against the US Arab-American community following the terrorist attacks of September 11, 2001. Jenkins and colleagues wanted to determine to what extent these negative attitudes toward Arab-Americans still existed nearly a decade after the attacks occurred. In one study, 140 research participants filled out a survey with 10 questions, including questions asking directly about the participant’s overt prejudicial attitudes toward people of various ethnicities. The survey also asked indirect questions about how likely the participant would be to interact with a person of a given ethnicity in a variety of settings (such as, “How likely do you think it is that you would introduce yourself to a person of Arab-American descent?”). The results of the research suggested that participants were unwilling to report prejudicial attitudes toward any ethnic group. However, there were significant differences between their pattern of responses to questions about social interaction with Arab-Americans compared to other ethnic groups: they indicated less willingness for social interaction with Arab-Americans compared to the other ethnic groups. This suggested that the participants harbored subtle forms of prejudice against Arab-Americans, despite their assertions that this was not the case (Jenkins et al., 2012).

Archival Data and Case Studies

Some researchers gain access to large amounts of data without interacting with a single research participant. Instead, they use existing records to answer various research questions. This type of research approach is known as archival research. Archival research relies on looking at past records or data sets to look for interesting patterns or relationships.

For example, a researcher might access the academic records of all individuals who enrolled in college within the past ten years and calculate how long it took them to complete their degrees, as well as course loads, grades, and extracurricular involvement. Archival research could provide important information about who is most likely to complete their education, and it could help identify important risk factors for struggling students (Figure 4).

(a) A photograph shows stacks of paper files on shelves. (b) A photograph shows a computer.

In comparing archival research to other research methods, there are several important distinctions. For one, the researcher employing archival research never directly interacts with research participants. Therefore, the investment of time and money to collect data is considerably less with archival research. Additionally, researchers have no control over what information was originally collected. Therefore, research questions have to be tailored so they can be answered within the structure of the existing data sets. There is also no guarantee of consistency between the records from one source to another, which might make comparing and contrasting different data sets problematic.

In research, scientists are conducting a clinical or case study when they focus on one person or just a few individuals. Indeed, some scientists spend their entire careers studying just 10–20 individuals. Why would they do this? Obviously, when they focus their attention on a very small number of people, they can gain a tremendous amount of insight into those cases. The richness of information that is collected in clinical or case studies is unmatched by any other single research method. This allows the researcher to have a very deep understanding of the individuals and the particular phenomenon being studied.If clinical or case studies provide so much information, why are they not more frequent among researchers? As it turns out, the major benefit of this particular approach is also a weakness. As mentioned earlier, this approach is often used when studying individuals who are interesting to researchers because they have a rare characteristic. Therefore, the individuals who serve as the focus of case studies are not like most other people. If scientists ultimately want to explain all behavior, focusing attention on such a special group of people can make it difficult to generalize any observations to the larger population as a whole. Generalizing refers to the ability to apply the findings of a particular research project to larger segments of society. Again, case studies provide enormous amounts of information, but since the cases are so specific, the potential to apply what’s learned to the average person may be very limited.

descriptive research methods in psychology

There are various types of tests used in psychological research. Self-report measures are those in which participants report on their own thoughts, feelings, and actions, such as the Rosenberg Self-Esteem Scale or the Big Five Personality Test. Some tests measure performance, ability, aptitude, or skill, like the Stanford-Binet Intelligence Scale or the SATs.There are also tests that measure physiological states, including electrical activity or blood flow in the brain.

Video 2.  Methods of Data Collection  explains various means for gathering data for quantitative and qualitative research. A closed-captioned version of this video is available here .

Studying Changes over Time

Sometimes, especially in developmental research, the researcher is interested in examining changes over time and will need to consider a research design that will capture these changes. Remember,  research methods  are tools that are used to collect information, while r esearch design  is the strategy or blueprint for deciding how to collect and analyze information. Research design dictates which methods are used and how. There are three types of developmental research designs: cross-sectional, longitudinal, and sequential.

Video 3.  Developmental Research Designs

Cross-Sectional Design

The majority of developmental studies use cross-sectional designs because they are less time-consuming and less expensive than other developmental designs.  Cross-sectional research  designs are used to examine behavior in participants of different ages who are tested at the same point in time. Let’s suppose that researchers are interested in the relationship between intelligence and aging. They might have a hypothesis that intelligence declines as people get older. The researchers might choose to give a particular intelligence test to individuals who are 20 years old, individuals who are 50 years old, and individuals who are 80 years old at the same time and compare the data from each age group. This research is cross-sectional in design because the researchers plan to examine the intelligence scores of individuals of different ages within the same study at the same time; they are taking a “cross-section” of people at one point in time. Let’s say that the comparisons find that the 80-year-old adults score lower on the intelligence test than the 50-year-old adults, and the 50-year-old adults score lower on the intelligence test than the 20-year-old adults. Based on these data, the researchers might conclude that individuals become less intelligent as they get older. Would that be a valid (accurate) interpretation of the results?

descriptive research methods in psychology

Figure 5. Example of cross-sectional research design

No, that would not be a valid conclusion because the researchers did not follow individuals as they aged from 20 to 50 to 80 years old. One of the primary limitations of cross-sectional research is that the results yield information about age  differences  not necessarily  changes  over time. That is, although the study described above can show that the 80-year-olds scored lower on the intelligence test than the 50-year-olds, and the 50-year-olds scored lower than the 20-year-olds, the data used for this conclusion were collected from different individuals (or groups). It could be, for instance, that when these 20-year-olds get older, they will still score just as high on the intelligence test as they did at age 20. Similarly, maybe the 80-year-olds would have scored relatively low on the intelligence test when they were young; the researchers don’t know for certain because they did not follow the same individuals as they got older.

With each cohort being members of a different generation, it is also possible that the differences found between the groups are not due to age, per se, but due to cohort effects. Differences between these cohorts’ IQ results could be due to differences in life experiences specific to their generation, such as differences in education, economic conditions, advances in technology, or changes in health and nutrition standards, and not due to age-related changes.

Another disadvantage of cross-sectional research is that it is limited to one time of measurement. Data are collected at one point in time, and it’s possible that something could have happened in that year in history that affected all of the participants, although possibly each cohort may have been affected differently.

Longitudinal Research Design

descriptive research methods in psychology

Longitudinal research designs are used to examine behavior in the same individuals over time. For instance, with our example of studying intelligence and aging, a researcher might conduct a longitudinal study to examine whether 20-year-olds become less intelligent with age over time. To this end, a researcher might give an intelligence test to individuals when they are 20 years old, again when they are 50 years old, and then again when they are 80 years old. This study is longitudinal in nature because the researcher plans to study the same individuals as they age. Based on these data, the pattern of intelligence and age might look different than from the cross-sectional research; it might be found that participants’ intelligence scores are higher at age 50 than at age 20 and then remain stable or decline a little by age 80. How can that be when cross-sectional research revealed declines in intelligence with age?

descriptive research methods in psychology

Figure 6. Example of a longitudinal research design

Since longitudinal research happens over a period of time (which could be short term, as in months, but is often longer, as in years), there is a risk of attrition.  Attrition  occurs when participants fail to complete all portions of a study. Participants may move, change their phone numbers, die, or simply become disinterested in participating over time. Researchers should account for the possibility of attrition by enrolling a larger sample into their study initially, as some participants will likely drop out over time. There is also something known as  selective attrition— this means that certain groups of individuals may tend to drop out. It is often the least healthy, least educated, and lower socioeconomic participants who tend to drop out over time. That means that the remaining participants may no longer be representative of the whole population, as they are, in general, healthier, better educated, and have more money. This could be a factor in why our hypothetical research found a more optimistic picture of intelligence and aging as the years went by. What can researchers do about selective attrition? At each time of testing, they could randomly recruit more participants from the same cohort as the original members to replace those who have dropped out.

The results from longitudinal studies may also be impacted by repeated assessments. Consider how well you would do on a math test if you were given the exact same exam every day for a week. Your performance would likely improve over time, not necessarily because you developed better math abilities, but because you were continuously practicing the same math problems. This phenomenon is known as a practice effect. Practice effects occur when participants become better at a task over time because they have done it again and again (not due to natural psychological development). So our participants may have become familiar with the intelligence test each time (and with the computerized testing administration).

Another limitation of longitudinal research is that the data are limited to only one cohort. As an example, think about how comfortable the participants in the 2010 cohort of 20-year-olds are with computers. Since only one cohort is being studied, there is no way to know if findings would be different from other cohorts. In addition, changes that are found as individuals age over time could be due to age or to time of measurement effects. That is, the participants are tested at different periods in history, so the variables of age and time of measurement could be confounded (mixed up). For example, what if there is a major shift in workplace training and education between 2020 and 2040, and many of the participants experience a lot more formal education in adulthood, which positively impacts their intelligence scores in 2040? Researchers wouldn’t know if the intelligence scores increased due to growing older or due to a more educated workforce over time between measurements.

Sequential Research Design

Sequential research  designs include elements of both longitudinal and cross-sectional research designs. Similar to longitudinal designs, sequential research features participants who are followed over time; similar to cross-sectional designs, sequential research includes participants of different ages. This research design is also distinct from those that have been discussed previously in that individuals of different ages are enrolled into a study at various points in time to examine age-related changes, development within the same individuals as they age, and to account for the possibility of cohort and/or time of measurement effects

Consider, once again, our example of intelligence and aging. In a study with a sequential design, a researcher might recruit three separate groups of participants (Groups A, B, and C). Group A would be recruited when they are 20 years old in 2010 and would be tested again when they are 50 and 80 years old in 2040 and 2070, respectively (similar in design to the longitudinal study described previously). Group B would be recruited when they are 20 years old in 2040 and would be tested again when they are 50 years old in 2070. Group C would be recruited when they are 20 years old in 2070, and so on.

descriptive research methods in psychology

Figure 7. Example of sequential research design

Studies with sequential designs are powerful because they allow for both longitudinal and cross-sectional comparisons—changes and/or stability with age over time can be measured and compared with differences between age and cohort groups. This research design also allows for the examination of cohort and time of measurement effects. For example, the researcher could examine the intelligence scores of 20-year-olds at different times in history and different cohorts (follow the yellow diagonal lines in figure 3). This might be examined by researchers who are interested in sociocultural and historical changes (because we know that lifespan development is multidisciplinary). One way of looking at the usefulness of the various developmental research designs was described by Schaie and Baltes (1975): cross-sectional and longitudinal designs might reveal change patterns while sequential designs might identify developmental origins for the observed change patterns.

Since they include elements of longitudinal and cross-sectional designs, sequential research has many of the same strengths and limitations as these other approaches. For example, sequential work may require less time and effort than longitudinal research (if data are collected more frequently than over the 30-year spans in our example) but more time and effort than cross-sectional research. Although practice effects may be an issue if participants are asked to complete the same tasks or assessments over time, attrition may be less problematic than what is commonly experienced in longitudinal research since participants may not have to remain involved in the study for such a long period of time.

Comparing Developmental Research Designs

When considering the best research design to use in their research, scientists think about their main research question and the best way to come up with an answer. A table of advantages and disadvantages for each of the described research designs is provided here to help you as you consider what sorts of studies would be best conducted using each of these different approaches.

Table 1.  Advantages and disadvantages of different research designs

Candela Citations

  • Introductory content. Provided by : Lumen Learning. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Modification, adaptation, and original content. Provided by : Lumen Learning. License : CC BY-SA: Attribution-ShareAlike
  • Paragraph on correlation. Authored by : Christie Napa Scollon. Provided by : Singapore Management University. Retrieved from : http://nobaproject.com/modules/research-designs?r=MTc0ODYsMjMzNjQ%3D. Project : The Noba Project. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Psychology, Approaches to Research. Authored by : OpenStax College. Retrieved from : http://cnx.org/contents/[email protected]:mfArybye@7/Analyzing-Findings. License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Lec 2 | MIT 9.00SC Introduction to Psychology, Spring 2011. Authored by : John Gabrieli. Provided by : MIT OpenCourseWare. Retrieved from : https://www.youtube.com/watch?v=syXplPKQb_o. License : CC BY-NC-SA: Attribution-NonCommercial-ShareAlike
  • Descriptive Research. Provided by : Boundless. Retrieved from : https://courses.lumenlearning.com/boundless-psychology/. License : CC BY-SA: Attribution-ShareAlike
  • Researchers review documents. Authored by : National Cancer Institute. Provided by : Wikimedia. Retrieved from : https://commons.wikimedia.org/wiki/File:Researchers_review_documents.jpg. License : Public Domain: No Known Copyright

Introduction to Psychology Copyright © by Lumen Learning is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

1.4: Psychologists Use Descriptive, Correlational, and Experimental Research Designs to Understand Behavior

  • Last updated
  • Save as PDF
  • Page ID 40632

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • Differentiate the goals of descriptive, correlational, and experimental research designs and explain the advantages and disadvantages of each.
  • Explain the goals of descriptive research and the statistical techniques used to interpret it.
  • Summarize the uses of correlational research and describe why correlational research cannot be used to infer causality.
  • Review the procedures of experimental research and explain how it can be used to draw causal inferences.

Psychologists agree that if their ideas and theories about human behavior are to be taken seriously, they must be backed up by data. However, the research of different psychologists is designed with different goals in mind, and the different goals require different approaches. These varying approaches, summarized in Table \(\PageIndex{2}\), are known as research designs . A research design is the specific method a researcher uses to collect, analyze, and interpret data . Psychologists use three major types of research designs in their research, and each provides an essential avenue for scientific investigation. Descriptive research is research designed to provide a snapshot of the current state of affairs . Correlational research is research designed to discover relationships among variables and to allow the prediction of future events from present knowledge . Experimental research is research in which initial comparability among research participants in more than one group is created, followed by a manipulation of a given experience for these groups and a measurement of the influence of the manipulation . Each of the three research designs varies according to its strengths and limitations, and it is important to understand how each differs.

Descriptive Research: Assessing the Current State of Affairs

Descriptive research is designed to create a snapshot of the current thoughts, feelings, or behavior of individuals. This section reviews three types of descriptive research: case studies , surveys , and naturalistic observation .

Sometimes the data in a descriptive research project are based on only a small set of individuals, often only one person or a single small group. These research designs are known as case studies— descriptive records of one or more individual’s experiences and behavior . Sometimes case studies involve ordinary individuals, as when developmental psychologist Jean Piaget used his observation of his own children to develop his stage theory of cognitive development. More frequently, case studies are conducted on individuals who have unusual or abnormal experiences or characteristics or who find themselves in particularly difficult or stressful situations. The assumption is that by carefully studying individuals who are socially marginal, who are experiencing unusual situations, or who are going through a difficult phase in their lives, we can learn something about human nature.

Sigmund Freud was a master of using the psychological difficulties of individuals to draw conclusions about basic psychological processes. Freud wrote case studies of some of his most interesting patients and used these careful examinations to develop his important theories of personality. One classic example is Freud’s description of “Little Hans,” a child whose fear of horses the psychoanalyst interpreted in terms of repressed sexual impulses and the Oedipus complex (Freud (1909/1964).

3009105822_b96dc2a9bc_z.jpg

Another well-known case study is Phineas Gage, a man whose thoughts and emotions were extensively studied by cognitive psychologists after a railroad spike was blasted through his skull in an accident. Although there is question about the interpretation of this case study (Kotowicz, 2007), it did provide early evidence that the brain’s frontal lobe is involved in emotion and morality (Damasio et al., 2005). An interesting example of a case study in clinical psychology is described by Rokeach (1964), who investigated in detail the beliefs and interactions among three patients with schizophrenia, all of whom were convinced they were Jesus Christ.

In other cases the data from descriptive research projects come in the form of a survey— a measure administered through either an interview or a written questionnaire to get a picture of the beliefs or behaviors of a sample of people of interest . The people chosen to participate in the research (known as the sample) are selected to be representative of all the people that the researcher wishes to know about (the population). In election polls, for instance, a sample is taken from the population of all “likely voters” in the upcoming elections.

The results of surveys may sometimes be rather mundane, such as “Nine out of ten doctors prefer Tymenocin,” or “The median income in Montgomery County is $36,712.” Yet other times (particularly in discussions of social behavior), the results can be shocking: “More than 40,000 people are killed by gunfire in the United States every year,” or “More than 60% of women between the ages of 50 and 60 suffer from depression.” Descriptive research is frequently used by psychologists to get an estimate of the prevalence (or incidence ) of psychological disorders.

A final type of descriptive research—known as naturalistic observation—is research based on the observation of everyday events . For instance, a developmental psychologist who watches children on a playground and describes what they say to each other while they play is conducting descriptive research, as is a biopsychologist who observes animals in their natural habitats. One example of observational research involves a systematic procedure known as the strange situation , used to get a picture of how adults and young children interact. The data that are collected in the strange situation are systematically coded in a coding sheet such as that shown in Table \(\PageIndex{3}\).

The results of descriptive research projects are analyzed using descriptive statistics— numbers that summarize the distribution of scores on a measured variable . Most variables have distributions similar to that shown in Figure \(\PageIndex{5}\), where most of the scores are located near the center of the distribution, and the distribution is symmetrical and bell-shaped. A data distribution that is shaped like a bell is known as a normal distribution.

A distribution can be described in terms of its central tendency —that is, the point in the distribution around which the data are centered—and its dispersion , or spread. The arithmetic average, or arithmetic mean, is the most commonly used measure of central tendency . It is computed by calculating the sum of all the scores of the variable and dividing this sum by the number of participants in the distribution (denoted by the letter N ). In the data presented in Figure \(\PageIndex{5}\), the mean height of the students is 67.12 inches. The sample mean is usually indicated by the letter M .

ab413c6115eb127a1a39c9d2ead185a1.jpg

In some cases, however, the data distribution is not symmetrical. This occurs when there are one or more extreme scores (known as outliers ) at one end of the distribution. Consider, for instance, the variable of family income (Figure \(\PageIndex{6}\)), which includes an outlier (a value of $3,800,000). In this case the mean is not a good measure of central tendency. Although it appears from Figure \(\PageIndex{6}\) that the central tendency of the family income variable should be around $70,000, the mean family income is actually $223,960. The single very extreme income has a disproportionate impact on the mean, resulting in a value that does not well represent the central tendency.

The median is used as an alternative measure of central tendency when distributions are not symmetrical. The median is the score in the center of the distribution, meaning that 50% of the scores are greater than the median and 50% of the scores are less than the median . In our case, the median household income ($73,000) is a much better indication of central tendency than is the mean household income ($223,960).

b8212ba31f9f7f0c8b9a84f41278e261.jpg

A final measure of central tendency, known as the mode, represents the value that occurs most frequently in the distribution . You can see from Figure \(\PageIndex{6}\) that the mode for the family income variable is $93,000 (it occurs four times).

In addition to summarizing the central tendency of a distribution, descriptive statistics convey information about how the scores of the variable are spread around the central tendency. Dispersion refers to the extent to which the scores are all tightly clustered around the central tendency, like this:

ef86c2367b52d7d44600852d0e9a4147.jpg

Or they may be more spread out away from it, like this:

a32be157e342fd87849eef399b8b0dfa.jpg

One simple measure of dispersion is to find the largest (the maximum ) and the smallest (the minimum ) observed values of the variable and to compute the range of the variable as the maximum observed score minus the minimum observed score. You can check that the range of the height variable in Figure \(\PageIndex{5}\) is 72 – 62 = 10. The standard deviation, symbolized as s , is the most commonly used measure of dispersion . Distributions with a larger standard deviation have more spread. The standard deviation of the height variable is s = 2.74, and the standard deviation of the family income variable is s = $745,337.

An advantage of descriptive research is that it attempts to capture the complexity of everyday behavior. Case studies provide detailed information about a single person or a small group of people, surveys capture the thoughts or reported behaviors of a large population of people, and naturalistic observation objectively records the behavior of people or animals as it occurs naturally. Thus descriptive research is used to provide a relatively complete understanding of what is currently happening.

Despite these advantages, descriptive research has a distinct disadvantage in that, although it allows us to get an idea of what is currently happening, it is usually limited to static pictures. Although descriptions of particular experiences may be interesting, they are not always transferable to other individuals in other situations, nor do they tell us exactly why specific behaviors or events occurred. For instance, descriptions of individuals who have suffered a stressful event, such as a war or an earthquake, can be used to understand the individuals’ reactions to the event but cannot tell us anything about the long-term effects of the stress. And because there is no comparison group that did not experience the stressful situation, we cannot know what these individuals would be like if they hadn’t had the stressful experience.

Correlational Research: Seeking Relationships Among Variables

In contrast to descriptive research, which is designed primarily to provide static pictures, correlational research involves the measurement of two or more relevant variables and an assessment of the relationship between or among those variables. For instance, the variables of height and weight are systematically related (correlated) because taller people generally weigh more than shorter people. In the same way, study time and memory errors are also related, because the more time a person is given to study a list of words, the fewer errors he or she will make. 

One way of organizing the data from a correlational study with two variables is to graph the values of each of the measured variables using a scatter plot . As you can see in Figure \(\PageIndex{10}\), a scatter plot is a visual image of the relationship between two variables . A point is plotted for each individual at the intersection of his or her scores for the two variables. When the association between the variables on the scatter plot can be easily approximated with a straight line, as in parts (a) and (b) of Figure \(\PageIndex{10}\), the variables are said to have a linear relationship .

When the straight line indicates that individuals who have above-average values for one variable also tend to have above-average values for the other variable, as in part (a), the relationship is said to be positive linear . Examples of positive linear relationships include those between height and weight, between education and income, and between age and mathematical abilities in children. In each case people who score higher on one of the variables also tend to score higher on the other variable. Negative linear relationships , in contrast, as shown in part (b), occur when above-average values for one variable tend to be associated with below-average values for the other variable. Examples of negative linear relationships include those between the age of a child and the number of diapers the child uses, and between practice on and errors made on a learning task. In these cases people who score higher on one of the variables tend to score lower on the other variable.

Relationships between variables that cannot be described with a straight line are known as nonlinear relationships . Part (c) of Figure \(\PageIndex{10}\) shows a common pattern in which the distribution of the points is essentially random. In this case there is no relationship at all between the two variables, and they are said to be independent . Parts (d) and (e) of Figure \(\PageIndex{10}\) show patterns of association in which, although there is an association, the points are not well described by a single straight line. For instance, part (d) shows the type of relationship that frequently occurs between anxiety and performance. Increases in anxiety from low to moderate levels are associated with performance increases, whereas increases in anxiety from moderate to high levels are associated with decreases in performance. Relationships that change in direction and thus are not described by a single straight line are called curvilinear relationships .

7d02dd43cd07dbf3c306b04414fc33a5.jpg

The most common statistical measure of the strength of linear relationships among variables is the Pearson correlation coefficient , which is symbolized by the letter r . The value of the correlation coefficient ranges from r = –1.00 to r = +1.00. The direction of the linear relationship is indicated by the sign of the correlation coefficient. Positive values of r (such as r = 0.54 or r = 0.67) indicate that the relationship is positive linear (i.e., the pattern of the dots on the scatter plot runs from the lower left to the upper right), whereas negative values of r (such as r = –0.30 or r = –0.72) indicate negative linear relationships (i.e., the dots run from the upper left to the lower right). The strength of the linear relationship is indexed by the distance of the correlation coefficient from zero (its absolute value). For instance, r = -0.54 is a stronger relationship than r = 0.30, and r = 0.72 is a stronger relationship than r = –0.57. Because the Pearson correlation coefficient only measures linear relationships, variables that have curvilinear relationships are not well described by r , and the observed correlation will be close to zero.

It is also possible to study relationships among more than two measures at the same time. A research design in which more than one variable is used to predict a single outcome variable is analyzed through multiple regression (Aiken & West, 1991). Multiple regression is a statistical technique, based on correlation coefficients among variables, that allows predicting a single outcome variable from more than one predictor variable . For instance, Figure \(\PageIndex{11}\) shows a multiple regression analysis in which three predictor variables are used to predict a single outcome. The use of multiple regression analysis shows an important advantage of correlational research designs—they can be used to make predictions about a person’s likely score on an outcome variable (e.g., job performance) based on knowledge of other variables. It is important, however, to keep in mind that using data to make a prediction is not the same thing as being able to say that one thing causes another. Height and weight, for example, are correlated - but you can't state that one "causes" the other.

464b865cd2cfc7379c21031b32df5651.jpg

An important limitation of correlational research designs is that they cannot be used to draw conclusions about the causal relationships among the measured variables. Consider, for instance, a researcher who has hypothesized that viewing violent behavior will cause increased aggressive play in children. He has collected, from a sample of fourth-grade children, a measure of how many violent television shows each child views during the week, as well as a measure of how aggressively each child plays on the school playground. From his collected data, the researcher discovers a positive correlation between the two measured variables.

Although this positive correlation appears to support the researcher’s hypothesis, it cannot be taken to indicate that viewing violent television causes aggressive behavior. Although the researcher is tempted to assume that viewing violent television causes aggressive play,

e8907bc26020d44b8ec4fa0b3b7d6977.jpg

there are other possibilities. One alternate possibility is that the causal direction is exactly opposite from what has been hypothesized. Perhaps children who have behaved aggressively at school develop residual excitement that leads them to want to watch violent television shows at home:

e68943a11c28a61179fd09121f0bc921.jpg

Although this possibility may seem less likely, there is no way to rule out the possibility of such reverse causation on the basis of this observed correlation. It is also possible that both causal directions are operating and that the two variables cause each other:

3f0d249134c13cc5d21f7f6f4d784c78.jpg

Still another possible explanation for the observed correlation is that it has been produced by the presence of a common-causal variable (also known as a third variable ). A common-causal variable is a variable that is not part of the research hypothesis but that impacts both of the measured variables and thus produces the observed correlation between them . In our example a potential common-causal variable is the discipline style of the children’s parents. Parents who use a harsh and punitive discipline style may produce children who both like to watch violent television and who behave aggressively in comparison to children whose parents use less harsh discipline:

675c2fd95172ea21e05ea1870c1f0927.jpg

In this case, television viewing and aggressive play would be positively correlated (as indicated by the curved arrow between them), even though neither one caused the other but they were both caused by the discipline style of the parents (the straight arrows). When both of the measured variables are both impacted by a common-causal variable, the observed relationship between them is said to be spurious . A spurious relationship is a relationship between two variables in which a common-causal variable produces and “explains away” the relationship . If effects of the common-causal variable were taken away, or controlled for, the relationship between the predictor and outcome variables would disappear. In the example the relationship between aggression and television viewing might be spurious because by controlling for the effect of the parents’ disciplining style, the relationship between television viewing and aggressive behavior might go away.

Common-causal variables in correlational research designs can be thought of as “mystery” variables because, as they have not been measured, their presence and identity are usually unknown to the researcher. Since it is not possible to measure every variable that could impact your results, the existence of an unknown common-causal variable is always a possibility. For this reason, we are left with the basic limitation of correlational research: Correlation does not demonstrate causation. It is important that when you read about correlational research projects, you keep in mind the possibility of spurious relationships, and be sure to interpret the findings appropriately. Although correlational research is sometimes reported as demonstrating causality without any mention being made of the possibility of reverse causation or common-causal variables, informed consumers of research, like you, are aware of these interpretational problems. It should be noted that one is also unable to control - or measure - all variables that could impact your results in an experiment - but experiments can lead to conclusions about cause.

In sum, correlational research designs have both strengths and limitations. One strength is that they can be used when experimental research is not possible because the variables of interest cannot be manipulated. Correlational designs also have the advantage of allowing the researcher to study behavior as it occurs in everyday life. And we can also use correlational designs to make predictions—for instance, to predict from the scores on their battery of tests the success of job trainees during a training session. But we cannot use such correlational information to determine whether the training caused better job performance. For that, researchers rely on experiments.

Experimental Research: Understanding the Causes of Behavior

The goal of experimental research design is to provide more definitive conclusions about the causal relationships among the variables in the research hypothesis than is available from correlational designs. In an experimental research design, the variables of interest are called the independent variable (or variables ) and the dependent variable . The independent variable in an experiment is the causing variable that is created (manipulated) by the experimenter . The dependent variable in an experiment is a measured variable that is expected to be influenced by the experimental manipulation . The research hypothesis suggests that the manipulated independent variable or variables will cause changes in the measured dependent variables. We can diagram the research hypothesis by using an arrow that points in one direction. This demonstrates the expected direction of causality:

a41e39077cc5b3be3d74924bdcc43066.jpg

Research Focus: Video Games and Aggression

Consider an experiment conducted by Anderson and Dill (2000). The study was designed to test the hypothesis that viewing violent video games would increase aggressive behavior. In this research, male and female undergraduates from Iowa State University were given a chance to play with either a violent video game (Wolfenstein 3D) or a nonviolent video game (Myst). During the experimental session, the participants played their assigned video games for 15 minutes. Then, after the play, each participant played a competitive game with an opponent in which the participant could deliver blasts of white noise through the earphones of the opponent. The operational definition of the dependent variable (aggressive behavior) was the level and duration of noise delivered to the opponent. The design of the experiment is shown in Figure \(\PageIndex{17}\).

23f54cb6e62facaacf8c4aaff5c82e26.jpg

Two advantages of the experimental research design are (1) the assurance that the independent variable (also known as the experimental manipulation) occurs prior to the measured dependent variable, and (2) the creation of initial equivalence between the conditions of the experiment (in this case by using random assignment to conditions).

Experimental designs have two very nice features. For one, they guarantee that the independent variable occurs prior to the measurement of the dependent variable. This eliminates the possibility of reverse causation. Second, the influence of common-causal variables is controlled, and thus eliminated, by creating initial equivalence among the participants in each of the experimental conditions before the manipulation occurs.

The most common method of creating equivalence among the experimental conditions is through random assignment to conditions, a procedure in which the condition that each participant is assigned to is determined through a random process, such as drawing numbers out of an envelope or using a random number table . Anderson and Dill first randomly assigned about 100 participants to each of their two groups (Group A and Group B). Because they used random assignment to conditions, they could be confident that, before the experimental manipulation occurred, the students in Group A were, on average, equivalent to the students in Group B on every possible variable, including variables that are likely to be related to aggression, such as parental discipline style, peer relationships, hormone levels, diet—and in fact everything else.

Then, after they had created initial equivalence, Anderson and Dill created the experimental manipulation—they had the participants in Group A play the violent game and the participants in Group B play the nonviolent game. Then they compared the dependent variable (the white noise blasts) between the two groups, finding that the students who had viewed the violent video game gave significantly longer noise blasts than did the students who had played the nonviolent game.

Anderson and Dill had from the outset created initial equivalence between the groups. This initial equivalence allowed them to observe differences in the white noise levels between the two groups after the experimental manipulation, leading to the conclusion that it was the independent variable (and not some other variable) that caused these differences. The idea is that the only thing that was different between the students in the two groups was the video game they had played.

Despite the advantage of determining causation, experiments do have limitations. One is that they are often conducted in laboratory situations rather than in the everyday lives of people. Therefore, we do not know whether results that we find in a laboratory setting will necessarily hold up in everyday life. Second, and more important, is that some of the most interesting and key social variables cannot be experimentally manipulated. If we want to study the influence of the size of a mob on the destructiveness of its behavior, or to compare the personality characteristics of people who join suicide cults with those of people who do not join such cults, these relationships must be assessed using correlational designs, because it is simply not possible to experimentally manipulate these variables.

Key Takeaways

  • Descriptive, correlational, and experimental research designs are used to collect and analyze data.
  • Descriptive designs include case studies, surveys, and naturalistic observation. The goal of these designs is to get a picture of the current thoughts, feelings, or behaviors in a given group of people. Descriptive research is summarized using descriptive statistics.
  • Correlational research designs measure two or more relevant variables and assess a relationship between or among them. The variables may be presented on a scatter plot to visually show the relationships. The Pearson Correlation Coefficient ( r ) is a measure of the strength of linear relationship between two variables.
  • Common-causal variables may impact the measured variables in a correlational design, producing a spurious relationship. The possibility of common-causal variables makes it impossible to draw causal conclusions from correlational research designs.
  • Experimental research involves the manipulation of an independent variable and the measurement of a dependent variable. Random assignment to conditions is normally used to create initial equivalence (comparability) between the groups, allowing researchers to draw causal conclusions.

Exercises and Critical Thinking

  • There is a negative correlation between the row that a student sits in in a large class (when the rows are numbered from front to back) and his or her final grade in the class. Do you think this represents a causal relationship or a spurious relationship, and why?
  • Think of two variables (other than those mentioned in this book) that are likely to be correlated, but in which the correlation is probably spurious. What is the likely common-causal variable that is producing the relationship?
  • Imagine a researcher wants to test the hypothesis that participating in psychotherapy will cause a decrease in reported anxiety. Describe the type of research design the investigator might use to draw this conclusion. What would be the independent and dependent variables in the research?

Updates and Edits 

This page was forked and modified on January 14, 2021. Slight language modifications were made and references to "predictor" and "outcome" variables with respect to correlational data were modified. While correlational data can be be used to make predictions, referring to the variables in a correlational study as predictors and outcomes may inappropriately imply a causal relationship. 

Aiken, L., & West, S. (1991). Multiple regression: Testing and interpreting interactions . Newbury Park, CA: Sage.

Ainsworth, M. S., Blehar, M. C., Waters, E., & Wall, S. (1978). Patterns of attachment: A psychological study of the strange situation . Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, C. A., & Dill, K. E. (2000). Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life. Journal of Personality and Social Psychology, 78 (4), 772–790.

Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., Damasio, A. R., Cacioppo, J. T., & Berntson, G. G. (2005). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. In Social neuroscience: Key readings. (pp. 21–28). New York, NY: Psychology Press.

Freud, S. (1964). Analysis of phobia in a five-year-old boy. In E. A. Southwell & M. Merbaum (Eds.), Personality: Readings in theory and research (pp. 3–32). Belmont, CA: Wadsworth. (Original work published 1909)

Kotowicz, Z. (2007). The strange case of Phineas Gage. History of the Human Sciences, 20 (1), 115–131.

Rokeach, M. (1964). The three Christs of Ypsilanti: A psychological study . New York, NY: Knopf.

Research Methods In Psychology

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

Research methods in psychology are systematic procedures used to observe, describe, predict, and explain behavior and mental processes. They include experiments, surveys, case studies, and naturalistic observations, ensuring data collection is objective and reliable to understand and explain psychological phenomena.

research methods3

Hypotheses are statements about the prediction of the results, that can be verified or disproved by some investigation.

There are four types of hypotheses :
  • Null Hypotheses (H0 ) – these predict that no difference will be found in the results between the conditions. Typically these are written ‘There will be no difference…’
  • Alternative Hypotheses (Ha or H1) – these predict that there will be a significant difference in the results between the two conditions. This is also known as the experimental hypothesis.
  • One-tailed (directional) hypotheses – these state the specific direction the researcher expects the results to move in, e.g. higher, lower, more, less. In a correlation study, the predicted direction of the correlation can be either positive or negative.
  • Two-tailed (non-directional) hypotheses – these state that a difference will be found between the conditions of the independent variable but does not state the direction of a difference or relationship. Typically these are always written ‘There will be a difference ….’

All research has an alternative hypothesis (either a one-tailed or two-tailed) and a corresponding null hypothesis.

Once the research is conducted and results are found, psychologists must accept one hypothesis and reject the other. 

So, if a difference is found, the Psychologist would accept the alternative hypothesis and reject the null.  The opposite applies if no difference is found.

Sampling techniques

Sampling is the process of selecting a representative group from the population under study.

Sample Target Population

A sample is the participants you select from a target population (the group you are interested in) to make generalizations about.

Representative means the extent to which a sample mirrors a researcher’s target population and reflects its characteristics.

Generalisability means the extent to which their findings can be applied to the larger population of which their sample was a part.

  • Volunteer sample : where participants pick themselves through newspaper adverts, noticeboards or online.
  • Opportunity sampling : also known as convenience sampling , uses people who are available at the time the study is carried out and willing to take part. It is based on convenience.
  • Random sampling : when every person in the target population has an equal chance of being selected. An example of random sampling would be picking names out of a hat.
  • Systematic sampling : when a system is used to select participants. Picking every Nth person from all possible participants. N = the number of people in the research population / the number of people needed for the sample.
  • Stratified sampling : when you identify the subgroups and select participants in proportion to their occurrences.
  • Snowball sampling : when researchers find a few participants, and then ask them to find participants themselves and so on.
  • Quota sampling : when researchers will be told to ensure the sample fits certain quotas, for example they might be told to find 90 participants, with 30 of them being unemployed.

Experiments always have an independent and dependent variable .

  • The independent variable is the one the experimenter manipulates (the thing that changes between the conditions the participants are placed into). It is assumed to have a direct effect on the dependent variable.
  • The dependent variable is the thing being measured, or the results of the experiment.

variables

Operationalization of variables means making them measurable/quantifiable. We must use operationalization to ensure that variables are in a form that can be easily tested.

For instance, we can’t really measure ‘happiness’, but we can measure how many times a person smiles within a two-hour period. 

By operationalizing variables, we make it easy for someone else to replicate our research. Remember, this is important because we can check if our findings are reliable.

Extraneous variables are all variables which are not independent variable but could affect the results of the experiment.

It can be a natural characteristic of the participant, such as intelligence levels, gender, or age for example, or it could be a situational feature of the environment such as lighting or noise.

Demand characteristics are a type of extraneous variable that occurs if the participants work out the aims of the research study, they may begin to behave in a certain way.

For example, in Milgram’s research , critics argued that participants worked out that the shocks were not real and they administered them as they thought this was what was required of them. 

Extraneous variables must be controlled so that they do not affect (confound) the results.

Randomly allocating participants to their conditions or using a matched pairs experimental design can help to reduce participant variables. 

Situational variables are controlled by using standardized procedures, ensuring every participant in a given condition is treated in the same way

Experimental Design

Experimental design refers to how participants are allocated to each condition of the independent variable, such as a control or experimental group.
  • Independent design ( between-groups design ): each participant is selected for only one group. With the independent design, the most common way of deciding which participants go into which group is by means of randomization. 
  • Matched participants design : each participant is selected for only one group, but the participants in the two groups are matched for some relevant factor or factors (e.g. ability; sex; age).
  • Repeated measures design ( within groups) : each participant appears in both groups, so that there are exactly the same participants in each group.
  • The main problem with the repeated measures design is that there may well be order effects. Their experiences during the experiment may change the participants in various ways.
  • They may perform better when they appear in the second group because they have gained useful information about the experiment or about the task. On the other hand, they may perform less well on the second occasion because of tiredness or boredom.
  • Counterbalancing is the best way of preventing order effects from disrupting the findings of an experiment, and involves ensuring that each condition is equally likely to be used first and second by the participants.

If we wish to compare two groups with respect to a given independent variable, it is essential to make sure that the two groups do not differ in any other important way. 

Experimental Methods

All experimental methods involve an iv (independent variable) and dv (dependent variable)..

The researcher decides where the experiment will take place, at what time, with which participants, in what circumstances,  using a standardized procedure.

  • Field experiments are conducted in the everyday (natural) environment of the participants. The experimenter still manipulates the IV, but in a real-life setting. It may be possible to control extraneous variables, though such control is more difficult than in a lab experiment.
  • Natural experiments are when a naturally occurring IV is investigated that isn’t deliberately manipulated, it exists anyway. Participants are not randomly allocated, and the natural event may only occur rarely.

Case studies are in-depth investigations of a person, group, event, or community. It uses information from a range of sources, such as from the person concerned and also from their family and friends.

Many techniques may be used such as interviews, psychological tests, observations and experiments. Case studies are generally longitudinal: in other words, they follow the individual or group over an extended period of time. 

Case studies are widely used in psychology and among the best-known ones carried out were by Sigmund Freud . He conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

Case studies provide rich qualitative data and have high levels of ecological validity. However, it is difficult to generalize from individual cases as each one has unique characteristics.

Correlational Studies

Correlation means association; it is a measure of the extent to which two variables are related. One of the variables can be regarded as the predictor variable with the other one as the outcome variable.

Correlational studies typically involve obtaining two different measures from a group of participants, and then assessing the degree of association between the measures. 

The predictor variable can be seen as occurring before the outcome variable in some sense. It is called the predictor variable, because it forms the basis for predicting the value of the outcome variable.

Relationships between variables can be displayed on a graph or as a numerical score called a correlation coefficient.

types of correlation. Scatter plot. Positive negative and no correlation

  • If an increase in one variable tends to be associated with an increase in the other, then this is known as a positive correlation .
  • If an increase in one variable tends to be associated with a decrease in the other, then this is known as a negative correlation .
  • A zero correlation occurs when there is no relationship between variables.

After looking at the scattergraph, if we want to be sure that a significant relationship does exist between the two variables, a statistical test of correlation can be conducted, such as Spearman’s rho.

The test will give us a score, called a correlation coefficient . This is a value between 0 and 1, and the closer to 1 the score is, the stronger the relationship between the variables. This value can be both positive e.g. 0.63, or negative -0.63.

Types of correlation. Strong, weak, and perfect positive correlation, strong, weak, and perfect negative correlation, no correlation. Graphs or charts ...

A correlation between variables, however, does not automatically mean that the change in one variable is the cause of the change in the values of the other variable. A correlation only shows if there is a relationship between variables.

Correlation does not always prove causation, as a third variable may be involved. 

causation correlation

Interview Methods

Interviews are commonly divided into two types: structured and unstructured.

A fixed, predetermined set of questions is put to every participant in the same order and in the same way. 

Responses are recorded on a questionnaire, and the researcher presets the order and wording of questions, and sometimes the range of alternative answers.

The interviewer stays within their role and maintains social distance from the interviewee.

There are no set questions, and the participant can raise whatever topics he/she feels are relevant and ask them in their own way. Questions are posed about participants’ answers to the subject

Unstructured interviews are most useful in qualitative research to analyze attitudes and values.

Though they rarely provide a valid basis for generalization, their main advantage is that they enable the researcher to probe social actors’ subjective point of view. 

Questionnaire Method

Questionnaires can be thought of as a kind of written interview. They can be carried out face to face, by telephone, or post.

The choice of questions is important because of the need to avoid bias or ambiguity in the questions, ‘leading’ the respondent or causing offense.

  • Open questions are designed to encourage a full, meaningful answer using the subject’s own knowledge and feelings. They provide insights into feelings, opinions, and understanding. Example: “How do you feel about that situation?”
  • Closed questions can be answered with a simple “yes” or “no” or specific information, limiting the depth of response. They are useful for gathering specific facts or confirming details. Example: “Do you feel anxious in crowds?”

Its other practical advantages are that it is cheaper than face-to-face interviews and can be used to contact many respondents scattered over a wide area relatively quickly.

Observations

There are different types of observation methods :
  • Covert observation is where the researcher doesn’t tell the participants they are being observed until after the study is complete. There could be ethical problems or deception and consent with this particular observation method.
  • Overt observation is where a researcher tells the participants they are being observed and what they are being observed for.
  • Controlled : behavior is observed under controlled laboratory conditions (e.g., Bandura’s Bobo doll study).
  • Natural : Here, spontaneous behavior is recorded in a natural setting.
  • Participant : Here, the observer has direct contact with the group of people they are observing. The researcher becomes a member of the group they are researching.  
  • Non-participant (aka “fly on the wall): The researcher does not have direct contact with the people being observed. The observation of participants’ behavior is from a distance

Pilot Study

A pilot  study is a small scale preliminary study conducted in order to evaluate the feasibility of the key s teps in a future, full-scale project.

A pilot study is an initial run-through of the procedures to be used in an investigation; it involves selecting a few people and trying out the study on them. It is possible to save time, and in some cases, money, by identifying any flaws in the procedures designed by the researcher.

A pilot study can help the researcher spot any ambiguities (i.e. unusual things) or confusion in the information given to participants or problems with the task devised.

Sometimes the task is too hard, and the researcher may get a floor effect, because none of the participants can score at all or can complete the task – all performances are low.

The opposite effect is a ceiling effect, when the task is so easy that all achieve virtually full marks or top performances and are “hitting the ceiling”.

Research Design

In cross-sectional research , a researcher compares multiple segments of the population at the same time

Sometimes, we want to see how people change over time, as in studies of human development and lifespan. Longitudinal research is a research design in which data-gathering is administered repeatedly over an extended period of time.

In cohort studies , the participants must share a common factor or characteristic such as age, demographic, or occupation. A cohort study is a type of longitudinal study in which researchers monitor and observe a chosen population over an extended period.

Triangulation means using more than one research method to improve the study’s validity.

Reliability

Reliability is a measure of consistency, if a particular measurement is repeated and the same result is obtained then it is described as being reliable.

  • Test-retest reliability :  assessing the same person on two different occasions which shows the extent to which the test produces the same answers.
  • Inter-observer reliability : the extent to which there is an agreement between two or more observers.

Meta-Analysis

Meta-analysis is a statistical procedure used to combine and synthesize findings from multiple independent studies to estimate the average effect size for a particular research question.

Meta-analysis goes beyond traditional narrative reviews by using statistical methods to integrate the results of several studies, leading to a more objective appraisal of the evidence.

This is done by looking through various databases, and then decisions are made about what studies are to be included/excluded.

  • Strengths : Increases the conclusions’ validity as they’re based on a wider range.
  • Weaknesses : Research designs in studies can vary, so they are not truly comparable.

Peer Review

A researcher submits an article to a journal. The choice of the journal may be determined by the journal’s audience or prestige.

The journal selects two or more appropriate experts (psychologists working in a similar field) to peer review the article without payment. The peer reviewers assess: the methods and designs used, originality of the findings, the validity of the original research findings and its content, structure and language.

Feedback from the reviewer determines whether the article is accepted. The article may be: Accepted as it is, accepted with revisions, sent back to the author to revise and re-submit or rejected without the possibility of submission.

The editor makes the final decision whether to accept or reject the research report based on the reviewers comments/ recommendations.

Peer review is important because it prevent faulty data from entering the public domain, it provides a way of checking the validity of findings and the quality of the methodology and is used to assess the research rating of university departments.

Peer reviews may be an ideal, whereas in practice there are lots of problems. For example, it slows publication down and may prevent unusual, new work being published. Some reviewers might use it as an opportunity to prevent competing researchers from publishing work.

Some people doubt whether peer review can really prevent the publication of fraudulent research.

The advent of the internet means that a lot of research and academic comment is being published without official peer reviews than before, though systems are evolving on the internet where everyone really has a chance to offer their opinions and police the quality of research.

Types of Data

  • Quantitative data is numerical data e.g. reaction time or number of mistakes. It represents how much or how long, how many there are of something. A tally of behavioral categories and closed questions in a questionnaire collect quantitative data.
  • Qualitative data is virtually any type of information that can be observed and recorded that is not numerical in nature and can be in the form of written or verbal communication. Open questions in questionnaires and accounts from observational studies collect qualitative data.
  • Primary data is first-hand data collected for the purpose of the investigation.
  • Secondary data is information that has been collected by someone other than the person who is conducting the research e.g. taken from journals, books or articles.

Validity means how well a piece of research actually measures what it sets out to, or how well it reflects the reality it claims to represent.

Validity is whether the observed effect is genuine and represents what is actually out there in the world.

  • Concurrent validity is the extent to which a psychological measure relates to an existing similar measure and obtains close results. For example, a new intelligence test compared to an established test.
  • Face validity : does the test measure what it’s supposed to measure ‘on the face of it’. This is done by ‘eyeballing’ the measuring or by passing it to an expert to check.
  • Ecological validit y is the extent to which findings from a research study can be generalized to other settings / real life.
  • Temporal validity is the extent to which findings from a research study can be generalized to other historical times.

Features of Science

  • Paradigm – A set of shared assumptions and agreed methods within a scientific discipline.
  • Paradigm shift – The result of the scientific revolution: a significant change in the dominant unifying theory within a scientific discipline.
  • Objectivity – When all sources of personal bias are minimised so not to distort or influence the research process.
  • Empirical method – Scientific approaches that are based on the gathering of evidence through direct observation and experience.
  • Replicability – The extent to which scientific procedures and findings can be repeated by other researchers.
  • Falsifiability – The principle that a theory cannot be considered scientific unless it admits the possibility of being proved untrue.

Statistical Testing

A significant result is one where there is a low probability that chance factors were responsible for any observed difference, correlation, or association in the variables tested.

If our test is significant, we can reject our null hypothesis and accept our alternative hypothesis.

If our test is not significant, we can accept our null hypothesis and reject our alternative hypothesis. A null hypothesis is a statement of no effect.

In Psychology, we use p < 0.05 (as it strikes a balance between making a type I and II error) but p < 0.01 is used in tests that could cause harm like introducing a new drug.

A type I error is when the null hypothesis is rejected when it should have been accepted (happens when a lenient significance level is used, an error of optimism).

A type II error is when the null hypothesis is accepted when it should have been rejected (happens when a stringent significance level is used, an error of pessimism).

Ethical Issues

  • Informed consent is when participants are able to make an informed judgment about whether to take part. It causes them to guess the aims of the study and change their behavior.
  • To deal with it, we can gain presumptive consent or ask them to formally indicate their agreement to participate but it may invalidate the purpose of the study and it is not guaranteed that the participants would understand.
  • Deception should only be used when it is approved by an ethics committee, as it involves deliberately misleading or withholding information. Participants should be fully debriefed after the study but debriefing can’t turn the clock back.
  • All participants should be informed at the beginning that they have the right to withdraw if they ever feel distressed or uncomfortable.
  • It causes bias as the ones that stayed are obedient and some may not withdraw as they may have been given incentives or feel like they’re spoiling the study. Researchers can offer the right to withdraw data after participation.
  • Participants should all have protection from harm . The researcher should avoid risks greater than those experienced in everyday life and they should stop the study if any harm is suspected. However, the harm may not be apparent at the time of the study.
  • Confidentiality concerns the communication of personal information. The researchers should not record any names but use numbers or false names though it may not be possible as it is sometimes possible to work out who the researchers were.

Print Friendly, PDF & Email