• CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th

Top Schools

  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • Free Sample Papers
  • Free Ebooks
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • JEE Main 2024
  • MHT CET 2024
  • JEE Advanced 2024
  • BITSAT 2024
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • GATE College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Advanced Cutoff
  • JEE Main Cutoff
  • MHT CET Result 2024
  • JEE Advanced Result
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • AP EAMCET Result 2024
  • MAH MBA CET Exam
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2024
  • SNAP College Predictor
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2024
  • CAT 2024 College Predictor
  • Top MBA Entrance Exams 2024
  • AP ICET Counselling 2024
  • GD Topics for MBA
  • CAT Exam Date 2024
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • NEET Rank Predictor
  • DNB PDCET College Predictor
  • NEET Result 2024
  • NEET Asnwer Key 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top NLUs Colleges in India
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT Syllabus 2025
  • CLAT Previous Year Question Paper
  • NID DAT Exam
  • Pearl Academy Exam

Predictors & Articles

  • NIFT College Predictor
  • UCEED College Predictor
  • NID DAT College Predictor
  • NID DAT Syllabus 2025
  • NID DAT 2025
  • Design Colleges in India
  • Top NIFT Colleges in India
  • Fashion Design Colleges in India
  • Top Interior Design Colleges in India
  • Top Graphic Designing Colleges in India
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Mumbai
  • Top Interior Design Colleges in Bangalore
  • NIFT Result 2024
  • NIFT Fees Structure
  • NIFT Syllabus 2025
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • IPU CET BJMC
  • JMI Mass Communication Entrance Exam
  • IIMC Entrance Exam
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2024
  • IGNOU B.Ed Admission 2024
  • DU Admission 2024
  • UP B.Ed JEE 2024
  • LPU NEST 2024
  • IIT JAM 2024
  • IGNOU Online Admission 2024
  • Universities in India
  • Top Universities in India 2024
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2024
  • Top Universities in Bihar
  • Top Universities in Madhya Pradesh 2024
  • Top Universities in Tamil Nadu 2024
  • Central Universities in India
  • CUET DU Cut off 2024
  • IGNOU Date Sheet 2024
  • CUET DU CSAS Portal 2024
  • CUET Response Sheet 2024
  • CUET Result 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • CUET Syllabus 2024 for Science Students
  • E-Books and Sample Papers
  • CUET College Predictor 2024
  • CUET Exam Date 2024
  • CUET Cut Off 2024
  • NIRF Ranking 2024
  • IGNOU Exam Form 2024
  • CUET PG Counselling 2024
  • CUET Answer Key 2024

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Technology In Education Essay

Essay On Technology In Education- Technology makes education very easy. Technology is now very essential to maintaining society, and it will definitely have an impact on education. In today's life, technology has made study easier. Here are 100, 200 and 500 word essays on Technology In Education

Technology plays a huge part in education. The students' learning process gets simpler as technology advances. Students can easily learn the concepts thanks to technologies utilised in schools and universities, such as computer labs and high-end equipment and instruments. In today's life, technology has made study easier. Here are some sample essays on Technology In Education

Technology In Education Essay

100 Words Essay On Technology In Education

Technology makes education very easy. Technology is now essential to maintaining society, and it will definitely have an impact on education. Previously teachers didn't allow students to use technology in education. Today's everything is connected to technology including education,communication, etc. Although technology has been a part of our lives for many years, the development and use of technology in education have only lately started to take shape. One of the most crucial things we have now that can help students perform better academically is technology. As technology advances, it creates new opportunities for students to interact and learn through a variety of sources. Online classes are the best example of technology.

200 Words Essay On Technology In Education

The word "technology" is derived from the Greek word "tekhnologia," where "tekh" signifies an art, a skill, etc., and "logy" defines a subject of interest. Technology makes our tasks easy and makes life easy. Today, technology plays a significant role in our lives and offers a digital platform. The term "smart classes" is being used increasingly in schools and colleges, and these classes are the best use of technology.

Technology And Education

Technology made education easy and attractive. Students study because of technology with their mobile phones and laptops.

By using technology, online classes have started, and students love doing smart classes.

Technology keeps students updated on the world and shows the right direction to do good in education.

Through technology, students can read newspapers daily wise. Technology made education easy and attractive.

From technology, schools make their app and take attendance online, which helps the environment also by not using paper and pen.

Technology attracts children more, which helps them to choose their path.

Education should not be done with only books; students should get a chance to explore their knowledge and try something new. Technology is the best thing to explore. By using technology, students' knowledge will grow faster than before.

500 Words Essay On Technology In Education

Technology has become an integral part of education because of different apps and websites. Nowadays, if you want to clear your doubts or to know your syllabus, everything is available online. Nowadays, education is nothing without technology.

Is Technology Helpful In Education?

Yes, technology is helpful to education. Nowadays, you will see the difference in how technology has changed teaching. In older days, students read from their books, and if they faced any problem, they would ask their teachers the next day at school or for tuition.

But nowadays, students clear their doubts by using apps and websites. Due to technology, they can also ask a question or can have live interaction with their teachers personally. Education has progressed a lot.

Technology has made education easy, and today we have multiple options to clear our doubts and interact online with our teachers. Nowadays, we have easy access to the internet, and other helping apps have made education accessible and exciting.

Technology is essential for students. Parents and teachers should permit their children to use technology for their students because time has changed, and the mode of education should also be changed. Students should be given a chance to learn something new and exciting and technology makes it possible.

Different Technologies for Education

Many devices make education easier for students and clear students' doubts. Some of them are-

Laptops | One of the best tools for learning is a laptop. You can obtain information on the Internet either in written form, video form, or audio form. On several applications and websites, you can find tutors who can give you a thorough explanation. Students can acquire extensive information and have their questions answered thanks to it. You may effortlessly visit several educational portals using a laptop.

Smartphone | Smartphones are smaller versions of laptops; you can use them more easily than laptops and take them with you wherever you go. It is user-friendly due to its compact size and simple internet connection. Students can speak with their teacher about questions using a smartphone. Many students have smartphones, which they use for academic purposes. Numerous apps were available for students on mobile devices.

Kindle for Textbooks | Kindle Textbooks are a type of online book. Kindle books are available at half the price of paper books. This helps to reduce the production of paper, which allows our environment and online books to be easily stored. Kindle Textbooks are popular these days. Many students use them.

My Experience

From the 12th standard, I used a smartphone and laptop for education. Technology makes study easier. When I didn't understand something from school, I used to look for those online and try to clear all my doubts by watching topic specific videos. In my school days, I learned different crafts and drawing skills by watching videos online. I used to take help from online videos to understand many science experiments and easy tricks to solve various mathematical questions. Technology in education is perfect for the future because the use of technology in education will bring a drastic change in our education system.

Applications for Admissions are open.

Aakash iACST Scholarship Test 2024

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

JEE Main Important Physics formulas

JEE Main Important Physics formulas

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

JEE Main Important Chemistry formulas

JEE Main Important Chemistry formulas

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

TOEFL ® Registrations 2024

TOEFL ® Registrations 2024

Accepted by more than 11,000 universities in over 150 countries worldwide

PTE Exam 2024 Registrations

PTE Exam 2024 Registrations

Register now for PTE & Save 5% on English Proficiency Tests with ApplyShop Gift Cards

JEE Main high scoring chapters and topics

JEE Main high scoring chapters and topics

As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Certifications

student

We Appeared in

Economic Times

REALIZING THE PROMISE:

Leading up to the 75th anniversary of the UN General Assembly, this “Realizing the promise: How can education technology improve learning for all?” publication kicks off the Center for Universal Education’s first playbook in a series to help improve education around the world.

It is intended as an evidence-based tool for ministries of education, particularly in low- and middle-income countries, to adopt and more successfully invest in education technology.

While there is no single education initiative that will achieve the same results everywhere—as school systems differ in learners and educators, as well as in the availability and quality of materials and technologies—an important first step is understanding how technology is used given specific local contexts and needs.

The surveys in this playbook are designed to be adapted to collect this information from educators, learners, and school leaders and guide decisionmakers in expanding the use of technology.  

Introduction

While technology has disrupted most sectors of the economy and changed how we communicate, access information, work, and even play, its impact on schools, teaching, and learning has been much more limited. We believe that this limited impact is primarily due to technology being been used to replace analog tools, without much consideration given to playing to technology’s comparative advantages. These comparative advantages, relative to traditional “chalk-and-talk” classroom instruction, include helping to scale up standardized instruction, facilitate differentiated instruction, expand opportunities for practice, and increase student engagement. When schools use technology to enhance the work of educators and to improve the quality and quantity of educational content, learners will thrive.

Further, COVID-19 has laid bare that, in today’s environment where pandemics and the effects of climate change are likely to occur, schools cannot always provide in-person education—making the case for investing in education technology.

Here we argue for a simple yet surprisingly rare approach to education technology that seeks to:

  • Understand the needs, infrastructure, and capacity of a school system—the diagnosis;
  • Survey the best available evidence on interventions that match those conditions—the evidence; and
  • Closely monitor the results of innovations before they are scaled up—the prognosis.

RELATED CONTENT

essay about technology and its importance in education

Podcast: How education technology can improve learning for all students

essay about technology and its importance in education

To make ed tech work, set clear goals, review the evidence, and pilot before you scale

The framework.

Our approach builds on a simple yet intuitive theoretical framework created two decades ago by two of the most prominent education researchers in the United States, David K. Cohen and Deborah Loewenberg Ball. They argue that what matters most to improve learning is the interactions among educators and learners around educational materials. We believe that the failed school-improvement efforts in the U.S. that motivated Cohen and Ball’s framework resemble the ed-tech reforms in much of the developing world to date in the lack of clarity improving the interactions between educators, learners, and the educational material. We build on their framework by adding parents as key agents that mediate the relationships between learners and educators and the material (Figure 1).

Figure 1: The instructional core

Adapted from Cohen and Ball (1999)

As the figure above suggests, ed-tech interventions can affect the instructional core in a myriad of ways. Yet, just because technology can do something, it does not mean it should. School systems in developing countries differ along many dimensions and each system is likely to have different needs for ed-tech interventions, as well as different infrastructure and capacity to enact such interventions.

The diagnosis:

How can school systems assess their needs and preparedness.

A useful first step for any school system to determine whether it should invest in education technology is to diagnose its:

  • Specific needs to improve student learning (e.g., raising the average level of achievement, remediating gaps among low performers, and challenging high performers to develop higher-order skills);
  • Infrastructure to adopt technology-enabled solutions (e.g., electricity connection, availability of space and outlets, stock of computers, and Internet connectivity at school and at learners’ homes); and
  • Capacity to integrate technology in the instructional process (e.g., learners’ and educators’ level of familiarity and comfort with hardware and software, their beliefs about the level of usefulness of technology for learning purposes, and their current uses of such technology).

Before engaging in any new data collection exercise, school systems should take full advantage of existing administrative data that could shed light on these three main questions. This could be in the form of internal evaluations but also international learner assessments, such as the Program for International Student Assessment (PISA), the Trends in International Mathematics and Science Study (TIMSS), and/or the Progress in International Literacy Study (PIRLS), and the Teaching and Learning International Study (TALIS). But if school systems lack information on their preparedness for ed-tech reforms or if they seek to complement existing data with a richer set of indicators, we developed a set of surveys for learners, educators, and school leaders. Download the full report to see how we map out the main aspects covered by these surveys, in hopes of highlighting how they could be used to inform decisions around the adoption of ed-tech interventions.

The evidence:

How can school systems identify promising ed-tech interventions.

There is no single “ed-tech” initiative that will achieve the same results everywhere, simply because school systems differ in learners and educators, as well as in the availability and quality of materials and technologies. Instead, to realize the potential of education technology to accelerate student learning, decisionmakers should focus on four potential uses of technology that play to its comparative advantages and complement the work of educators to accelerate student learning (Figure 2). These comparative advantages include:

  • Scaling up quality instruction, such as through prerecorded quality lessons.
  • Facilitating differentiated instruction, through, for example, computer-adaptive learning and live one-on-one tutoring.
  • Expanding opportunities to practice.
  • Increasing learner engagement through videos and games.

Figure 2: Comparative advantages of technology

Here we review the evidence on ed-tech interventions from 37 studies in 20 countries*, organizing them by comparative advantage. It’s important to note that ours is not the only way to classify these interventions (e.g., video tutorials could be considered as a strategy to scale up instruction or increase learner engagement), but we believe it may be useful to highlight the needs that they could address and why technology is well positioned to do so.

When discussing specific studies, we report the magnitude of the effects of interventions using standard deviations (SDs). SDs are a widely used metric in research to express the effect of a program or policy with respect to a business-as-usual condition (e.g., test scores). There are several ways to make sense of them. One is to categorize the magnitude of the effects based on the results of impact evaluations. In developing countries, effects below 0.1 SDs are considered to be small, effects between 0.1 and 0.2 SDs are medium, and those above 0.2 SDs are large (for reviews that estimate the average effect of groups of interventions, called “meta analyses,” see e.g., Conn, 2017; Kremer, Brannen, & Glennerster, 2013; McEwan, 2014; Snilstveit et al., 2015; Evans & Yuan, 2020.)

*In surveying the evidence, we began by compiling studies from prior general and ed-tech specific evidence reviews that some of us have written and from ed-tech reviews conducted by others. Then, we tracked the studies cited by the ones we had previously read and reviewed those, as well. In identifying studies for inclusion, we focused on experimental and quasi-experimental evaluations of education technology interventions from pre-school to secondary school in low- and middle-income countries that were released between 2000 and 2020. We only included interventions that sought to improve student learning directly (i.e., students’ interaction with the material), as opposed to interventions that have impacted achievement indirectly, by reducing teacher absence or increasing parental engagement. This process yielded 37 studies in 20 countries (see the full list of studies in Appendix B).

Scaling up standardized instruction

One of the ways in which technology may improve the quality of education is through its capacity to deliver standardized quality content at scale. This feature of technology may be particularly useful in three types of settings: (a) those in “hard-to-staff” schools (i.e., schools that struggle to recruit educators with the requisite training and experience—typically, in rural and/or remote areas) (see, e.g., Urquiola & Vegas, 2005); (b) those in which many educators are frequently absent from school (e.g., Chaudhury, Hammer, Kremer, Muralidharan, & Rogers, 2006; Muralidharan, Das, Holla, & Mohpal, 2017); and/or (c) those in which educators have low levels of pedagogical and subject matter expertise (e.g., Bietenbeck, Piopiunik, & Wiederhold, 2018; Bold et al., 2017; Metzler & Woessmann, 2012; Santibañez, 2006) and do not have opportunities to observe and receive feedback (e.g., Bruns, Costa, & Cunha, 2018; Cilliers, Fleisch, Prinsloo, & Taylor, 2018). Technology could address this problem by: (a) disseminating lessons delivered by qualified educators to a large number of learners (e.g., through prerecorded or live lessons); (b) enabling distance education (e.g., for learners in remote areas and/or during periods of school closures); and (c) distributing hardware preloaded with educational materials.

Prerecorded lessons

Technology seems to be well placed to amplify the impact of effective educators by disseminating their lessons. Evidence on the impact of prerecorded lessons is encouraging, but not conclusive. Some initiatives that have used short instructional videos to complement regular instruction, in conjunction with other learning materials, have raised student learning on independent assessments. For example, Beg et al. (2020) evaluated an initiative in Punjab, Pakistan in which grade 8 classrooms received an intervention that included short videos to substitute live instruction, quizzes for learners to practice the material from every lesson, tablets for educators to learn the material and follow the lesson, and LED screens to project the videos onto a classroom screen. After six months, the intervention improved the performance of learners on independent tests of math and science by 0.19 and 0.24 SDs, respectively but had no discernible effect on the math and science section of Punjab’s high-stakes exams.

One study suggests that approaches that are far less technologically sophisticated can also improve learning outcomes—especially, if the business-as-usual instruction is of low quality. For example, Naslund-Hadley, Parker, and Hernandez-Agramonte (2014) evaluated a preschool math program in Cordillera, Paraguay that used audio segments and written materials four days per week for an hour per day during the school day. After five months, the intervention improved math scores by 0.16 SDs, narrowing gaps between low- and high-achieving learners, and between those with and without educators with formal training in early childhood education.

Yet, the integration of prerecorded material into regular instruction has not always been successful. For example, de Barros (2020) evaluated an intervention that combined instructional videos for math and science with infrastructure upgrades (e.g., two “smart” classrooms, two TVs, and two tablets), printed workbooks for students, and in-service training for educators of learners in grades 9 and 10 in Haryana, India (all materials were mapped onto the official curriculum). After 11 months, the intervention negatively impacted math achievement (by 0.08 SDs) and had no effect on science (with respect to business as usual classes). It reduced the share of lesson time that educators devoted to instruction and negatively impacted an index of instructional quality. Likewise, Seo (2017) evaluated several combinations of infrastructure (solar lights and TVs) and prerecorded videos (in English and/or bilingual) for grade 11 students in northern Tanzania and found that none of the variants improved student learning, even when the videos were used. The study reports effects from the infrastructure component across variants, but as others have noted (Muralidharan, Romero, & Wüthrich, 2019), this approach to estimating impact is problematic.

A very similar intervention delivered after school hours, however, had sizeable effects on learners’ basic skills. Chiplunkar, Dhar, and Nagesh (2020) evaluated an initiative in Chennai (the capital city of the state of Tamil Nadu, India) delivered by the same organization as above that combined short videos that explained key concepts in math and science with worksheets, facilitator-led instruction, small groups for peer-to-peer learning, and occasional career counseling and guidance for grade 9 students. These lessons took place after school for one hour, five times a week. After 10 months, it had large effects on learners’ achievement as measured by tests of basic skills in math and reading, but no effect on a standardized high-stakes test in grade 10 or socio-emotional skills (e.g., teamwork, decisionmaking, and communication).

Drawing general lessons from this body of research is challenging for at least two reasons. First, all of the studies above have evaluated the impact of prerecorded lessons combined with several other components (e.g., hardware, print materials, or other activities). Therefore, it is possible that the effects found are due to these additional components, rather than to the recordings themselves, or to the interaction between the two (see Muralidharan, 2017 for a discussion of the challenges of interpreting “bundled” interventions). Second, while these studies evaluate some type of prerecorded lessons, none examines the content of such lessons. Thus, it seems entirely plausible that the direction and magnitude of the effects depends largely on the quality of the recordings (e.g., the expertise of the educator recording it, the amount of preparation that went into planning the recording, and its alignment with best teaching practices).

These studies also raise three important questions worth exploring in future research. One of them is why none of the interventions discussed above had effects on high-stakes exams, even if their materials are typically mapped onto the official curriculum. It is possible that the official curricula are simply too challenging for learners in these settings, who are several grade levels behind expectations and who often need to reinforce basic skills (see Pritchett & Beatty, 2015). Another question is whether these interventions have long-term effects on teaching practices. It seems plausible that, if these interventions are deployed in contexts with low teaching quality, educators may learn something from watching the videos or listening to the recordings with learners. Yet another question is whether these interventions make it easier for schools to deliver instruction to learners whose native language is other than the official medium of instruction.

Distance education

Technology can also allow learners living in remote areas to access education. The evidence on these initiatives is encouraging. For example, Johnston and Ksoll (2017) evaluated a program that broadcasted live instruction via satellite to rural primary school students in the Volta and Greater Accra regions of Ghana. For this purpose, the program also equipped classrooms with the technology needed to connect to a studio in Accra, including solar panels, a satellite modem, a projector, a webcam, microphones, and a computer with interactive software. After two years, the intervention improved the numeracy scores of students in grades 2 through 4, and some foundational literacy tasks, but it had no effect on attendance or classroom time devoted to instruction, as captured by school visits. The authors interpreted these results as suggesting that the gains in achievement may be due to improving the quality of instruction that children received (as opposed to increased instructional time). Naik, Chitre, Bhalla, and Rajan (2019) evaluated a similar program in the Indian state of Karnataka and also found positive effects on learning outcomes, but it is not clear whether those effects are due to the program or due to differences in the groups of students they compared to estimate the impact of the initiative.

In one context (Mexico), this type of distance education had positive long-term effects. Navarro-Sola (2019) took advantage of the staggered rollout of the telesecundarias (i.e., middle schools with lessons broadcasted through satellite TV) in 1968 to estimate its impact. The policy had short-term effects on students’ enrollment in school: For every telesecundaria per 50 children, 10 students enrolled in middle school and two pursued further education. It also had a long-term influence on the educational and employment trajectory of its graduates. Each additional year of education induced by the policy increased average income by nearly 18 percent. This effect was attributable to more graduates entering the labor force and shifting from agriculture and the informal sector. Similarly, Fabregas (2019) leveraged a later expansion of this policy in 1993 and found that each additional telesecundaria per 1,000 adolescents led to an average increase of 0.2 years of education, and a decline in fertility for women, but no conclusive evidence of long-term effects on labor market outcomes.

It is crucial to interpret these results keeping in mind the settings where the interventions were implemented. As we mention above, part of the reason why they have proven effective is that the “counterfactual” conditions for learning (i.e., what would have happened to learners in the absence of such programs) was either to not have access to schooling or to be exposed to low-quality instruction. School systems interested in taking up similar interventions should assess the extent to which their learners (or parts of their learner population) find themselves in similar conditions to the subjects of the studies above. This illustrates the importance of assessing the needs of a system before reviewing the evidence.

Preloaded hardware

Technology also seems well positioned to disseminate educational materials. Specifically, hardware (e.g., desktop computers, laptops, or tablets) could also help deliver educational software (e.g., word processing, reference texts, and/or games). In theory, these materials could not only undergo a quality assurance review (e.g., by curriculum specialists and educators), but also draw on the interactions with learners for adjustments (e.g., identifying areas needing reinforcement) and enable interactions between learners and educators.

In practice, however, most initiatives that have provided learners with free computers, laptops, and netbooks do not leverage any of the opportunities mentioned above. Instead, they install a standard set of educational materials and hope that learners find them helpful enough to take them up on their own. Students rarely do so, and instead use the laptops for recreational purposes—often, to the detriment of their learning (see, e.g., Malamud & Pop-Eleches, 2011). In fact, free netbook initiatives have not only consistently failed to improve academic achievement in math or language (e.g., Cristia et al., 2017), but they have had no impact on learners’ general computer skills (e.g., Beuermann et al., 2015). Some of these initiatives have had small impacts on cognitive skills, but the mechanisms through which those effects occurred remains unclear.

To our knowledge, the only successful deployment of a free laptop initiative was one in which a team of researchers equipped the computers with remedial software. Mo et al. (2013) evaluated a version of the One Laptop per Child (OLPC) program for grade 3 students in migrant schools in Beijing, China in which the laptops were loaded with a remedial software mapped onto the national curriculum for math (similar to the software products that we discuss under “practice exercises” below). After nine months, the program improved math achievement by 0.17 SDs and computer skills by 0.33 SDs. If a school system decides to invest in free laptops, this study suggests that the quality of the software on the laptops is crucial.

To date, however, the evidence suggests that children do not learn more from interacting with laptops than they do from textbooks. For example, Bando, Gallego, Gertler, and Romero (2016) compared the effect of free laptop and textbook provision in 271 elementary schools in disadvantaged areas of Honduras. After seven months, students in grades 3 and 6 who had received the laptops performed on par with those who had received the textbooks in math and language. Further, even if textbooks essentially become obsolete at the end of each school year, whereas laptops can be reloaded with new materials for each year, the costs of laptop provision (not just the hardware, but also the technical assistance, Internet, and training associated with it) are not yet low enough to make them a more cost-effective way of delivering content to learners.

Evidence on the provision of tablets equipped with software is encouraging but limited. For example, de Hoop et al. (2020) evaluated a composite intervention for first grade students in Zambia’s Eastern Province that combined infrastructure (electricity via solar power), hardware (projectors and tablets), and educational materials (lesson plans for educators and interactive lessons for learners, both loaded onto the tablets and mapped onto the official Zambian curriculum). After 14 months, the intervention had improved student early-grade reading by 0.4 SDs, oral vocabulary scores by 0.25 SDs, and early-grade math by 0.22 SDs. It also improved students’ achievement by 0.16 on a locally developed assessment. The multifaceted nature of the program, however, makes it challenging to identify the components that are driving the positive effects. Pitchford (2015) evaluated an intervention that provided tablets equipped with educational “apps,” to be used for 30 minutes per day for two months to develop early math skills among students in grades 1 through 3 in Lilongwe, Malawi. The evaluation found positive impacts in math achievement, but the main study limitation is that it was conducted in a single school.

Facilitating differentiated instruction

Another way in which technology may improve educational outcomes is by facilitating the delivery of differentiated or individualized instruction. Most developing countries massively expanded access to schooling in recent decades by building new schools and making education more affordable, both by defraying direct costs, as well as compensating for opportunity costs (Duflo, 2001; World Bank, 2018). These initiatives have not only rapidly increased the number of learners enrolled in school, but have also increased the variability in learner’ preparation for schooling. Consequently, a large number of learners perform well below grade-based curricular expectations (see, e.g., Duflo, Dupas, & Kremer, 2011; Pritchett & Beatty, 2015). These learners are unlikely to get much from “one-size-fits-all” instruction, in which a single educator delivers instruction deemed appropriate for the middle (or top) of the achievement distribution (Banerjee & Duflo, 2011). Technology could potentially help these learners by providing them with: (a) instruction and opportunities for practice that adjust to the level and pace of preparation of each individual (known as “computer-adaptive learning” (CAL)); or (b) live, one-on-one tutoring.

Computer-adaptive learning

One of the main comparative advantages of technology is its ability to diagnose students’ initial learning levels and assign students to instruction and exercises of appropriate difficulty. No individual educator—no matter how talented—can be expected to provide individualized instruction to all learners in his/her class simultaneously . In this respect, technology is uniquely positioned to complement traditional teaching. This use of technology could help learners master basic skills and help them get more out of schooling.

Although many software products evaluated in recent years have been categorized as CAL, many rely on a relatively coarse level of differentiation at an initial stage (e.g., a diagnostic test) without further differentiation. We discuss these initiatives under the category of “increasing opportunities for practice” below. CAL initiatives complement an initial diagnostic with dynamic adaptation (i.e., at each response or set of responses from learners) to adjust both the initial level of difficulty and rate at which it increases or decreases, depending on whether learners’ responses are correct or incorrect.

Existing evidence on this specific type of programs is highly promising. Most famously, Banerjee et al. (2007) evaluated CAL software in Vadodara, in the Indian state of Gujarat, in which grade 4 students were offered two hours of shared computer time per week before and after school, during which they played games that involved solving math problems. The level of difficulty of such problems adjusted based on students’ answers. This program improved math achievement by 0.35 and 0.47 SDs after one and two years of implementation, respectively. Consistent with the promise of personalized learning, the software improved achievement for all students. In fact, one year after the end of the program, students assigned to the program still performed 0.1 SDs better than those assigned to a business as usual condition. More recently, Muralidharan, et al. (2019) evaluated a “blended learning” initiative in which students in grades 4 through 9 in Delhi, India received 45 minutes of interaction with CAL software for math and language, and 45 minutes of small group instruction before or after going to school. After only 4.5 months, the program improved achievement by 0.37 SDs in math and 0.23 SDs in Hindi. While all learners benefited from the program in absolute terms, the lowest performing learners benefited the most in relative terms, since they were learning very little in school.

We see two important limitations from this body of research. First, to our knowledge, none of these initiatives has been evaluated when implemented during the school day. Therefore, it is not possible to distinguish the effect of the adaptive software from that of additional instructional time. Second, given that most of these programs were facilitated by local instructors, attempts to distinguish the effect of the software from that of the instructors has been mostly based on noncausal evidence. A frontier challenge in this body of research is to understand whether CAL software can increase the effectiveness of school-based instruction by substituting part of the regularly scheduled time for math and language instruction.

Live one-on-one tutoring

Recent improvements in the speed and quality of videoconferencing, as well as in the connectivity of remote areas, have enabled yet another way in which technology can help personalization: live (i.e., real-time) one-on-one tutoring. While the evidence on in-person tutoring is scarce in developing countries, existing studies suggest that this approach works best when it is used to personalize instruction (see, e.g., Banerjee et al., 2007; Banerji, Berry, & Shotland, 2015; Cabezas, Cuesta, & Gallego, 2011).

There are almost no studies on the impact of online tutoring—possibly, due to the lack of hardware and Internet connectivity in low- and middle-income countries. One exception is Chemin and Oledan (2020)’s recent evaluation of an online tutoring program for grade 6 students in Kianyaga, Kenya to learn English from volunteers from a Canadian university via Skype ( videoconferencing software) for one hour per week after school. After 10 months, program beneficiaries performed 0.22 SDs better in a test of oral comprehension, improved their comfort using technology for learning, and became more willing to engage in cross-cultural communication. Importantly, while the tutoring sessions used the official English textbooks and sought in part to help learners with their homework, tutors were trained on several strategies to teach to each learner’s individual level of preparation, focusing on basic skills if necessary. To our knowledge, similar initiatives within a country have not yet been rigorously evaluated.

Expanding opportunities for practice

A third way in which technology may improve the quality of education is by providing learners with additional opportunities for practice. In many developing countries, lesson time is primarily devoted to lectures, in which the educator explains the topic and the learners passively copy explanations from the blackboard. This setup leaves little time for in-class practice. Consequently, learners who did not understand the explanation of the material during lecture struggle when they have to solve homework assignments on their own. Technology could potentially address this problem by allowing learners to review topics at their own pace.

Practice exercises

Technology can help learners get more out of traditional instruction by providing them with opportunities to implement what they learn in class. This approach could, in theory, allow some learners to anchor their understanding of the material through trial and error (i.e., by realizing what they may not have understood correctly during lecture and by getting better acquainted with special cases not covered in-depth in class).

Existing evidence on practice exercises reflects both the promise and the limitations of this use of technology in developing countries. For example, Lai et al. (2013) evaluated a program in Shaanxi, China where students in grades 3 and 5 were required to attend two 40-minute remedial sessions per week in which they first watched videos that reviewed the material that had been introduced in their math lessons that week and then played games to practice the skills introduced in the video. After four months, the intervention improved math achievement by 0.12 SDs. Many other evaluations of comparable interventions have found similar small-to-moderate results (see, e.g., Lai, Luo, Zhang, Huang, & Rozelle, 2015; Lai et al., 2012; Mo et al., 2015; Pitchford, 2015). These effects, however, have been consistently smaller than those of initiatives that adjust the difficulty of the material based on students’ performance (e.g., Banerjee et al., 2007; Muralidharan, et al., 2019). We hypothesize that these programs do little for learners who perform several grade levels behind curricular expectations, and who would benefit more from a review of foundational concepts from earlier grades.

We see two important limitations from this research. First, most initiatives that have been evaluated thus far combine instructional videos with practice exercises, so it is hard to know whether their effects are driven by the former or the latter. In fact, the program in China described above allowed learners to ask their peers whenever they did not understand a difficult concept, so it potentially also captured the effect of peer-to-peer collaboration. To our knowledge, no studies have addressed this gap in the evidence.

Second, most of these programs are implemented before or after school, so we cannot distinguish the effect of additional instructional time from that of the actual opportunity for practice. The importance of this question was first highlighted by Linden (2008), who compared two delivery mechanisms for game-based remedial math software for students in grades 2 and 3 in a network of schools run by a nonprofit organization in Gujarat, India: one in which students interacted with the software during the school day and another one in which students interacted with the software before or after school (in both cases, for three hours per day). After a year, the first version of the program had negatively impacted students’ math achievement by 0.57 SDs and the second one had a null effect. This study suggested that computer-assisted learning is a poor substitute for regular instruction when it is of high quality, as was the case in this well-functioning private network of schools.

In recent years, several studies have sought to remedy this shortcoming. Mo et al. (2014) were among the first to evaluate practice exercises delivered during the school day. They evaluated an initiative in Shaanxi, China in which students in grades 3 and 5 were required to interact with the software similar to the one in Lai et al. (2013) for two 40-minute sessions per week. The main limitation of this study, however, is that the program was delivered during regularly scheduled computer lessons, so it could not determine the impact of substituting regular math instruction. Similarly, Mo et al. (2020) evaluated a self-paced and a teacher-directed version of a similar program for English for grade 5 students in Qinghai, China. Yet, the key shortcoming of this study is that the teacher-directed version added several components that may also influence achievement, such as increased opportunities for teachers to provide students with personalized assistance when they struggled with the material. Ma, Fairlie, Loyalka, and Rozelle (2020) compared the effectiveness of additional time-delivered remedial instruction for students in grades 4 to 6 in Shaanxi, China through either computer-assisted software or using workbooks. This study indicates whether additional instructional time is more effective when using technology, but it does not address the question of whether school systems may improve the productivity of instructional time during the school day by substituting educator-led with computer-assisted instruction.

Increasing learner engagement

Another way in which technology may improve education is by increasing learners’ engagement with the material. In many school systems, regular “chalk and talk” instruction prioritizes time for educators’ exposition over opportunities for learners to ask clarifying questions and/or contribute to class discussions. This, combined with the fact that many developing-country classrooms include a very large number of learners (see, e.g., Angrist & Lavy, 1999; Duflo, Dupas, & Kremer, 2015), may partially explain why the majority of those students are several grade levels behind curricular expectations (e.g., Muralidharan, et al., 2019; Muralidharan & Zieleniak, 2014; Pritchett & Beatty, 2015). Technology could potentially address these challenges by: (a) using video tutorials for self-paced learning and (b) presenting exercises as games and/or gamifying practice.

Video tutorials

Technology can potentially increase learner effort and understanding of the material by finding new and more engaging ways to deliver it. Video tutorials designed for self-paced learning—as opposed to videos for whole class instruction, which we discuss under the category of “prerecorded lessons” above—can increase learner effort in multiple ways, including: allowing learners to focus on topics with which they need more help, letting them correct errors and misconceptions on their own, and making the material appealing through visual aids. They can increase understanding by breaking the material into smaller units and tackling common misconceptions.

In spite of the popularity of instructional videos, there is relatively little evidence on their effectiveness. Yet, two recent evaluations of different versions of the Khan Academy portal, which mainly relies on instructional videos, offer some insight into their impact. First, Ferman, Finamor, and Lima (2019) evaluated an initiative in 157 public primary and middle schools in five cities in Brazil in which the teachers of students in grades 5 and 9 were taken to the computer lab to learn math from the platform for 50 minutes per week. The authors found that, while the intervention slightly improved learners’ attitudes toward math, these changes did not translate into better performance in this subject. The authors hypothesized that this could be due to the reduction of teacher-led math instruction.

More recently, Büchel, Jakob, Kühnhanss, Steffen, and Brunetti (2020) evaluated an after-school, offline delivery of the Khan Academy portal in grades 3 through 6 in 302 primary schools in Morazán, El Salvador. Students in this study received 90 minutes per week of additional math instruction (effectively nearly doubling total math instruction per week) through teacher-led regular lessons, teacher-assisted Khan Academy lessons, or similar lessons assisted by technical supervisors with no content expertise. (Importantly, the first group provided differentiated instruction, which is not the norm in Salvadorian schools). All three groups outperformed both schools without any additional lessons and classrooms without additional lessons in the same schools as the program. The teacher-assisted Khan Academy lessons performed 0.24 SDs better, the supervisor-led lessons 0.22 SDs better, and the teacher-led regular lessons 0.15 SDs better, but the authors could not determine whether the effects across versions were different.

Together, these studies suggest that instructional videos work best when provided as a complement to, rather than as a substitute for, regular instruction. Yet, the main limitation of these studies is the multifaceted nature of the Khan Academy portal, which also includes other components found to positively improve learner achievement, such as differentiated instruction by students’ learning levels. While the software does not provide the type of personalization discussed above, learners are asked to take a placement test and, based on their score, educators assign them different work. Therefore, it is not clear from these studies whether the effects from Khan Academy are driven by its instructional videos or to the software’s ability to provide differentiated activities when combined with placement tests.

Games and gamification

Technology can also increase learner engagement by presenting exercises as games and/or by encouraging learner to play and compete with others (e.g., using leaderboards and rewards)—an approach known as “gamification.” Both approaches can increase learner motivation and effort by presenting learners with entertaining opportunities for practice and by leveraging peers as commitment devices.

There are very few studies on the effects of games and gamification in low- and middle-income countries. Recently, Araya, Arias Ortiz, Bottan, and Cristia (2019) evaluated an initiative in which grade 4 students in Santiago, Chile were required to participate in two 90-minute sessions per week during the school day with instructional math software featuring individual and group competitions (e.g., tracking each learner’s standing in his/her class and tournaments between sections). After nine months, the program led to improvements of 0.27 SDs in the national student assessment in math (it had no spillover effects on reading). However, it had mixed effects on non-academic outcomes. Specifically, the program increased learners’ willingness to use computers to learn math, but, at the same time, increased their anxiety toward math and negatively impacted learners’ willingness to collaborate with peers. Finally, given that one of the weekly sessions replaced regular math instruction and the other one represented additional math instructional time, it is not clear whether the academic effects of the program are driven by the software or the additional time devoted to learning math.

The prognosis:

How can school systems adopt interventions that match their needs.

Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning.

1. Take stock of how your current schools, educators, and learners are engaging with technology .

Carry out a short in-school survey to understand the current practices and potential barriers to adoption of technology (we have included suggested survey instruments in the Appendices); use this information in your decisionmaking process. For example, we learned from conversations with current and former ministers of education from various developing regions that a common limitation to technology use is regulations that hold school leaders accountable for damages to or losses of devices. Another common barrier is lack of access to electricity and Internet, or even the availability of sufficient outlets for charging devices in classrooms. Understanding basic infrastructure and regulatory limitations to the use of education technology is a first necessary step. But addressing these limitations will not guarantee that introducing or expanding technology use will accelerate learning. The next steps are thus necessary.

“In Africa, the biggest limit is connectivity. Fiber is expensive, and we don’t have it everywhere. The continent is creating a digital divide between cities, where there is fiber, and the rural areas.  The [Ghanaian] administration put in schools offline/online technologies with books, assessment tools, and open source materials. In deploying this, we are finding that again, teachers are unfamiliar with it. And existing policies prohibit students to bring their own tablets or cell phones. The easiest way to do it would have been to let everyone bring their own device. But policies are against it.” H.E. Matthew Prempeh, Minister of Education of Ghana, on the need to understand the local context.

2. Consider how the introduction of technology may affect the interactions among learners, educators, and content .

Our review of the evidence indicates that technology may accelerate student learning when it is used to scale up access to quality content, facilitate differentiated instruction, increase opportunities for practice, or when it increases learner engagement. For example, will adding electronic whiteboards to classrooms facilitate access to more quality content or differentiated instruction? Or will these expensive boards be used in the same way as the old chalkboards? Will providing one device (laptop or tablet) to each learner facilitate access to more and better content, or offer students more opportunities to practice and learn? Solely introducing technology in classrooms without additional changes is unlikely to lead to improved learning and may be quite costly. If you cannot clearly identify how the interactions among the three key components of the instructional core (educators, learners, and content) may change after the introduction of technology, then it is probably not a good idea to make the investment. See Appendix A for guidance on the types of questions to ask.

3. Once decisionmakers have a clear idea of how education technology can help accelerate student learning in a specific context, it is important to define clear objectives and goals and establish ways to regularly assess progress and make course corrections in a timely manner .

For instance, is the education technology expected to ensure that learners in early grades excel in foundational skills—basic literacy and numeracy—by age 10? If so, will the technology provide quality reading and math materials, ample opportunities to practice, and engaging materials such as videos or games? Will educators be empowered to use these materials in new ways? And how will progress be measured and adjusted?

4. How this kind of reform is approached can matter immensely for its success.

It is easy to nod to issues of “implementation,” but that needs to be more than rhetorical. Keep in mind that good use of education technology requires thinking about how it will affect learners, educators, and parents. After all, giving learners digital devices will make no difference if they get broken, are stolen, or go unused. Classroom technologies only matter if educators feel comfortable putting them to work. Since good technology is generally about complementing or amplifying what educators and learners already do, it is almost always a mistake to mandate programs from on high. It is vital that technology be adopted with the input of educators and families and with attention to how it will be used. If technology goes unused or if educators use it ineffectually, the results will disappoint—no matter the virtuosity of the technology. Indeed, unused education technology can be an unnecessary expenditure for cash-strapped education systems. This is why surveying context, listening to voices in the field, examining how technology is used, and planning for course correction is essential.

5. It is essential to communicate with a range of stakeholders, including educators, school leaders, parents, and learners .

Technology can feel alien in schools, confuse parents and (especially) older educators, or become an alluring distraction. Good communication can help address all of these risks. Taking care to listen to educators and families can help ensure that programs are informed by their needs and concerns. At the same time, deliberately and consistently explaining what technology is and is not supposed to do, how it can be most effectively used, and the ways in which it can make it more likely that programs work as intended. For instance, if teachers fear that technology is intended to reduce the need for educators, they will tend to be hostile; if they believe that it is intended to assist them in their work, they will be more receptive. Absent effective communication, it is easy for programs to “fail” not because of the technology but because of how it was used. In short, past experience in rolling out education programs indicates that it is as important to have a strong intervention design as it is to have a solid plan to socialize it among stakeholders.

essay about technology and its importance in education

Beyond reopening: A leapfrog moment to transform education?

On September 14, the Center for Universal Education (CUE) will host a webinar to discuss strategies, including around the effective use of education technology, for ensuring resilient schools in the long term and to launch a new education technology playbook “Realizing the promise: How can education technology improve learning for all?”

file-pdf Full Playbook – Realizing the promise: How can education technology improve learning for all? file-pdf References file-pdf Appendix A – Instruments to assess availability and use of technology file-pdf Appendix B – List of reviewed studies file-pdf Appendix C – How may technology affect interactions among students, teachers, and content?

About the Authors

Alejandro j. ganimian, emiliana vegas, frederick m. hess.

  • Media Relations
  • Terms and Conditions
  • Privacy Policy

How Important Is Technology in Education? Benefits, Challenges, and Impact on Students

A group of students use their electronics while sitting at their desks.

Many of today’s high-demand jobs were created in the last decade, according to the International Society for Technology in Education (ISTE). As advances in technology drive globalization and digital transformation, teachers can help students acquire the necessary skills to succeed in the careers of the future.

How important is technology in education? The COVID-19 pandemic is quickly demonstrating why online education should be a vital part of teaching and learning. By integrating technology into existing curricula, as opposed to using it solely as a crisis-management tool, teachers can harness online learning as a powerful educational tool.

The effective use of digital learning tools in classrooms can increase student engagement, help teachers improve their lesson plans, and facilitate personalized learning. It also helps students build essential 21st-century skills.

Virtual classrooms, video, augmented reality (AR), robots, and other technology tools can not only make class more lively, they can also create more inclusive learning environments that foster collaboration and inquisitiveness and enable teachers to collect data on student performance.

Still, it’s important to note that technology is a tool used in education and not an end in itself. The promise of educational technology lies in what educators do with it and how it is used to best support their students’ needs.

Educational Technology Challenges

BuiltIn reports that 92 percent of teachers understand the impact of technology in education. According to Project Tomorrow, 59 percent of middle school students say digital educational tools have helped them with their grades and test scores. These tools have become so popular that the educational technology market is projected to expand to $342 billion by 2025, according to the World Economic Forum.

However, educational technology has its challenges, particularly when it comes to implementation and use. For example, despite growing interest in the use of AR, artificial intelligence, and other emerging technology, less than 10 percent of schools report having these tools in their classrooms, according to Project Tomorrow. Additional concerns include excessive screen time, the effectiveness of teachers using the technology, and worries about technology equity.

Prominently rising from the COVID-19 crisis is the issue of content. Educators need to be able to develop and weigh in on online educational content, especially to encourage students to consider a topic from different perspectives. The urgent actions taken during this crisis did not provide sufficient time for this. Access is an added concern — for example, not every school district has resources to provide students with a laptop, and internet connectivity can be unreliable in homes.

Additionally, while some students thrive in online education settings, others lag for various factors, including support resources. For example, a student who already struggled in face-to-face environments may struggle even more in the current situation. These students may have relied on resources that they no longer have in their homes.

Still, most students typically demonstrate confidence in using online education when they have the resources, as studies have suggested. However, online education may pose challenges for teachers, especially in places where it has not been the norm.

Despite the challenges and concerns, it’s important to note the benefits of technology in education, including increased collaboration and communication, improved quality of education, and engaging lessons that help spark imagination and a search for knowledge in students.

The Benefits of Technology in Education

Teachers want to improve student performance, and technology can help them accomplish this aim. To mitigate the challenges, administrators should help teachers gain the competencies needed to enhance learning for students through technology. Additionally, technology in the classroom should make teachers’ jobs easier without adding extra time to their day.

Technology provides students with easy-to-access information, accelerated learning, and fun opportunities to practice what they learn. It enables students to explore new subjects and deepen their understanding of difficult concepts, particularly in STEM. Through the use of technology inside and outside the classroom, students can gain 21st-century technical skills necessary for future occupations.

Still, children learn more effectively with direction. The World Economic Forum reports that while technology can help young students learn and acquire knowledge through play, for example, evidence suggests that learning is more effective through guidance from an adult, such as a teacher.

Leaders and administrators should take stock of where their faculty are in terms of their understanding of online spaces. From lessons learned during this disruptive time, they can implement solutions now for the future. For example, administrators could give teachers a week or two to think carefully about how to teach courses not previously online. In addition to an exploration of solutions, flexibility during these trying times is of paramount importance.

Below are examples of how important technology is in education and the benefits it offers to students and teachers.

Increased Collaboration and Communication

Educational technology can foster collaboration. Not only can teachers engage with students during lessons, but students can also communicate with each other. Through online lessons and learning games, students get to work together to solve problems. In collaborative activities, students can share their thoughts and ideas and support each other. At the same time, technology enables one-on-one interaction with teachers. Students can ask classroom-related questions and seek additional help on difficult-to-understand subject matter. At home, students can upload their homework, and teachers can access and view completed assignments using their laptops.

Personalized Learning Opportunities

Technology allows 24/7 access to educational resources. Classes can take place entirely online via the use of a laptop or mobile device. Hybrid versions of learning combine the use of technology from anywhere with regular in-person classroom sessions. In both scenarios, the use of technology to tailor learning plans for each student is possible. Teachers can create lessons based on student interests and strengths. An added benefit is that students can learn at their own pace. When they need to review class material to get a better understanding of essential concepts, students can review videos in the lesson plan. The data generated through these online activities enable teachers to see which students struggled with certain subjects and offer additional assistance and support.

Curiosity Driven by Engaging Content

Through engaging and educational content, teachers can spark inquisitiveness in children and boost their curiosity, which research says has ties to academic success. Curiosity helps students get a better understanding of math and reading concepts. Creating engaging content can involve the use of AR, videos, or podcasts. For example, when submitting assignments, students can include videos or interact with students from across the globe.

Improved Teacher Productivity and Efficiency

Teachers can leverage technology to achieve new levels of productivity, implement useful digital tools to expand learning opportunities for students, and increase student support and engagement. It also enables teachers to improve their instruction methods and personalize learning. Schools can benefit from technology by reducing the costs of physical instructional materials, enhancing educational program efficiency, and making the best use of teacher time.

Become a Leader in Enriching Classrooms through Technology

Educators unfamiliar with some of the technology used in education may not have been exposed to the tools as they prepared for their careers or as part of their professional development. Teachers looking to make the transition and acquire the skills to incorporate technology in education can take advantage of learning opportunities to advance their competencies. For individuals looking to help transform the education system through technology, American University’s School of Education online offers a Master of Arts in Teaching and a Master of Arts in Education Policy and Leadership to prepare educators with essential tools to become leaders. Courses such as Education Program and Policy Implementation and Teaching Science in Elementary School equip graduate students with critical competencies to incorporate technology into educational settings effectively.

Learn more about American University’s School of Education online and its master’s degree programs.

Virtual Reality in Education: Benefits, Tools, and Resources

Data-Driven Decision Making in Education: 11 Tips for Teachers & Administration

Helping Girls Succeed in STEM

BuiltIn, “Edtech 101”

EdTech, “Teaching Teachers to Put Tech Tools to Work”

International Society for Technology in Education, “Preparing Students for Jobs That Don’t Exist”

The Journal, “How Teachers Use Technology to Enrich Learning Experiences”

Pediatric Research, “Early Childhood Curiosity and Kindergarten Reading and Math Academic Achievement”

Project Tomorrow, “Digital Learning: Peril or Promise for Our K-12 Students”

World Economic Forum, “The Future of Jobs Report 2018”

World Economic Forum, “Learning through Play: How Schools Can Educate Students through Technology”

Request Information

AU Program Helper

This AI chatbot provides automated responses, which may not always be accurate. By continuing with this conversation, you agree that the contents of this chat session may be transcribed and retained. You also consent that this chat session and your interactions, including cookie usage, are subject to our  privacy policy .

  • Future Students
  • Current Students
  • Faculty/Staff

Stanford Graduate School of Education

News and Media

  • News & Media Home
  • Research Stories
  • School's In
  • In the Media

You are here

How technology is reinventing education.

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of  Stanford Graduate School of Education  (GSE), who is also a professor of educational technology at the GSE and faculty director of the  Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately  worried  that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or  coach  students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the  AI + Education initiative  at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of  CRAFT  (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the  Digital Learning initiative  at the Stanford Accelerator for Learning, which runs a program exploring the use of  virtual field trips  to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”

Gamification

Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

More Stories

Kids getting onto a school bus

⟵ Go to all Research Stories

Get the Educator

Subscribe to our monthly newsletter.

Stanford Graduate School of Education

482 Galvez Mall Stanford, CA 94305-3096 Tel: (650) 723-2109

  • Contact Admissions
  • GSE Leadership
  • Site Feedback
  • Web Accessibility
  • Career Resources
  • Faculty Open Positions
  • Explore Courses
  • Academic Calendar
  • Office of the Registrar
  • Cubberley Library
  • StanfordWho
  • StanfordYou

Improving lives through learning

Make a gift now

  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Non-Discrimination
  • Accessibility

© Stanford University , Stanford , California 94305 .

  • Essay Editor

Essay on the Importance of Technology in Education

1. introduction.

Technology has become an integral part of education, revolutionizing the way students learn and teachers instruct. The purpose of this essay is to explore the significance of technology in education and its impact on modern-day learning environments. As we delve into this topic, we will examine the various ways in which technology has transformed traditional educational practices, as well as the challenges and opportunities it presents. By understanding the importance of technology in education, we can gain insight into how it can be leveraged to improve student engagement, facilitate personalized learning, and prepare students for the demands of the 21st century. This essay will also discuss the role of educators in integrating technology effectively and the implications for the future of education. Ultimately, this exploration aims to highlight the vital role that technology plays in shaping the education landscape and the potential it holds for fostering innovation and empowering students to succeed in a rapidly evolving digital world.

2. Enhancing Learning Experiences with Technology

With the rapid advancement of technology, its impact on education has been profound. The use of technology in the classroom has the potential to significantly enhance the learning experiences of students. One of the key ways technology enhances learning experiences is through its ability to provide personalized education. Through the use of digital learning platforms and adaptive software, students can receive personalized lessons and exercises tailored to their individual needs and abilities. This personalized approach allows students to learn at their own pace, resulting in a more effective and efficient learning experience. In addition to personalized education, technology also offers enhanced learning opportunities through interactive and immersive learning experiences. Virtual reality, simulations, and educational games provide students with engaging and interactive ways to learn difficult concepts. These tools not only make learning more enjoyable for students but also help them better understand and retain the material. Furthermore, technology facilitates collaborative learning by allowing students to connect and work together on projects and assignments regardless of their physical location. This fosters a more inclusive and engaging learning environment, where students can benefit from diverse perspectives and ideas. Overall, the integration of technology in education has the potential to significantly enhance the learning experiences of students. By providing personalized education, interactive learning opportunities, and facilitating collaboration, technology empowers students to become active and engaged learners, ultimately resulting in improved academic outcomes and better preparation for the future.

3. Promoting Student Engagement and Collaboration

In today's educational landscape, technology plays a crucial role in promoting student engagement and collaboration. With the integration of digital tools and platforms, educators are able to create interactive and immersive learning experiences that captivate students' attention and foster their active participation in the learning process. Technology provides a wide range of multimedia resources, such as videos, simulations, and interactive tutorials, that serve to enhance student engagement by catering to different learning styles and preferences. Moreover, digital collaboration tools enable students to work together on projects, conduct research, and exchange ideas in real time, regardless of their physical location. This not only facilitates a more dynamic and inclusive learning environment, but also helps students develop essential teamwork and communication skills that are highly valued in the modern workforce. One of the key benefits of technology in education is its ability to personalize the learning experience for each student, thereby increasing their engagement and motivation. Adaptive learning platforms use algorithms to assess individual students' abilities and learning pace, and then provide tailored content and feedback to address their specific needs. This personalized approach not only keeps students actively involved in their own learning, but also allows educators to focus on guiding and supporting students in areas where they need assistance. Additionally, the use of collaborative platforms, such as online discussion forums and cloud-based document sharing, enables students to engage in meaningful interactions with their peers and teachers, leading to a deeper understanding of the subject matter and the development of critical thinking skills. Ultimately, technology in education promotes student engagement and collaboration by creating a more interactive, flexible, and inclusive learning environment that prepares students for success in the digital age.

4. Facilitating Personalized Learning

Facilitating personalized learning through technology is a crucial aspect of modern education. By leveraging digital tools and resources, educators can cater to the individual needs and learning styles of each student, creating a more tailored and effective learning experience. Technology allows for adaptive learning platforms that adjust to students' progress in real time, providing personalized feedback and support. This not only helps students to learn at their own pace, but also ensures that they are adequately challenged and engaged. In addition, technology enables the use of data-driven insights to identify areas where students may need additional support or enrichment, allowing teachers to intervene proactively. Through personalized learning plans and digital resources, students can explore and delve deeper into their areas of interest, fostering a sense of ownership and autonomy in their learning journey. Ultimately, technology plays a vital role in empowering students to take charge of their education, while supporting educators in meeting the diverse needs of their learners. By integrating technology into personalized learning approaches, educators can truly unlock the potential of every student, leading to improved academic outcomes and a more fulfilling educational experience.

5. Preparing Students for the Digital Age

In today’s rapidly evolving digital landscape, it is essential to prepare students for the challenges and opportunities of the digital age. Technology has become an integral part of our daily lives, and it is crucial for educational institutions to equip students with the necessary skills to thrive in this digital era. By integrating technology into the curriculum, students can develop proficiency in digital literacy, critical thinking, problem-solving, and collaboration – skills that are essential for success in the modern workforce. Furthermore, preparing students for the digital age involves fostering a mindset of adaptability and continuous learning. Technology is constantly evolving, and it is important for students to embrace change and be open to acquiring new knowledge and skills. Additionally, educators play a crucial role in guiding students towards responsible and ethical use of technology, as well as promoting digital citizenship. By providing students with a solid foundation in technology, educational institutions can empower them to navigate the digital landscape with confidence and competence, ultimately preparing them for success in the digital age.

6. Conclusion

In conclusion, the integration of technology in education has proved to be essential in enhancing the learning experience for students. From improved access to information and resources to the development of vital digital skills, technology has significantly transformed the traditional classroom setting. It has also enabled personalized learning, allowing educators to cater to the individual needs of their students and make education more inclusive. Additionally, technology has facilitated collaboration and communication among students and teachers, breaking down geographical barriers and promoting a globalized approach to learning. Furthermore, the use of technology in education has also been instrumental in preparing students for the demands of the modern workforce, where digital literacy is increasingly valued. It has not only expanded the possibilities for teaching and learning but has also revolutionized the way assessments and evaluations are conducted. However, it is important to carefully balance the benefits of technology with potential drawbacks such as access inequality and digital distractions. Overall, the importance of technology in education cannot be overstated, and its continued integration will undoubtedly shape the future of learning and teaching.

Related articles

The impact of technology on learning and student engagement in the classroom.

1. Introduction The advent of new technologies and the use of technology in the classroom bring with them challenges and demands for faculty and students alike. There are high expectations that the impact of technology on teaching and learning will continue to offer exciting opportunities for both teaching and learning, as well as solutions to existing and new problems relating to the effectiveness of teaching and high levels of student engagement. Many institutions and faculty have indeed embr ...

El impacto de la reforma educativa en el sistema escolar actual

1. Introducción Una grave problemática actual en la educación mexicana es la calidad del sistema escolar, que a pesar de ser el tercer aspecto más mencionado en las diez acciones prioritarias que planteó el gobierno, en los cinco compromisos del presidente de la República y de que el Plan Nacional de Desarrollo (2013-2018) tiene como uno de sus cinco ejes, la educación de calidad, según la opinión de la sociedad aún esta no ha sido alcanzada. Esto es debido a que el último diagnóstico arrojó re ...

The Importance of Developing Competências for Success in the Modern Workplace

1. Introduction In order to attain a level of success in the modern employment and business environment, individuals need to develop competencies or strengths. Without strengths and skill set development, one's likelihood for success is weakened in a perpetual era of rapid change in our employment and business environments. It is critical for both employers and employees to engage and collaborate in creating success methodologies for both phases of a person's career. Ideally, the development of ...

Enhancing English Proficiency: Strategies and Challenges in a Multilingual World

1. Introduction The development of English proficiency among non-native English speaking students is a matter of growing concern worldwide, and especially in Asia. The importance of proficiency in English cannot be overemphasized. Not only is English serving as a medium of instruction in most of the world's prestigious universities and institutions, it is also a means of access to a wide range of information. English proficiency is essential for the professional and social success of individual ...

La importancia de un enfoque multidisciplinario en la resolución de problemas complejos

1. Introducción La toma de decisiones y la resolución de problemas en el mundo actual se enfrentan a un conjunto de circunstancias que los hacen cada vez más complejos. Esta complejidad es consecuencia de la creciente interdependencia que caracteriza a las sociedades de nuestro tiempo, así como de la existencia de múltiples y variadas dimensiones e interrelaciones dentro de los sistemas sociales, económicos y políticos. Esa realidad ha convertido a la especialización profunda, peligrosamente, e ...

The Impact of Physical Activity on Motor Development in Early Childhood

1. Introduction According to the World Health Organization, physical activity refers to any activity that involves body movement and is produced by the skeletal muscle at an energy cost exceeding resting values. It is well known that regular practice of physical activity plays a significant role in the health of individuals, with different benefits on physical and psychological health. For example, it has an essential role in the improvement and maintenance of the physical fitness of children, ...

The Impact of Financial Literacy on Personal Credit Scores: An Analysis of FICO Score

1. Introduction How does financial literacy affect individual decision-making in a variety of contexts? This very broad and important question is the subject of study by a fast-growing literature in behavioral economics. The research motivation is the well-documented finding of Gourinchas and Parker (2002) and Agarwal, Driscoll, Gabaix, and Laibson (2009) that U.S. households save, borrow, and default in a manner difficult to reconcile with the classical tenets of life-cycle and permanent-incom ...

The Importance of Research Titles in Academic Writing and Their Impact on Scholarly Communication

1. Introduction The title of a scientific work is one of its most important components. The title is the readers' entry into the work, and by extension, also the author's entry into the memory of the scientific community. In the academic ecosystem, the title of a scientific work is much more than a mere designation. In fact, the title of a work is the first component that will become part of the contemporary texts of humankind. Works of scientific content form part of an ever-expanding text tha ...

The Role of Technology in Education Essay

  • To find inspiration for your paper and overcome writer’s block
  • As a source of information (ensure proper referencing)
  • As a template for you assignment

Role of Technology in Education

The state of the education system has moved to greater heights as compared to that in the past centuries. The 21 st Century has presented to us an education system that is technology driven in which ideas and innovations have outperformed both machine and muscle. That is to say, there is a lot that we can now achieve with technology that we could not even dream about in the past. To address the low level of literacy, economic matters and other workforce needs, technology has helped a great deal ensuring that no child is left behind. This research paper will highlight those areas in education that technological advancement has help boost, more particularly it will zero in on the concept of computing and the internet.

Computer and internet technology has completely brought a new trend in the global education that makes it possible for people to learn from the comfort of their homes, thanks to the online professional development courses. The internet has led to an unprecedented degree of educational content to a wide audience of students and tutors alike. And as they leave colleges into the workforce, students do so with a better understanding of how they can apply technology in their respective jobs in addition to what they covered in the usual curriculum (James L. Morrison, 1998, 2-4).

It is therefore an open secret that technology has enabled tutors as well as students to explore, develop and expand their technical skills through interacting with others in the field all over the globe. Online coordination has broken all the education barriers that used to hinder learning, the students are now enjoying a wide range of ideas and contextual varieties. With he employment of the new technology, teachers have been able to get good tools that that can help them design and deliver lessons that give a reflection of the 21 st Century to motivate students and inspire their creativity. Every step to integrate technology applications in the education system has proved worthwhile in defining a new dimension of education reforms. To be precise, Computing has contributed greatly to peoples enrichment and enhancement, thus transforming their lives for the better. This does not only occur in the education field, but also in the areas of entertainment, business and communication…in a few years time we will be in what can be dubbed “the digital decade” [for luck of a better word]. The major challenge in using technology in education is on how to customize it in such a way that it would be effective in helping everyone realize their full potential, from a preschooler to a life long learner.

James L. Morrison. (1998). “The Role of Technology in Education Today and Tomorrow”: The Horizon. 2-4.

Lewis, L., Alexander, D., and Farris, E. (1997)“Distance Education in Higher Education Institutions”. Washington, D.C.: U.S. Department of Education. 12-22.

  • Erickson's Theory of Development
  • Is Studying in American Colleges and Universities Worthwhile?
  • Do Assessments of Student Learning Have to Be Rigorous to Be Worthwhile?
  • Relevance of Technology in Schools
  • Online Learning in Vocational Education and Training
  • Applied Technology in Libraries: PC Reservation Software in Libraries
  • Classroom of the Future
  • Educational Process With and Without IT
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2021, October 23). The Role of Technology in Education. https://ivypanda.com/essays/the-role-of-technology-in-education/

"The Role of Technology in Education." IvyPanda , 23 Oct. 2021, ivypanda.com/essays/the-role-of-technology-in-education/.

IvyPanda . (2021) 'The Role of Technology in Education'. 23 October.

IvyPanda . 2021. "The Role of Technology in Education." October 23, 2021. https://ivypanda.com/essays/the-role-of-technology-in-education/.

1. IvyPanda . "The Role of Technology in Education." October 23, 2021. https://ivypanda.com/essays/the-role-of-technology-in-education/.

Bibliography

IvyPanda . "The Role of Technology in Education." October 23, 2021. https://ivypanda.com/essays/the-role-of-technology-in-education/.

  • Entertainment
  • Environment
  • Information Science and Technology
  • Social Issues

Home Essay Samples Information Science and Technology Technology in Education

Technology in Education: An Argumentative Perspective

Table of contents, introduction, enhanced engagement and interaction, personalized learning and flexibility, development of 21st-century skills, the risks of overreliance and inequity, the balance between tradition and innovation, works cited.

*minimum deadline

Cite this Essay

To export a reference to this article please select a referencing style below

writer logo

  • Computer Security
  • Class Reflection
  • Cloud Computing

Related Essays

Need writing help?

You can always rely on us no matter what type of paper you need

*No hidden charges

100% Unique Essays

Absolutely Confidential

Money Back Guarantee

By clicking “Send Essay”, you agree to our Terms of service and Privacy statement. We will occasionally send you account related emails

You can also get a UNIQUE essay on this or any other topic

Thank you! We’ll contact you as soon as possible.

Logo

Essay on Impact of Technology on Education

Students are often asked to write an essay on Impact of Technology on Education in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Impact of Technology on Education

Introduction.

Technology has greatly influenced education. It has changed the way we learn and teach, making education more accessible and engaging.

Interactive Learning

Technology has introduced interactive learning tools like smart boards and tablets. They make lessons more engaging and fun, helping students understand better.

Online Education

With the internet, learning is not limited to classrooms. Online courses, video lectures, and digital libraries have made education accessible to everyone, everywhere.

Improved Communication

Technology has improved communication between students and teachers. Emails, chats, and video calls make it easier to discuss and solve doubts.

250 Words Essay on Impact of Technology on Education

The advent of technology in education.

The advent of technology has revolutionized various sectors, with education being one of the most impacted. It has transformed traditional teaching methods, making learning more engaging, accessible, and efficient.

Enhancing Accessibility and Flexibility

Technology has democratized education, breaking down geographical barriers. Online learning platforms and digital libraries provide easy access to a vast range of resources. This flexibility allows students to learn at their own pace, fostering a self-driven learning environment.

Interactive Learning Experience

Technological tools like virtual reality, digital simulations, and gamified learning apps have made education more interactive. These tools cater to different learning styles, enhancing comprehension, and retention of knowledge.

Collaborative Learning

Tools like cloud-based applications and social media platforms promote collaborative learning. They enable students to work together on projects, share ideas, and gain diverse perspectives, fostering critical thinking and problem-solving skills.

Challenges Posed by Technology

Despite its benefits, technology also poses challenges. The digital divide, where some students lack access to technology, can exacerbate educational inequalities. Additionally, over-reliance on technology might hinder the development of interpersonal skills and critical thinking.

500 Words Essay on Impact of Technology on Education

The advent of technology has dramatically transformed various sectors globally, and education is no exception. Over the years, technology has played a pivotal role in reshaping educational landscapes, creating new opportunities for both students and educators. This essay explores the impact of technology on education, focusing on its benefits, challenges, and future implications.

The Benefits of Technology in Education

One of the most significant benefits of technology in education is the democratization of knowledge. Digital platforms such as online libraries, e-books, and educational websites have made information accessible to anyone with an internet connection, breaking down geographical and socio-economic barriers.

The Challenges of Technology in Education

Despite the numerous benefits, technology’s integration into education is not without challenges. One of the primary issues is the digital divide, which refers to the disparity in access to technology between different socioeconomic groups. This divide exacerbates educational inequalities, as students who lack access to digital resources are disadvantaged.

Another challenge is the potential for distraction. With the proliferation of digital devices, students may be tempted to use them for non-educational purposes, which can hinder their academic progress. Additionally, the over-reliance on technology may diminish critical thinking and problem-solving skills, as students may resort to quick online solutions rather than engaging in deep, thoughtful analysis.

Future Implications

However, as technology continues to evolve, it is crucial to address its challenges. Policymakers and educators must work together to bridge the digital divide, ensuring that all students can benefit from technological advancements. Additionally, digital literacy programs should be implemented to teach students how to use technology responsibly and effectively.

In conclusion, technology has had a profound impact on education, offering numerous benefits but also presenting significant challenges. As we navigate the digital age, it is essential to harness technology’s potential to enhance education while mitigating its drawbacks. This balanced approach will ensure that technology serves as a powerful tool in shaping a more equitable, engaging, and efficient educational landscape.

That’s it! I hope the essay helped you.

Apart from these, you can look at all the essays by clicking here .

Happy studying!

Leave a Reply Cancel reply

essay about technology and its importance in education

Home — Essay Samples — Information Science and Technology — Technology in Education — The Role of Technology in Modern Education

test_template

The Role of Technology in Modern Education

  • Categories: Education Goals Technology in Education

About this sample

close

Words: 538 |

Published: Jun 13, 2024

Words: 538 | Page: 1 | 3 min read

Table of contents

Introduction, body paragraph 1: the benefits of technology in education, body paragraph 2: enhancing engagement and collaboration, body paragraph 3: overcoming challenges in technological integration, body paragraph 4: the future of technology in education.

Image of Alex Wood

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Dr Jacklynne

Verified writer

  • Expert in: Education Information Science and Technology

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

1 pages / 468 words

2 pages / 801 words

4 pages / 1860 words

2 pages / 865 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Technology in Education

Today, technology is deeply embedded in all sectors of education. From online learning platforms to virtual classrooms, the use of technology has become a necessity for schools, colleges and universities. One specific tool that [...]

The integration of technology into educational systems has sparked extensive debate among educators, policymakers, and stakeholders. Proponents argue that technology enhances learning experiences, fosters engagement, and [...]

Spam emails have become a ubiquitous nuisance, clogging up inboxes and wasting valuable time for faculty members at universities and academic institutions. Faculty Row, a popular social networking platform for academics, has [...]

In today's digital age, cell phones have become an integral part of our daily lives, including in the classroom setting. The debate over whether cell phones should be allowed in schools has been ongoing, with proponents arguing [...]

The author's passion for technology and the impact of technology on the world Interest in problem-solving and its connection to technology Pursuing a diploma course in technology after secondary school Work [...]

Many teachers believe that a smartphone is nothing but a distraction tool. As many people think that it is true, there is also the idea that a smartphone could be the biggest learning tool in our century. January 9th, 2007 was [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

essay about technology and its importance in education

University of the People Logo

Higher Education News , Tips for Online Students

Discovering the Importance of Technology in Education 

essay about technology and its importance in education

Updated: June 19, 2024

Published: May 24, 2019

iStock-888791812 (1)

Technology has taken over our world and has dramatically changed the way we live, work, and learn. In the education sector, technology has been a game-changer and has transformed the traditional methods of teaching and learning.  In a classroom setting, students are often given a lot of information to process quickly. This can be overwhelming and cause confusion. Technology provides access to numerous online resources that support independent learning and research. It also helps simplify the learning process by making concepts easier to understand, for example through instructional videos.   

Gone are the days of rote memorization and blackboard lectures. Today’s students are digital natives, who have grown up surrounded by technology and are accustomed to a more interactive, dynamic learning experience. Let’s take a closer look at the importance of technology in education.  

essay about technology and its importance in education

How Important is Technology in Education?  

Technology enhances the learning experience for students by providing them with the tools and resources necessary to succeed. From online resources that help simplify complex concepts to interactive learning experiences that keep students engaged, technology provides students with the support they need to thrive in the classroom and beyond. 

Here are reasons why technology is important in education. They include more engaged students, support for multiple learning styles, better collaboration, more instant feedback for teachers, and preparation for the future.   Let’s take a closer look at the importance of technology in education:  

Enhances Creativity and Innovation  

Technology has opened up a world of opportunities for students to be creative and innovative. With access to a wealth of information and resources at their fingertips, students can experiment, explore and bring their ideas to life.   

This type of hands-on learning is much more engaging and enjoyable for students and helps to foster critical thinking skills. For example, students can use graphic design software to create posters, animations, or videos to present their ideas.   

They can use 3D printing to design and create prototypes of their inventions. They can even use virtual and augmented reality to bring their ideas to life and make them more interactive.  

Supports Personalized Learning  

One of the biggest benefits of technology in education is personalized learning. With online resources and educational software, students can find information that is tailored to their needs, interests, and learning style.   

They can work at their own pace, repeat lessons if they need to, and access information that is relevant to their studies. This type of individualized learning can help students to stay motivated and achieve better results.  

Improves Communication and Collaboration  

Technology has revolutionized the way students, teachers, and administrators communicate and collaborate. With online platforms and social media, students can share ideas, work on projects, and stay connected no matter where they are. They can even work on projects with classmates from other schools or countries, breaking down geographical barriers and building a sense of community in the classroom.   

Furthermore, teachers can use technology to create interactive lessons, online quizzes and tests, and provide instant feedback to students, helping them to stay on track and improve their performance.  

Teaches Students How to be Responsible Online  

With so many social media options out there, it’s no surprise that students are already digital natives. But by bringing technology into the classroom, teachers get to help these students learn how to be responsible and make positive impacts in the digital world. The classroom becomes a mini version of the online world where students get to practice communicating, searching, and interacting with others just like they would in the real digital world.   

Makes Learning More Fun  

Students today are heavily reliant on technology in their daily lives outside the classroom. But incorporating technology in the classroom can not only make learning more interesting, but also help to reinforce the material taught. One innovative teaching method, game-based learning (GBL), involves using interactive games and leaderboards to deliver lessons, making the learning process much more engaging for students.  

With technology, students can also create multimedia projects and share their work with classmates, adding a creative element to the learning experience. Thanks to virtual reality (VR) and augmented reality (AR), students can take virtual field trips and simulations that can offer hands-on experiences that bring subjects to life.   

Prepares Students for the Future  

Technology is a critical tool for preparing students for the future. The workforce is rapidly evolving and technology is playing a significant role. Students need to be equipped with the skills they need to succeed in the digital age.   

Technology provides students with the tools and resources they need to develop a range of essential skills such as problem-solving, critical thinking, and collaboration. It also provides them with exposure to a variety of digital tools and platforms, helping them to become confident and proficient users.  

essay about technology and its importance in education

What Is the Role of Technology in Education?: The Future  

Wondering what is the role of technology in education ? The 3 important roles technology plays in education are increased collaboration and communication, personalized learning opportunities, and engaging content.  

The future of technology in education is bright and full of possibilities. From virtual and augmented reality to artificial intelligence and machine learning, technology is constantly evolving, and there is so much more to come. Virtual and augmented reality will soon become an integral part of the education experience, allowing students to immerse themselves in interactive, 3D simulations of real-life scenarios. Some benefits of technology in education include improved adaptability, more enriched collaboration, more enjoyable learning experiences, enhanced feedback, better connections, improved tech skills, and reduced costs.  

Artificial intelligence will also play a big role, with chatbots and AI-powered tutors providing instant feedback and support to students. Machine learning will also help to personalize the learning experience, making it more effective and efficient.  

In conclusion, technology has transformed the way we learn, and its impact on education has been profound. It has opened up new avenues for creativity and innovation, supported personalized learning, improved communication and collaboration, and prepared students for the future. As technology continues to evolve, it will be exciting to see how it will continue to shape and improve the education sector.  

In this article

At UoPeople, our blog writers are thinkers, researchers, and experts dedicated to curating articles relevant to our mission: making higher education accessible to everyone.

This site belongs to UNESCO's International Institute for Educational Planning

Home

IIEP Learning Portal

essay about technology and its importance in education

Search form

  • issue briefs
  • Improve learning

Information and communication technology (ICT) in education

Information and communications technology (ict) can impact student learning when teachers are digitally literate and understand how to integrate it into curriculum..

Schools use a diverse set of ICT tools to communicate, create, disseminate, store, and manage information.(6) In some contexts, ICT has also become integral to the teaching-learning interaction, through such approaches as replacing chalkboards with interactive digital whiteboards, using students’ own smartphones or other devices for learning during class time, and the “flipped classroom” model where students watch lectures at home on the computer and use classroom time for more interactive exercises.

When teachers are digitally literate and trained to use ICT, these approaches can lead to higher order thinking skills, provide creative and individualized options for students to express their understandings, and leave students better prepared to deal with ongoing technological change in society and the workplace.(18)

ICT issues planners must consider include: considering the total cost-benefit equation, supplying and maintaining the requisite infrastructure, and ensuring investments are matched with teacher support and other policies aimed at effective ICT use.(16)

Issues and Discussion

Digital culture and digital literacy: Computer technologies and other aspects of digital culture have changed the ways people live, work, play, and learn, impacting the construction and distribution of knowledge and power around the world.(14) Graduates who are less familiar with digital culture are increasingly at a disadvantage in the national and global economy. Digital literacy—the skills of searching for, discerning, and producing information, as well as the critical use of new media for full participation in society—has thus become an important consideration for curriculum frameworks.(8)

In many countries, digital literacy is being built through the incorporation of information and communication technology (ICT) into schools. Some common educational applications of ICT include:

  • One laptop per child: Less expensive laptops have been designed for use in school on a 1:1 basis with features like lower power consumption, a low cost operating system, and special re-programming and mesh network functions.(42) Despite efforts to reduce costs, however, providing one laptop per child may be too costly for some developing countries.(41)
  • Tablets: Tablets are small personal computers with a touch screen, allowing input without a keyboard or mouse. Inexpensive learning software (“apps”) can be downloaded onto tablets, making them a versatile tool for learning.(7)(25) The most effective apps develop higher order thinking skills and provide creative and individualized options for students to express their understandings.(18)
  • Interactive White Boards or Smart Boards : Interactive white boards allow projected computer images to be displayed, manipulated, dragged, clicked, or copied.(3) Simultaneously, handwritten notes can be taken on the board and saved for later use. Interactive white boards are associated with whole-class instruction rather than student-centred activities.(38) Student engagement is generally higher when ICT is available for student use throughout the classroom.(4)
  • E-readers : E-readers are electronic devices that can hold hundreds of books in digital form, and they are increasingly utilized in the delivery of reading material.(19) Students—both skilled readers and reluctant readers—have had positive responses to the use of e-readers for independent reading.(22) Features of e-readers that can contribute to positive use include their portability and long battery life, response to text, and the ability to define unknown words.(22) Additionally, many classic book titles are available for free in e-book form.
  • Flipped Classrooms: The flipped classroom model, involving lecture and practice at home via computer-guided instruction and interactive learning activities in class, can allow for an expanded curriculum. There is little investigation on the student learning outcomes of flipped classrooms.(5) Student perceptions about flipped classrooms are mixed, but generally positive, as they prefer the cooperative learning activities in class over lecture.(5)(35)

ICT and Teacher Professional Development: Teachers need specific professional development opportunities in order to increase their ability to use ICT for formative learning assessments, individualized instruction, accessing online resources, and for fostering student interaction and collaboration.(15) Such training in ICT should positively impact teachers’ general attitudes towards ICT in the classroom, but it should also provide specific guidance on ICT teaching and learning within each discipline. Without this support, teachers tend to use ICT for skill-based applications, limiting student academic thinking.(32) To sup­port teachers as they change their teaching, it is also essential for education managers, supervisors, teacher educators, and decision makers to be trained in ICT use.(11)

Ensuring benefits of ICT investments: To ensure the investments made in ICT benefit students, additional conditions must be met. School policies need to provide schools with the minimum acceptable infrastructure for ICT, including stable and affordable internet connectivity and security measures such as filters and site blockers. Teacher policies need to target basic ICT literacy skills, ICT use in pedagogical settings, and discipline-specific uses. (21) Successful imple­mentation of ICT requires integration of ICT in the curriculum. Finally, digital content needs to be developed in local languages and reflect local culture. (40) Ongoing technical, human, and organizational supports on all of these issues are needed to ensure access and effective use of ICT. (21)

Resource Constrained Contexts: The total cost of ICT ownership is considerable: training of teachers and administrators, connectivity, technical support, and software, amongst others. (42) When bringing ICT into classrooms, policies should use an incremental pathway, establishing infrastructure and bringing in sustainable and easily upgradable ICT. (16) Schools in some countries have begun allowing students to bring their own mobile technology (such as laptop, tablet, or smartphone) into class rather than providing such tools to all students—an approach called Bring Your Own Device. (1)(27)(34) However, not all families can afford devices or service plans for their children. (30) Schools must ensure all students have equitable access to ICT devices for learning.

Inclusiveness Considerations

Digital Divide: The digital divide refers to disparities of digital media and internet access both within and across countries, as well as the gap between people with and without the digital literacy and skills to utilize media and internet.(23)(26)(31) The digital divide both creates and reinforces socio-economic inequalities of the world’s poorest people. Policies need to intentionally bridge this divide to bring media, internet, and digital literacy to all students, not just those who are easiest to reach.

Minority language groups: Students whose mother tongue is different from the official language of instruction are less likely to have computers and internet connections at home than students from the majority. There is also less material available to them online in their own language, putting them at a disadvantage in comparison to their majority peers who gather information, prepare talks and papers, and communicate more using ICT. (39) Yet ICT tools can also help improve the skills of minority language students—especially in learning the official language of instruction—through features such as automatic speech recognition, the availability of authentic audio-visual materials, and chat functions. (2)(17)

Students with different styles of learning: ICT can provide diverse options for taking in and processing information, making sense of ideas, and expressing learning. Over 87% of students learn best through visual and tactile modalities, and ICT can help these students ‘experience’ the information instead of just reading and hearing it. (20)(37) Mobile devices can also offer programmes (“apps”) that provide extra support to students with special needs, with features such as simplified screens and instructions, consistent placement of menus and control features, graphics combined with text, audio feedback, ability to set pace and level of difficulty, appropriate and unambiguous feedback, and easy error correction. (24)(29)

Plans and policies

  • India [ PDF ]
  • Detroit, USA [ PDF ]
  • Finland [ PDF ]
  • Alberta Education. 2012. Bring your own device: A guide for schools . Retrieved from http://education.alberta.ca/admin/technology/research.aspx
  • Alsied, S.M. and Pathan, M.M. 2015. ‘The use of computer technology in EFL classroom: Advantages and implications.’ International Journal of English Language and Translation Studies . 1 (1).
  • BBC. N.D. ‘What is an interactive whiteboard?’ Retrieved from http://www.bbcactive.com/BBCActiveIdeasandResources/Whatisaninteractivewhiteboard.aspx
  • Beilefeldt, T. 2012. ‘Guidance for technology decisions from classroom observation.’ Journal of Research on Technology in Education . 44 (3).
  • Bishop, J.L. and Verleger, M.A. 2013. ‘The flipped classroom: A survey of the research.’ Presented at the 120th ASEE Annual Conference and Exposition. Atlanta, Georgia.
  • Blurton, C. 2000. New Directions of ICT-Use in Education . United National Education Science and Culture Organization (UNESCO).
  • Bryant, B.R., Ok, M., Kang, E.Y., Kim, M.K., Lang, R., Bryant, D.P. and Pfannestiel, K. 2015. ‘Performance of fourth-grade students with learning disabilities on multiplication facts comparing teacher-mediated and technology-mediated interventions: A preliminary investigation. Journal of Behavioral Education. 24.
  • Buckingham, D. 2005. Educación en medios. Alfabetización, aprendizaje y cultura contemporánea, Barcelona, Paidós.
  • Buckingham, D., Sefton-Green, J., and Scanlon, M. 2001. 'Selling the Digital Dream: Marketing Education Technologies to Teachers and Parents.'  ICT, Pedagogy, and the Curriculum: Subject to Change . London: Routledge.
  • "Burk, R. 2001. 'E-book devices and the marketplace: In search of customers.' Library Hi Tech 19 (4)."
  • Chapman, D., and Mählck, L. (Eds). 2004. Adapting technology for school improvement: a global perspective. Paris: International Institute for Educational Planning.
  • Cheung, A.C.K and Slavin, R.E. 2012. ‘How features of educational technology applications affect student reading outcomes: A meta-analysis.’ Educational Research Review . 7.
  • Cheung, A.C.K and Slavin, R.E. 2013. ‘The effectiveness of educational technology applications for enhancing mathematics achievement in K-12 classrooms: A meta-analysis.’ Educational Research Review . 9.
  • Deuze, M. 2006. 'Participation Remediation Bricolage - Considering Principal Components of a Digital Culture.' The Information Society . 22 .
  • Dunleavy, M., Dextert, S. and Heinecke, W.F. 2007. ‘What added value does a 1:1 student to laptop ratio bring to technology-supported teaching and learning?’ Journal of Computer Assisted Learning . 23.
  • Enyedy, N. 2014. Personalized Instruction: New Interest, Old Rhetoric, Limited Results, and the Need for a New Direction for Computer-Mediated Learning . Boulder, CO: National Education Policy Center.
  • Golonka, E.M., Bowles, A.R., Frank, V.M., Richardson, D.L. and Freynik, S. 2014. ‘Technologies for foreign language learning: A review of technology types and their effectiveness.’ Computer Assisted Language Learning . 27 (1).
  • Goodwin, K. 2012. Use of Tablet Technology in the Classroom . Strathfield, New South Wales: NSW Curriculum and Learning Innovation Centre.
  • Jung, J., Chan-Olmsted, S., Park, B., and Kim, Y. 2011. 'Factors affecting e-book reader awareness, interest, and intention to use.' New Media & Society . 14 (2)
  • Kenney, L. 2011. ‘Elementary education, there’s an app for that. Communication technology in the elementary school classroom.’ The Elon Journal of Undergraduate Research in Communications . 2 (1).
  • Kopcha, T.J. 2012. ‘Teachers’ perceptions of the barriers to technology integration and practices with technology under situated professional development.’ Computers and Education . 59.
  • Miranda, T., Williams-Rossi, D., Johnson, K., and McKenzie, N. 2011. "Reluctant readers in middle school: Successful engagement with text using the e-reader.' International journal of applied science and technology . 1 (6).
  • Moyo, L. 2009. 'The digital divide: scarcity, inequality and conflict.' Digital Cultures . New York: Open University Press.
  • Newton, D.A. and Dell, A.G. 2011. ‘Mobile devices and students with disabilities: What do best practices tell us?’ Journal of Special Education Technology . 26 (3).
  • Nirvi, S. (2011). ‘Special education pupils find learning tool in iPad applications.’ Education Week . 30 .
  • Norris, P. 2001. Digital Divide: Civic Engagement, Information Poverty, and the Internet Worldwide . Cambridge, USA: Cambridge University Press.
  • Project Tomorrow. 2012. Learning in the 21st century: Mobile devices + social media = personalized learning . Washington, D.C.: Blackboard K-12.
  • Riasati, M.J., Allahyar, N. and Tan, K.E. 2012. ‘Technology in language education: Benefits and barriers.’ Journal of Education and Practice . 3 (5).
  • Rodriquez, C.D., Strnadova, I. and Cumming, T. 2013. ‘Using iPads with students with disabilities: Lessons learned from students, teachers, and parents.’ Intervention in School and Clinic . 49 (4).
  • Sangani, K. 2013. 'BYOD to the classroom.' Engineering & Technology . 3 (8).
  • Servon, L. 2002. Redefining the Digital Divide: Technology, Community and Public Policy . Malden, MA: Blackwell Publishers.
  • Smeets, E. 2005. ‘Does ICT contribute to powerful learning environments in primary education?’ Computers and Education. 44 .
  • Smith, G.E. and Thorne, S. 2007. Differentiating Instruction with Technology in K-5 Classrooms . Eugene, OR: International Society for Technology in Education.
  • Song, Y. 2014. '"Bring your own device (BYOD)" for seamless science inquiry in a primary school.' Computers & Education. 74 .
  • Strayer, J.F. 2012. ‘How learning in an inverted classroom influences cooperation, innovation and task orientation.’ Learning Environment Research. 15.
  • Tamim, R.M., Bernard, R.M., Borokhovski, E., Abrami, P.C. and Schmid, R.F. 2011. ‘What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. Review of Educational Research. 81 (1).
  • Tileston, D.W. 2003. What Every Teacher Should Know about Media and Technology. Thousand Oaks, CA: Corwin Press.
  • Turel, Y.K. and Johnson, T.E. 2012. ‘Teachers’ belief and use of interactive whiteboards for teaching and learning.’ Educational Technology and Society . 15(1).
  • Volman, M., van Eck, E., Heemskerk, I. and Kuiper, E. 2005. ‘New technologies, new differences. Gender and ethnic differences in pupils’ use of ICT in primary and secondary education.’ Computers and Education. 45 .
  • Voogt, J., Knezek, G., Cox, M., Knezek, D. and ten Brummelhuis, A. 2013. ‘Under which conditions does ICT have a positive effect on teaching and learning? A call to action.’ Journal of Computer Assisted Learning. 29 (1).
  • Warschauer, M. and Ames, M. 2010. ‘Can one laptop per child save the world’s poor?’ Journal of International Affairs. 64 (1).
  • Zuker, A.A. and Light, D. 2009. ‘Laptop programs for students.’ Science. 323 (5910).

Related information

  • Information and communication technologies (ICT)

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: A literature review

Stella timotheou.

1 CYENS Center of Excellence & Cyprus University of Technology (Cyprus Interaction Lab), Cyprus, CYENS Center of Excellence & Cyprus University of Technology, Nicosia-Limassol, Cyprus

Ourania Miliou

Yiannis dimitriadis.

2 Universidad de Valladolid (UVA), Spain, Valladolid, Spain

Sara Villagrá Sobrino

Nikoleta giannoutsou, romina cachia.

3 JRC - Joint Research Centre of the European Commission, Seville, Spain

Alejandra Martínez Monés

Andri ioannou, associated data.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Digital technologies have brought changes to the nature and scope of education and led education systems worldwide to adopt strategies and policies for ICT integration. The latter brought about issues regarding the quality of teaching and learning with ICTs, especially concerning the understanding, adaptation, and design of the education systems in accordance with current technological trends. These issues were emphasized during the recent COVID-19 pandemic that accelerated the use of digital technologies in education, generating questions regarding digitalization in schools. Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses. Such results have engendered the need for schools to learn and build upon the experience to enhance their digital capacity and preparedness, increase their digitalization levels, and achieve a successful digital transformation. Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem, there is a need to show how these impacts are interconnected and identify the factors that can encourage an effective and efficient change in the school environments. For this purpose, we conducted a non-systematic literature review. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors that affect the schools’ digital capacity and digital transformation. The findings suggest that ICT integration in schools impacts more than just students’ performance; it affects several other school-related aspects and stakeholders, too. Furthermore, various factors affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the digital transformation process. The study results shed light on how ICTs can positively contribute to the digital transformation of schools and which factors should be considered for schools to achieve effective and efficient change.

Introduction

Digital technologies have brought changes to the nature and scope of education. Versatile and disruptive technological innovations, such as smart devices, the Internet of Things (IoT), artificial intelligence (AI), augmented reality (AR) and virtual reality (VR), blockchain, and software applications have opened up new opportunities for advancing teaching and learning (Gaol & Prasolova-Førland, 2021 ; OECD, 2021 ). Hence, in recent years, education systems worldwide have increased their investment in the integration of information and communication technology (ICT) (Fernández-Gutiérrez et al., 2020 ; Lawrence & Tar, 2018 ) and prioritized their educational agendas to adapt strategies or policies around ICT integration (European Commission, 2019 ). The latter brought about issues regarding the quality of teaching and learning with ICTs (Bates, 2015 ), especially concerning the understanding, adaptation, and design of education systems in accordance with current technological trends (Balyer & Öz, 2018 ). Studies have shown that despite the investment made in the integration of technology in schools, the results have not been promising, and the intended outcomes have not yet been achieved (Delgado et al., 2015 ; Lawrence & Tar, 2018 ). These issues were exacerbated during the COVID-19 pandemic, which forced teaching across education levels to move online (Daniel, 2020 ). Online teaching accelerated the use of digital technologies generating questions regarding the process, the nature, the extent, and the effectiveness of digitalization in schools (Cachia et al., 2021 ; König et al., 2020 ). Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses (Blaskó et al., 2021 ; Di Pietro et al, 2020 ). Such results have engendered the need for schools to learn and build upon the experience in order to enhance their digital capacity (European Commission, 2020 ) and increase their digitalization levels (Costa et al., 2021 ). Digitalization offers possibilities for fundamental improvement in schools (OECD, 2021 ; Rott & Marouane, 2018 ) and touches many aspects of a school’s development (Delcker & Ifenthaler, 2021 ) . However, it is a complex process that requires large-scale transformative changes beyond the technical aspects of technology and infrastructure (Pettersson, 2021 ). Namely, digitalization refers to “ a series of deep and coordinated culture, workforce, and technology shifts and operating models ” (Brooks & McCormack, 2020 , p. 3) that brings cultural, organizational, and operational change through the integration of digital technologies (JISC, 2020 ). A successful digital transformation requires that schools increase their digital capacity levels, establishing the necessary “ culture, policies, infrastructure as well as digital competence of students and staff to support the effective integration of technology in teaching and learning practices ” (Costa et al, 2021 , p.163).

Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem (Eng, 2005 ), there is a need to show how the different elements of the impact are interconnected and to identify the factors that can encourage an effective and efficient change in the school environment. To address the issues outlined above, we formulated the following research questions:

a) What is the impact of digital technologies on education?

b) Which factors might affect a school’s digital capacity and transformation?

In the present investigation, we conducted a non-systematic literature review of publications pertaining to the impact of digital technologies on education and the factors that affect a school’s digital capacity and transformation. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors which affect the schools’ digital capacity and digital transformation.

Methodology

The non-systematic literature review presented herein covers the main theories and research published over the past 17 years on the topic. It is based on meta-analyses and review papers found in scholarly, peer-reviewed content databases and other key studies and reports related to the concepts studied (e.g., digitalization, digital capacity) from professional and international bodies (e.g., the OECD). We searched the Scopus database, which indexes various online journals in the education sector with an international scope, to collect peer-reviewed academic papers. Furthermore, we used an all-inclusive Google Scholar search to include relevant key terms or to include studies found in the reference list of the peer-reviewed papers, and other key studies and reports related to the concepts studied by professional and international bodies. Lastly, we gathered sources from the Publications Office of the European Union ( https://op.europa.eu/en/home ); namely, documents that refer to policies related to digital transformation in education.

Regarding search terms, we first searched resources on the impact of digital technologies on education by performing the following search queries: “impact” OR “effects” AND “digital technologies” AND “education”, “impact” OR “effects” AND “ICT” AND “education”. We further refined our results by adding the terms “meta-analysis” and “review” or by adjusting the search options based on the features of each database to avoid collecting individual studies that would provide limited contributions to a particular domain. We relied on meta-analyses and review studies as these consider the findings of multiple studies to offer a more comprehensive view of the research in a given area (Schuele & Justice, 2006 ). Specifically, meta-analysis studies provided quantitative evidence based on statistically verifiable results regarding the impact of educational interventions that integrate digital technologies in school classrooms (Higgins et al., 2012 ; Tolani-Brown et al., 2011 ).

However, quantitative data does not offer explanations for the challenges or difficulties experienced during ICT integration in learning and teaching (Tolani-Brown et al., 2011 ). To fill this gap, we analyzed literature reviews and gathered in-depth qualitative evidence of the benefits and implications of technology integration in schools. In the analysis presented herein, we also included policy documents and reports from professional and international bodies and governmental reports, which offered useful explanations of the key concepts of this study and provided recent evidence on digital capacity and transformation in education along with policy recommendations. The inclusion and exclusion criteria that were considered in this study are presented in Table ​ Table1 1 .

Inclusion and exclusion criteria for the selection of resources on the impact of digital technologies on education

Inclusion criteriaExclusion criteria

• Published in 2005 or later

• Review and meta-analysis studies

• Formal education K-12

• Peer-reviewed articles

• Articles in English

• Reports from professional/international bodies

• Governmental reports

• Book chapters

• Ph.D. dissertations and theses

• Conference poster papers

• Conference papers without proceedings

• Resources on higher education

• Resources on pre-school education

• Individual studies

To ensure a reliable extraction of information from each study and assist the research synthesis we selected the study characteristics of interest (impact) and constructed coding forms. First, an overview of the synthesis was provided by the principal investigator who described the processes of coding, data entry, and data management. The coders followed the same set of instructions but worked independently. To ensure a common understanding of the process between coders, a sample of ten studies was tested. The results were compared, and the discrepancies were identified and resolved. Additionally, to ensure an efficient coding process, all coders participated in group meetings to discuss additions, deletions, and modifications (Stock, 1994 ). Due to the methodological diversity of the studied documents we began to synthesize the literature review findings based on similar study designs. Specifically, most of the meta-analysis studies were grouped in one category due to the quantitative nature of the measured impact. These studies tended to refer to student achievement (Hattie et al., 2014 ). Then, we organized the themes of the qualitative studies in several impact categories. Lastly, we synthesized both review and meta-analysis data across the categories. In order to establish a collective understanding of the concept of impact, we referred to a previous impact study by Balanskat ( 2009 ) which investigated the impact of technology in primary schools. In this context, the impact had a more specific ICT-related meaning and was described as “ a significant influence or effect of ICT on the measured or perceived quality of (parts of) education ” (Balanskat, 2009 , p. 9). In the study presented herein, the main impacts are in relation to learning and learners, teaching, and teachers, as well as other key stakeholders who are directly or indirectly connected to the school unit.

The study’s results identified multiple dimensions of the impact of digital technologies on students’ knowledge, skills, and attitudes; on equality, inclusion, and social integration; on teachers’ professional and teaching practices; and on other school-related aspects and stakeholders. The data analysis indicated various factors that might affect the schools’ digital capacity and transformation, such as digital competencies, the teachers’ personal characteristics and professional development, as well as the school’s leadership and management, administration, infrastructure, etc. The impacts and factors found in the literature review are presented below.

Impacts of digital technologies on students’ knowledge, skills, attitudes, and emotions

The impact of ICT use on students’ knowledge, skills, and attitudes has been investigated early in the literature. Eng ( 2005 ) found a small positive effect between ICT use and students' learning. Specifically, the author reported that access to computer-assisted instruction (CAI) programs in simulation or tutorial modes—used to supplement rather than substitute instruction – could enhance student learning. The author reported studies showing that teachers acknowledged the benefits of ICT on pupils with special educational needs; however, the impact of ICT on students' attainment was unclear. Balanskat et al. ( 2006 ) found a statistically significant positive association between ICT use and higher student achievement in primary and secondary education. The authors also reported improvements in the performance of low-achieving pupils. The use of ICT resulted in further positive gains for students, namely increased attention, engagement, motivation, communication and process skills, teamwork, and gains related to their behaviour towards learning. Evidence from qualitative studies showed that teachers, students, and parents recognized the positive impact of ICT on students' learning regardless of their competence level (strong/weak students). Punie et al. ( 2006 ) documented studies that showed positive results of ICT-based learning for supporting low-achieving pupils and young people with complex lives outside the education system. Liao et al. ( 2007 ) reported moderate positive effects of computer application instruction (CAI, computer simulations, and web-based learning) over traditional instruction on primary school student's achievement. Similarly, Tamim et al. ( 2011 ) reported small to moderate positive effects between the use of computer technology (CAI, ICT, simulations, computer-based instruction, digital and hypermedia) and student achievement in formal face-to-face classrooms compared to classrooms that did not use technology. Jewitt et al., ( 2011 ) found that the use of learning platforms (LPs) (virtual learning environments, management information systems, communication technologies, and information- and resource-sharing technologies) in schools allowed primary and secondary students to access a wider variety of quality learning resources, engage in independent and personalized learning, and conduct self- and peer-review; LPs also provide opportunities for teacher assessment and feedback. Similar findings were reported by Fu ( 2013 ), who documented a list of benefits and opportunities of ICT use. According to the author, the use of ICTs helps students access digital information and course content effectively and efficiently, supports student-centered and self-directed learning, as well as the development of a creative learning environment where more opportunities for critical thinking skills are offered, and promotes collaborative learning in a distance-learning environment. Higgins et al. ( 2012 ) found consistent but small positive associations between the use of technology and learning outcomes of school-age learners (5–18-year-olds) in studies linking the provision and use of technology with attainment. Additionally, Chauhan ( 2017 ) reported a medium positive effect of technology on the learning effectiveness of primary school students compared to students who followed traditional learning instruction.

The rise of mobile technologies and hardware devices instigated investigations into their impact on teaching and learning. Sung et al. ( 2016 ) reported a moderate effect on students' performance from the use of mobile devices in the classroom compared to the use of desktop computers or the non-use of mobile devices. Schmid et al. ( 2014 ) reported medium–low to low positive effects of technology integration (e.g., CAI, ICTs) in the classroom on students' achievement and attitude compared to not using technology or using technology to varying degrees. Tamim et al. ( 2015 ) found a low statistically significant effect of the use of tablets and other smart devices in educational contexts on students' achievement outcomes. The authors suggested that tablets offered additional advantages to students; namely, they reported improvements in students’ notetaking, organizational and communication skills, and creativity. Zheng et al. ( 2016 ) reported a small positive effect of one-to-one laptop programs on students’ academic achievement across subject areas. Additional reported benefits included student-centered, individualized, and project-based learning enhanced learner engagement and enthusiasm. Additionally, the authors found that students using one-to-one laptop programs tended to use technology more frequently than in non-laptop classrooms, and as a result, they developed a range of skills (e.g., information skills, media skills, technology skills, organizational skills). Haßler et al. ( 2016 ) found that most interventions that included the use of tablets across the curriculum reported positive learning outcomes. However, from 23 studies, five reported no differences, and two reported a negative effect on students' learning outcomes. Similar results were indicated by Kalati and Kim ( 2022 ) who investigated the effect of touchscreen technologies on young students’ learning. Specifically, from 53 studies, 34 advocated positive effects of touchscreen devices on children’s learning, 17 obtained mixed findings and two studies reported negative effects.

More recently, approaches that refer to the impact of gamification with the use of digital technologies on teaching and learning were also explored. A review by Pan et al. ( 2022 ) that examined the role of learning games in fostering mathematics education in K-12 settings, reported that gameplay improved students’ performance. Integration of digital games in teaching was also found as a promising pedagogical practice in STEM education that could lead to increased learning gains (Martinez et al., 2022 ; Wang et al., 2022 ). However, although Talan et al. ( 2020 ) reported a medium effect of the use of educational games (both digital and non-digital) on academic achievement, the effect of non-digital games was higher.

Over the last two years, the effects of more advanced technologies on teaching and learning were also investigated. Garzón and Acevedo ( 2019 ) found that AR applications had a medium effect on students' learning outcomes compared to traditional lectures. Similarly, Garzón et al. ( 2020 ) showed that AR had a medium impact on students' learning gains. VR applications integrated into various subjects were also found to have a moderate effect on students’ learning compared to control conditions (traditional classes, e.g., lectures, textbooks, and multimedia use, e.g., images, videos, animation, CAI) (Chen et al., 2022b ). Villena-Taranilla et al. ( 2022 ) noted the moderate effect of VR technologies on students’ learning when these were applied in STEM disciplines. In the same meta-analysis, Villena-Taranilla et al. ( 2022 ) highlighted the role of immersive VR, since its effect on students’ learning was greater (at a high level) across educational levels (K-6) compared to semi-immersive and non-immersive integrations. In another meta-analysis study, the effect size of the immersive VR was small and significantly differentiated across educational levels (Coban et al., 2022 ). The impact of AI on education was investigated by Su and Yang ( 2022 ) and Su et al. ( 2022 ), who showed that this technology significantly improved students’ understanding of AI computer science and machine learning concepts.

It is worth noting that the vast majority of studies referred to learning gains in specific subjects. Specifically, several studies examined the impact of digital technologies on students’ literacy skills and reported positive effects on language learning (Balanskat et al., 2006 ; Grgurović et al., 2013 ; Friedel et al., 2013 ; Zheng et al., 2016 ; Chen et al., 2022b ; Savva et al., 2022 ). Also, several studies documented positive effects on specific language learning areas, namely foreign language learning (Kao, 2014 ), writing (Higgins et al., 2012 ; Wen & Walters, 2022 ; Zheng et al., 2016 ), as well as reading and comprehension (Cheung & Slavin, 2011 ; Liao et al., 2007 ; Schwabe et al., 2022 ). ICTs were also found to have a positive impact on students' performance in STEM (science, technology, engineering, and mathematics) disciplines (Arztmann et al., 2022 ; Bado, 2022 ; Villena-Taranilla et al., 2022 ; Wang et al., 2022 ). Specifically, a number of studies reported positive impacts on students’ achievement in mathematics (Balanskat et al., 2006 ; Hillmayr et al., 2020 ; Li & Ma, 2010 ; Pan et al., 2022 ; Ran et al., 2022 ; Verschaffel et al., 2019 ; Zheng et al., 2016 ). Furthermore, studies documented positive effects of ICTs on science learning (Balanskat et al., 2006 ; Liao et al., 2007 ; Zheng et al., 2016 ; Hillmayr et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ; Lei et al., 2022a ). Çelik ( 2022 ) also noted that computer simulations can help students understand learning concepts related to science. Furthermore, some studies documented that the use of ICTs had a positive impact on students’ achievement in other subjects, such as geography, history, music, and arts (Chauhan, 2017 ; Condie & Munro, 2007 ), and design and technology (Balanskat et al., 2006 ).

More specific positive learning gains were reported in a number of skills, e.g., problem-solving skills and pattern exploration skills (Higgins et al., 2012 ), metacognitive learning outcomes (Verschaffel et al., 2019 ), literacy skills, computational thinking skills, emotion control skills, and collaborative inquiry skills (Lu et al., 2022 ; Su & Yang, 2022 ; Su et al., 2022 ). Additionally, several investigations have reported benefits from the use of ICT on students’ creativity (Fielding & Murcia, 2022 ; Liu et al., 2022 ; Quah & Ng, 2022 ). Lastly, digital technologies were also found to be beneficial for enhancing students’ lifelong learning skills (Haleem et al., 2022 ).

Apart from gaining knowledge and skills, studies also reported improvement in motivation and interest in mathematics (Higgins et. al., 2019 ; Fadda et al., 2022 ) and increased positive achievement emotions towards several subjects during interventions using educational games (Lei et al., 2022a ). Chen et al. ( 2022a ) also reported a small but positive effect of digital health approaches in bullying and cyberbullying interventions with K-12 students, demonstrating that technology-based approaches can help reduce bullying and related consequences by providing emotional support, empowerment, and change of attitude. In their meta-review study, Su et al. ( 2022 ) also documented that AI technologies effectively strengthened students’ attitudes towards learning. In another meta-analysis, Arztmann et al. ( 2022 ) reported positive effects of digital games on motivation and behaviour towards STEM subjects.

Impacts of digital technologies on equality, inclusion and social integration

Although most of the reviewed studies focused on the impact of ICTs on students’ knowledge, skills, and attitudes, reports were also made on other aspects in the school context, such as equality, inclusion, and social integration. Condie and Munro ( 2007 ) documented research interventions investigating how ICT can support pupils with additional or special educational needs. While those interventions were relatively small scale and mostly based on qualitative data, their findings indicated that the use of ICTs enabled the development of communication, participation, and self-esteem. A recent meta-analysis (Baragash et al., 2022 ) with 119 participants with different disabilities, reported a significant overall effect size of AR on their functional skills acquisition. Koh’s meta-analysis ( 2022 ) also revealed that students with intellectual and developmental disabilities improved their competence and performance when they used digital games in the lessons.

Istenic Starcic and Bagon ( 2014 ) found that the role of ICT in inclusion and the design of pedagogical and technological interventions was not sufficiently explored in educational interventions with people with special needs; however, some benefits of ICT use were found in students’ social integration. The issue of gender and technology use was mentioned in a small number of studies. Zheng et al. ( 2016 ) reported a statistically significant positive interaction between one-to-one laptop programs and gender. Specifically, the results showed that girls and boys alike benefitted from the laptop program, but the effect on girls’ achievement was smaller than that on boys’. Along the same lines, Arztmann et al. ( 2022 ) reported no difference in the impact of game-based learning between boys and girls, arguing that boys and girls equally benefited from game-based interventions in STEM domains. However, results from a systematic review by Cussó-Calabuig et al. ( 2018 ) found limited and low-quality evidence on the effects of intensive use of computers on gender differences in computer anxiety, self-efficacy, and self-confidence. Based on their view, intensive use of computers can reduce gender differences in some areas and not in others, depending on contextual and implementation factors.

Impacts of digital technologies on teachers’ professional and teaching practices

Various research studies have explored the impact of ICT on teachers’ instructional practices and student assessment. Friedel et al. ( 2013 ) found that the use of mobile devices by students enabled teachers to successfully deliver content (e.g., mobile serious games), provide scaffolding, and facilitate synchronous collaborative learning. The integration of digital games in teaching and learning activities also gave teachers the opportunity to study and apply various pedagogical practices (Bado, 2022 ). Specifically, Bado ( 2022 ) found that teachers who implemented instructional activities in three stages (pre-game, game, and post-game) maximized students’ learning outcomes and engagement. For instance, during the pre-game stage, teachers focused on lectures and gameplay training, at the game stage teachers provided scaffolding on content, addressed technical issues, and managed the classroom activities. During the post-game stage, teachers organized activities for debriefing to ensure that the gameplay had indeed enhanced students’ learning outcomes.

Furthermore, ICT can increase efficiency in lesson planning and preparation by offering possibilities for a more collaborative approach among teachers. The sharing of curriculum plans and the analysis of students’ data led to clearer target settings and improvements in reporting to parents (Balanskat et al., 2006 ).

Additionally, the use and application of digital technologies in teaching and learning were found to enhance teachers’ digital competence. Balanskat et al. ( 2006 ) documented studies that revealed that the use of digital technologies in education had a positive effect on teachers’ basic ICT skills. The greatest impact was found on teachers with enough experience in integrating ICTs in their teaching and/or who had recently participated in development courses for the pedagogical use of technologies in teaching. Punie et al. ( 2006 ) reported that the provision of fully equipped multimedia portable computers and the development of online teacher communities had positive impacts on teachers’ confidence and competence in the use of ICTs.

Moreover, online assessment via ICTs benefits instruction. In particular, online assessments support the digitalization of students’ work and related logistics, allow teachers to gather immediate feedback and readjust to new objectives, and support the improvement of the technical quality of tests by providing more accurate results. Additionally, the capabilities of ICTs (e.g., interactive media, simulations) create new potential methods of testing specific skills, such as problem-solving and problem-processing skills, meta-cognitive skills, creativity and communication skills, and the ability to work productively in groups (Punie et al., 2006 ).

Impacts of digital technologies on other school-related aspects and stakeholders

There is evidence that the effective use of ICTs and the data transmission offered by broadband connections help improve administration (Balanskat et al., 2006 ). Specifically, ICTs have been found to provide better management systems to schools that have data gathering procedures in place. Condie and Munro ( 2007 ) reported impacts from the use of ICTs in schools in the following areas: attendance monitoring, assessment records, reporting to parents, financial management, creation of repositories for learning resources, and sharing of information amongst staff. Such data can be used strategically for self-evaluation and monitoring purposes which in turn can result in school improvements. Additionally, they reported that online access to other people with similar roles helped to reduce headteachers’ isolation by offering them opportunities to share insights into the use of ICT in learning and teaching and how it could be used to support school improvement. Furthermore, ICTs provided more efficient and successful examination management procedures, namely less time-consuming reporting processes compared to paper-based examinations and smooth communications between schools and examination authorities through electronic data exchange (Punie et al., 2006 ).

Zheng et al. ( 2016 ) reported that the use of ICTs improved home-school relationships. Additionally, Escueta et al. ( 2017 ) reported several ICT programs that had improved the flow of information from the school to parents. Particularly, they documented that the use of ICTs (learning management systems, emails, dedicated websites, mobile phones) allowed for personalized and customized information exchange between schools and parents, such as attendance records, upcoming class assignments, school events, and students’ grades, which generated positive results on students’ learning outcomes and attainment. Such information exchange between schools and families prompted parents to encourage their children to put more effort into their schoolwork.

The above findings suggest that the impact of ICT integration in schools goes beyond students’ performance in school subjects. Specifically, it affects a number of school-related aspects, such as equality and social integration, professional and teaching practices, and diverse stakeholders. In Table ​ Table2, 2 , we summarize the different impacts of digital technologies on school stakeholders based on the literature review, while in Table ​ Table3 3 we organized the tools/platforms and practices/policies addressed in the meta-analyses, literature reviews, EU reports, and international bodies included in the manuscript.

The impact of digital technologies on schools’ stakeholders based on the literature review

ImpactsReferences
Students
  Knowledge, skills, attitudes, and emotions
    • Learning gains from the use of ICTs across the curriculumEng, ; Balanskat et al., ; Liao et al., ; Tamim et al., ; Higgins et al., ; Chauhan, ; Sung et al., ; Schmid et al., ; Tamim et al., ; Zheng et al., ; Haßler et al., ; Kalati & Kim, ; Martinez et al., ; Talan et al., ; Panet al., ; Garzón & Acevedo, ; Garzón et al., ; Villena-Taranilla, et al., ; Coban et al.,
    • Positive learning gains from the use of ICTs in specific school subjects (e.g., mathematics, literacy, language, science)Arztmann et al., ; Villena-Taranilla, et al., ; Chen et al., ; Balanskat et al., ; Grgurović, et al., ; Friedel et al., ; Zheng et al., ; Savva et al., ; Kao, ; Higgins et al., ; Wen & Walters, ; Liao et al., ; Cheung & Slavin, ; Schwabe et al., ; Li & Ma, ; Verschaffel et al., ; Ran et al., ; Liao et al., ; Hillmayr et al., ; Kalemkuş & Kalemkuş, ; Lei et al., ; Condie & Munro, ; Chauhan, ; Bado, ; Wang et al., ; Pan et al.,
    • Positive learning gains for special needs students and low-achieving studentsEng, ; Balanskat et al., ; Punie et al., ; Koh,
    • Oportunities to develop a range of skills (e.g., subject-related skills, communication skills, negotiation skills, emotion control skills, organizational skills, critical thinking skills, creativity, metacognitive skills, life, and career skills)Balanskat et al., ; Fu, ; Tamim et al., ; Zheng et al., ; Higgins et al., ; Verschaffel et al., ; Su & Yang, ; Su et al., ; Lu et al., ; Liu et al., ; Quah & Ng, ; Fielding & Murcia, ; Tang et al., ; Haleem et al.,
    • Oportunities to develop digital skills (e.g., information skills, media skills, ICT skills)Zheng et al., ; Su & Yang, ; Lu et al., ; Su et al.,
    • Positive attitudes and behaviours towards ICTs, positive emotions (e.g., increased interest, motivation, attention, engagement, confidence, reduced anxiety, positive achievement emotions, reduction in bullying and cyberbullying)Balanskat et al., ; Schmid et al., ; Zheng et al., ; Fadda et al., ; Higgins et al., ; Chen et al., ; Lei et al., ; Arztmann et al., ; Su et al.,
  Learning experience
    • Enhance access to resourcesJewitt et al., ; Fu,
    • Opportunities to experience various learning practices (e.g., active learning, learner-centred learning, independent and personalized learning, collaborative learning, self-directed learning, self- and peer-review)Jewitt et al., ; Fu,
    • Improved access to teacher assessment and feedbackJewitt et al.,
Equality, inclusion, and social integration
    • Improved communication, functional skills, participation, self-esteem, and engagement of special needs studentsCondie & Munro, ; Baragash et al., ; Koh,
    • Enhanced social interaction for students in general and for students with learning difficultiesIstenic Starcic & Bagon,
    • Benefits for both girls and boysZheng et al., ; Arztmann et al.,
Teachers
  Professional practice
    • Development of digital competenceBalanskat et al.,
    • Positive attitudes and behaviours towards ICTs (e.g., increased confidence)Punie et al., ,
    • Formalized collaborative planning between teachersBalanskat et al.,
    • Improved reporting to parentsBalanskat et al.,
Teaching practice
    • Efficiency in lesson planning and preparationBalanskat et al.,
    • Facilitate assessment through the provision of immediate feedbackPunie et al.,
    • Improvements in the technical quality of testsPunie et al.,
    • New methods of testing specific skills (e.g., problem-solving skills, meta-cognitive skills)Punie et al.,
    • Successful content delivery and lessonsFriedel et al.,
    • Application of different instructional practices (e.g., scaffolding, synchronous collaborative learning, online learning, blended learning, hybrid learning)Friedel et al., ; Bado, ; Kazu & Yalçin, ; Ulum,
Administrators
  Data-based decision-making
    • Improved data-gathering processesBalanskat et al.,
    • Support monitoring and evaluation processes (e.g., attendance monitoring, financial management, assessment records)Condie & Munro,
Organizational processes
    • Access to learning resources via the creation of repositoriesCondie & Munro,
    • Information sharing between school staffCondie & Munro,
    • Smooth communications with external authorities (e.g., examination results)Punie et al.,
    • Efficient and successful examination management proceduresPunie et al.,
  Home-school communication
    • Support reporting to parentsCondie & Munro,
    • Improved flow of communication between the school and parents (e.g., customized and personalized communications)Escueta et al.,
School leaders
  Professional practice
    • Reduced headteacher isolationCondie & Munro,
    • Improved access to insights about practices for school improvementCondie & Munro,
Parents
  Home-school relationships
    • Improved home-school relationshipsZheng et al.,
    • Increased parental involvement in children’s school lifeEscueta et al.,

Tools/platforms and practices/policies addressed in the meta-analyses, literature reviews, EU reports, and international bodies included in the manuscript

Technologies/tools/practices/policiesReferences
ICT general – various types of technologies

Eng, (review)

Moran et al., (meta-analysis)

Balanskat et al., (report)

Punie et al., (review)

Fu, (review)

Higgins et al., (report)

Chauhan, (meta-analysis)

Schmid et al., (meta-analysis)

Grgurović et al., (meta-analysis)

Higgins et al., (meta-analysis)

Wen & Walters, (meta-analysis)

Cheung & Slavin, (meta-analysis)

Li & Ma, (meta-analysis)

Hillmayr et al., (meta-analysis)

Verschaffel et al., (systematic review)

Ran et al., (meta-analysis)

Fielding & Murcia, (systematic review)

Tang et al., (review)

Haleem et al., (review)

Condie & Munro, (review)

Underwood, (review)

Istenic Starcic & Bagon, (review)

Cussó-Calabuig et al., (systematic review)

Escueta et al. ( ) (review)

Archer et al., (meta-analysis)

Lee et al., (meta-analysis)

Delgado et al., (review)

Di Pietro et al., (report)

Practices/policies on schools’ digital transformation

Bingimlas, (review)

Hardman, (review)

Hattie, (synthesis of multiple meta-analysis)

Trucano, (book-Knowledge maps)

Ređep, (policy study)

Conrads et al, (report)

European Commission, (EU report)

Elkordy & Lovinelli, (book chapter)

Eurydice, (EU report)

Vuorikari et al., (JRC paper)

Sellar, (review)

European Commission, (EU report)

OECD, (international paper)

Computer-assisted instruction, computer simulations, activeboards, and web-based learning

Liao et al., (meta-analysis)

Tamim et al., (meta-analysis)

Çelik, (review)

Moran et al., (meta-analysis)

Eng, (review)

Learning platforms (LPs) (virtual learning environments, management information systems, communication technologies and information and resource sharing technologies)Jewitt et al., (report)
Mobile devices—touch screens (smart devices, tablets, laptops)

Sung et al., (meta-analysis and research synthesis)

Tamim et al., (meta-analysis)

Tamim et al., (systematic review and meta-analysis)

Zheng et al., (meta-analysis and research synthesis)

Haßler et al., (review)

Kalati & Kim, (systematic review)

Friedel et al., (meta-analysis and review)

Chen et al., (meta-analysis)

Schwabe et al., (meta-analysis)

Punie et al., (review)

Digital games (various types e.g., adventure, serious; various domains e.g., history, science)

Wang et al., (meta-analysis)

Arztmann et al., (meta-analysis)

Martinez et al., (systematic review)

Talan et al., (meta-analysis)

Pan et al., (systematic review)

Chen et al., (meta-analysis)

Kao, (meta-analysis)

Fadda et al., (meta-analysis)

Lu et al., (meta-analysis)

Lei et al., (meta-analysis)

Koh, (meta-analysis)

Bado, (review)

Augmented reality (AR)

Garzón & Acevedo, (meta-analysis)

Garzón et al., (meta-analysis and research synthesis)

Kalemkuş & Kalemkuş, (meta-analysis)

Baragash et al., (meta-analysis)

Virtual reality (VR)

Immersive virtual reality (IVR)

Villena-Taranilla et al., (meta-analysis)

Chen et al., (meta-analysis)

Coban et al., (meta-analysis)

Artificial intelligence (AI) and robotics

Su & Yang, (review)

Su et al., (meta review)

Online learning/elearning

Ulum, (meta-analysis)

Cheok & Wong, (review)

Blended learningGrgurović et al., (meta-analysis)
Synchronous parallel participationFriedel et al., (meta-analysis and review)
Electronic books/digital storytelling

Savva et al., (meta-analysis)

Quah & Ng, (systematic review)

Multimedia technologyLiu et al., (meta-analysis)
Hybrid learningKazu & Yalçin, (meta-analysis)

Additionally, based on the results of the literature review, there are many types of digital technologies with different affordances (see, for example, studies on VR vs Immersive VR), which evolve over time (e.g. starting from CAIs in 2005 to Augmented and Virtual reality 2020). Furthermore, these technologies are linked to different pedagogies and policy initiatives, which are critical factors in the study of impact. Table ​ Table3 3 summarizes the different tools and practices that have been used to examine the impact of digital technologies on education since 2005 based on the review results.

Factors that affect the integration of digital technologies

Although the analysis of the literature review demonstrated different impacts of the use of digital technology on education, several authors highlighted the importance of various factors, besides the technology itself, that affect this impact. For example, Liao et al. ( 2007 ) suggested that future studies should carefully investigate which factors contribute to positive outcomes by clarifying the exact relationship between computer applications and learning. Additionally, Haßler et al., ( 2016 ) suggested that the neutral findings regarding the impact of tablets on students learning outcomes in some of the studies included in their review should encourage educators, school leaders, and school officials to further investigate the potential of such devices in teaching and learning. Several other researchers suggested that a number of variables play a significant role in the impact of ICTs on students’ learning that could be attributed to the school context, teaching practices and professional development, the curriculum, and learners’ characteristics (Underwood, 2009 ; Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Tang et al., 2022 ).

Digital competencies

One of the most common challenges reported in studies that utilized digital tools in the classroom was the lack of students’ skills on how to use them. Fu ( 2013 ) found that students’ lack of technical skills is a barrier to the effective use of ICT in the classroom. Tamim et al. ( 2015 ) reported that students faced challenges when using tablets and smart mobile devices, associated with the technical issues or expertise needed for their use and the distracting nature of the devices and highlighted the need for teachers’ professional development. Higgins et al. ( 2012 ) reported that skills training about the use of digital technologies is essential for learners to fully exploit the benefits of instruction.

Delgado et al. ( 2015 ), meanwhile, reported studies that showed a strong positive association between teachers’ computer skills and students’ use of computers. Teachers’ lack of ICT skills and familiarization with technologies can become a constraint to the effective use of technology in the classroom (Balanskat et al., 2006 ; Delgado et al., 2015 ).

It is worth noting that the way teachers are introduced to ICTs affects the impact of digital technologies on education. Previous studies have shown that teachers may avoid using digital technologies due to limited digital skills (Balanskat, 2006 ), or they prefer applying “safe” technologies, namely technologies that their own teachers used and with which they are familiar (Condie & Munro, 2007 ). In this regard, the provision of digital skills training and exposure to new digital tools might encourage teachers to apply various technologies in their lessons (Condie & Munro, 2007 ). Apart from digital competence, technical support in the school setting has also been shown to affect teachers’ use of technology in their classrooms (Delgado et al., 2015 ). Ferrari et al. ( 2011 ) found that while teachers’ use of ICT is high, 75% stated that they needed more institutional support and a shift in the mindset of educational actors to achieve more innovative teaching practices. The provision of support can reduce time and effort as well as cognitive constraints, which could cause limited ICT integration in the school lessons by teachers (Escueta et al., 2017 ).

Teachers’ personal characteristics, training approaches, and professional development

Teachers’ personal characteristics and professional development affect the impact of digital technologies on education. Specifically, Cheok and Wong ( 2015 ) found that teachers’ personal characteristics (e.g., anxiety, self-efficacy) are associated with their satisfaction and engagement with technology. Bingimlas ( 2009 ) reported that lack of confidence, resistance to change, and negative attitudes in using new technologies in teaching are significant determinants of teachers’ levels of engagement in ICT. The same author reported that the provision of technical support, motivation support (e.g., awards, sufficient time for planning), and training on how technologies can benefit teaching and learning can eliminate the above barriers to ICT integration. Archer et al. ( 2014 ) found that comfort levels in using technology are an important predictor of technology integration and argued that it is essential to provide teachers with appropriate training and ongoing support until they are comfortable with using ICTs in the classroom. Hillmayr et al. ( 2020 ) documented that training teachers on ICT had an important effecton students’ learning.

According to Balanskat et al. ( 2006 ), the impact of ICTs on students’ learning is highly dependent on the teachers’ capacity to efficiently exploit their application for pedagogical purposes. Results obtained from the Teaching and Learning International Survey (TALIS) (OECD, 2021 ) revealed that although schools are open to innovative practices and have the capacity to adopt them, only 39% of teachers in the European Union reported that they are well or very well prepared to use digital technologies for teaching. Li and Ma ( 2010 ) and Hardman ( 2019 ) showed that the positive effect of technology on students’ achievement depends on the pedagogical practices used by teachers. Schmid et al. ( 2014 ) reported that learning was best supported when students were engaged in active, meaningful activities with the use of technological tools that provided cognitive support. Tamim et al. ( 2015 ) compared two different pedagogical uses of tablets and found a significant moderate effect when the devices were used in a student-centered context and approach rather than within teacher-led environments. Similarly, Garzón and Acevedo ( 2019 ) and Garzón et al. ( 2020 ) reported that the positive results from the integration of AR applications could be attributed to the existence of different variables which could influence AR interventions (e.g., pedagogical approach, learning environment, and duration of the intervention). Additionally, Garzón et al. ( 2020 ) suggested that the pedagogical resources that teachers used to complement their lectures and the pedagogical approaches they applied were crucial to the effective integration of AR on students’ learning gains. Garzón and Acevedo ( 2019 ) also emphasized that the success of a technology-enhanced intervention is based on both the technology per se and its characteristics and on the pedagogical strategies teachers choose to implement. For instance, their results indicated that the collaborative learning approach had the highest impact on students’ learning gains among other approaches (e.g., inquiry-based learning, situated learning, or project-based learning). Ran et al. ( 2022 ) also found that the use of technology to design collaborative and communicative environments showed the largest moderator effects among the other approaches.

Hattie ( 2008 ) reported that the effective use of computers is associated with training teachers in using computers as a teaching and learning tool. Zheng et al. ( 2016 ) noted that in addition to the strategies teachers adopt in teaching, ongoing professional development is also vital in ensuring the success of technology implementation programs. Sung et al. ( 2016 ) found that research on the use of mobile devices to support learning tends to report that the insufficient preparation of teachers is a major obstacle in implementing effective mobile learning programs in schools. Friedel et al. ( 2013 ) found that providing training and support to teachers increased the positive impact of the interventions on students’ learning gains. Trucano ( 2005 ) argued that positive impacts occur when digital technologies are used to enhance teachers’ existing pedagogical philosophies. Higgins et al. ( 2012 ) found that the types of technologies used and how they are used could also affect students’ learning. The authors suggested that training and professional development of teachers that focuses on the effective pedagogical use of technology to support teaching and learning is an important component of successful instructional approaches (Higgins et al., 2012 ). Archer et al. ( 2014 ) found that studies that reported ICT interventions during which teachers received training and support had moderate positive effects on students’ learning outcomes, which were significantly higher than studies where little or no detail about training and support was mentioned. Fu ( 2013 ) reported that the lack of teachers’ knowledge and skills on the technical and instructional aspects of ICT use in the classroom, in-service training, pedagogy support, technical and financial support, as well as the lack of teachers’ motivation and encouragement to integrate ICT on their teaching were significant barriers to the integration of ICT in education.

School leadership and management

Management and leadership are important cornerstones in the digital transformation process (Pihir et al., 2018 ). Zheng et al. ( 2016 ) documented leadership among the factors positively affecting the successful implementation of technology integration in schools. Strong leadership, strategic planning, and systematic integration of digital technologies are prerequisites for the digital transformation of education systems (Ređep, 2021 ). Management and leadership play a significant role in formulating policies that are translated into practice and ensure that developments in ICT become embedded into the life of the school and in the experiences of staff and pupils (Condie & Munro, 2007 ). Policy support and leadership must include the provision of an overall vision for the use of digital technologies in education, guidance for students and parents, logistical support, as well as teacher training (Conrads et al., 2017 ). Unless there is a commitment throughout the school, with accountability for progress at key points, it is unlikely for ICT integration to be sustained or become part of the culture (Condie & Munro, 2007 ). To achieve this, principals need to adopt and promote a whole-institution strategy and build a strong mutual support system that enables the school’s technological maturity (European Commission, 2019 ). In this context, school culture plays an essential role in shaping the mindsets and beliefs of school actors towards successful technology integration. Condie and Munro ( 2007 ) emphasized the importance of the principal’s enthusiasm and work as a source of inspiration for the school staff and the students to cultivate a culture of innovation and establish sustainable digital change. Specifically, school leaders need to create conditions in which the school staff is empowered to experiment and take risks with technology (Elkordy & Lovinelli, 2020 ).

In order for leaders to achieve the above, it is important to develop capacities for learning and leading, advocating professional learning, and creating support systems and structures (European Commission, 2019 ). Digital technology integration in education systems can be challenging and leadership needs guidance to achieve it. Such guidance can be introduced through the adoption of new methods and techniques in strategic planning for the integration of digital technologies (Ređep, 2021 ). Even though the role of leaders is vital, the relevant training offered to them has so far been inadequate. Specifically, only a third of the education systems in Europe have put in place national strategies that explicitly refer to the training of school principals (European Commission, 2019 , p. 16).

Connectivity, infrastructure, and government and other support

The effective integration of digital technologies across levels of education presupposes the development of infrastructure, the provision of digital content, and the selection of proper resources (Voogt et al., 2013 ). Particularly, a high-quality broadband connection in the school increases the quality and quantity of educational activities. There is evidence that ICT increases and formalizes cooperative planning between teachers and cooperation with managers, which in turn has a positive impact on teaching practices (Balanskat et al., 2006 ). Additionally, ICT resources, including software and hardware, increase the likelihood of teachers integrating technology into the curriculum to enhance their teaching practices (Delgado et al., 2015 ). For example, Zheng et al. ( 2016 ) found that the use of one-on-one laptop programs resulted in positive changes in teaching and learning, which would not have been accomplished without the infrastructure and technical support provided to teachers. Delgado et al. ( 2015 ) reported that limited access to technology (insufficient computers, peripherals, and software) and lack of technical support are important barriers to ICT integration. Access to infrastructure refers not only to the availability of technology in a school but also to the provision of a proper amount and the right types of technology in locations where teachers and students can use them. Effective technical support is a central element of the whole-school strategy for ICT (Underwood, 2009 ). Bingimlas ( 2009 ) reported that lack of technical support in the classroom and whole-school resources (e.g., failing to connect to the Internet, printers not printing, malfunctioning computers, and working on old computers) are significant barriers that discourage the use of ICT by teachers. Moreover, poor quality and inadequate hardware maintenance, and unsuitable educational software may discourage teachers from using ICTs (Balanskat et al., 2006 ; Bingimlas, 2009 ).

Government support can also impact the integration of ICTs in teaching. Specifically, Balanskat et al. ( 2006 ) reported that government interventions and training programs increased teachers’ enthusiasm and positive attitudes towards ICT and led to the routine use of embedded ICT.

Lastly, another important factor affecting digital transformation is the development and quality assurance of digital learning resources. Such resources can be support textbooks and related materials or resources that focus on specific subjects or parts of the curriculum. Policies on the provision of digital learning resources are essential for schools and can be achieved through various actions. For example, some countries are financing web portals that become repositories, enabling teachers to share resources or create their own. Additionally, they may offer e-learning opportunities or other services linked to digital education. In other cases, specific agencies of projects have also been set up to develop digital resources (Eurydice, 2019 ).

Administration and digital data management

The digital transformation of schools involves organizational improvements at the level of internal workflows, communication between the different stakeholders, and potential for collaboration. Vuorikari et al. ( 2020 ) presented evidence that digital technologies supported the automation of administrative practices in schools and reduced the administration’s workload. There is evidence that digital data affects the production of knowledge about schools and has the power to transform how schooling takes place. Specifically, Sellar ( 2015 ) reported that data infrastructure in education is developing due to the demand for “ information about student outcomes, teacher quality, school performance, and adult skills, associated with policy efforts to increase human capital and productivity practices ” (p. 771). In this regard, practices, such as datafication which refers to the “ translation of information about all kinds of things and processes into quantified formats” have become essential for decision-making based on accountability reports about the school’s quality. The data could be turned into deep insights about education or training incorporating ICTs. For example, measuring students’ online engagement with the learning material and drawing meaningful conclusions can allow teachers to improve their educational interventions (Vuorikari et al., 2020 ).

Students’ socioeconomic background and family support

Research show that the active engagement of parents in the school and their support for the school’s work can make a difference to their children’s attitudes towards learning and, as a result, their achievement (Hattie, 2008 ). In recent years, digital technologies have been used for more effective communication between school and family (Escueta et al., 2017 ). The European Commission ( 2020 ) presented data from a Eurostat survey regarding the use of computers by students during the pandemic. The data showed that younger pupils needed additional support and guidance from parents and the challenges were greater for families in which parents had lower levels of education and little to no digital skills.

In this regard, the socio-economic background of the learners and their socio-cultural environment also affect educational achievements (Punie et al., 2006 ). Trucano documented that the use of computers at home positively influenced students’ confidence and resulted in more frequent use at school, compared to students who had no home access (Trucano, 2005 ). In this sense, the socio-economic background affects the access to computers at home (OECD, 2015 ) which in turn influences the experience of ICT, an important factor for school achievement (Punie et al., 2006 ; Underwood, 2009 ). Furthermore, parents from different socio-economic backgrounds may have different abilities and availability to support their children in their learning process (Di Pietro et al., 2020 ).

Schools’ socioeconomic context and emergency situations

The socio-economic context of the school is closely related to a school’s digital transformation. For example, schools in disadvantaged, rural, or deprived areas are likely to lack the digital capacity and infrastructure required to adapt to the use of digital technologies during emergency periods, such as the COVID-19 pandemic (Di Pietro et al., 2020 ). Data collected from school principals confirmed that in several countries, there is a rural/urban divide in connectivity (OECD, 2015 ).

Emergency periods also affect the digitalization of schools. The COVID-19 pandemic led to the closure of schools and forced them to seek appropriate and connective ways to keep working on the curriculum (Di Pietro et al., 2020 ). The sudden large-scale shift to distance and online teaching and learning also presented challenges around quality and equity in education, such as the risk of increased inequalities in learning, digital, and social, as well as teachers facing difficulties coping with this demanding situation (European Commission, 2020 ).

Looking at the findings of the above studies, we can conclude that the impact of digital technologies on education is influenced by various actors and touches many aspects of the school ecosystem. Figure  1 summarizes the factors affecting the digital technologies’ impact on school stakeholders based on the findings from the literature review.

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11431_Fig1_HTML.jpg

Factors that affect the impact of ICTs on education

The findings revealed that the use of digital technologies in education affects a variety of actors within a school’s ecosystem. First, we observed that as technologies evolve, so does the interest of the research community to apply them to school settings. Figure  2 summarizes the trends identified in current research around the impact of digital technologies on schools’ digital capacity and transformation as found in the present study. Starting as early as 2005, when computers, simulations, and interactive boards were the most commonly applied tools in school interventions (e.g., Eng, 2005 ; Liao et al., 2007 ; Moran et al., 2008 ; Tamim et al., 2011 ), moving towards the use of learning platforms (Jewitt et al., 2011 ), then to the use of mobile devices and digital games (e.g., Tamim et al., 2015 ; Sung et al., 2016 ; Talan et al., 2020 ), as well as e-books (e.g., Savva et al., 2022 ), to the more recent advanced technologies, such as AR and VR applications (e.g., Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ), or robotics and AI (e.g., Su & Yang, 2022 ; Su et al., 2022 ). As this evolution shows, digital technologies are a concept in flux with different affordances and characteristics. Additionally, from an instructional perspective, there has been a growing interest in different modes and models of content delivery such as online, blended, and hybrid modes (e.g., Cheok & Wong, 2015 ; Kazu & Yalçin, 2022 ; Ulum, 2022 ). This is an indication that the value of technologies to support teaching and learning as well as other school-related practices is increasingly recognized by the research and school community. The impact results from the literature review indicate that ICT integration on students’ learning outcomes has effects that are small (Coban et al., 2022 ; Eng, 2005 ; Higgins et al., 2012 ; Schmid et al., 2014 ; Tamim et al., 2015 ; Zheng et al., 2016 ) to moderate (Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Liao et al., 2007 ; Sung et al., 2016 ; Talan et al., 2020 ; Wen & Walters, 2022 ). That said, a number of recent studies have reported high effect sizes (e.g., Kazu & Yalçin, 2022 ).

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11431_Fig2_HTML.jpg

Current work and trends in the study of the impact of digital technologies on schools’ digital capacity

Based on these findings, several authors have suggested that the impact of technology on education depends on several variables and not on the technology per se (Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Lei et al., 2022a ). While the impact of ICTs on student achievement has been thoroughly investigated by researchers, other aspects related to school life that are also affected by ICTs, such as equality, inclusion, and social integration have received less attention. Further analysis of the literature review has revealed a greater investment in ICT interventions to support learning and teaching in the core subjects of literacy and STEM disciplines, especially mathematics, and science. These were the most common subjects studied in the reviewed papers often drawing on national testing results, while studies that investigated other subject areas, such as social studies, were limited (Chauhan, 2017 ; Condie & Munro, 2007 ). As such, research is still lacking impact studies that focus on the effects of ICTs on a range of curriculum subjects.

The qualitative research provided additional information about the impact of digital technologies on education, documenting positive effects and giving more details about implications, recommendations, and future research directions. Specifically, the findings regarding the role of ICTs in supporting learning highlight the importance of teachers’ instructional practice and the learning context in the use of technologies and consequently their impact on instruction (Çelik, 2022 ; Schmid et al., 2014 ; Tamim et al., 2015 ). The review also provided useful insights regarding the various factors that affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the transformation process. Specifically, these factors include a) digital competencies; b) teachers’ personal characteristics and professional development; c) school leadership and management; d) connectivity, infrastructure, and government support; e) administration and data management practices; f) students’ socio-economic background and family support and g) the socioeconomic context of the school and emergency situations. It is worth noting that we observed factors that affect the integration of ICTs in education but may also be affected by it. For example, the frequent use of ICTs and the use of laptops by students for instructional purposes positively affect the development of digital competencies (Zheng et al., 2016 ) and at the same time, the digital competencies affect the use of ICTs (Fu, 2013 ; Higgins et al., 2012 ). As a result, the impact of digital technologies should be explored more as an enabler of desirable and new practices and not merely as a catalyst that improves the output of the education process i.e. namely student attainment.

Conclusions

Digital technologies offer immense potential for fundamental improvement in schools. However, investment in ICT infrastructure and professional development to improve school education are yet to provide fruitful results. Digital transformation is a complex process that requires large-scale transformative changes that presuppose digital capacity and preparedness. To achieve such changes, all actors within the school’s ecosystem need to share a common vision regarding the integration of ICTs in education and work towards achieving this goal. Our literature review, which synthesized quantitative and qualitative data from a list of meta-analyses and review studies, provided useful insights into the impact of ICTs on different school stakeholders and showed that the impact of digital technologies touches upon many different aspects of school life, which are often overlooked when the focus is on student achievement as the final output of education. Furthermore, the concept of digital technologies is a concept in flux as technologies are not only different among them calling for different uses in the educational practice but they also change through time. Additionally, we opened a forum for discussion regarding the factors that affect a school’s digital capacity and transformation. We hope that our study will inform policy, practice, and research and result in a paradigm shift towards more holistic approaches in impact and assessment studies.

Study limitations and future directions

We presented a review of the study of digital technologies' impact on education and factors influencing schools’ digital capacity and transformation. The study results were based on a non-systematic literature review grounded on the acquisition of documentation in specific databases. Future studies should investigate more databases to corroborate and enhance our results. Moreover, search queries could be enhanced with key terms that could provide additional insights about the integration of ICTs in education, such as “policies and strategies for ICT integration in education”. Also, the study drew information from meta-analyses and literature reviews to acquire evidence about the effects of ICT integration in schools. Such evidence was mostly based on the general conclusions of the studies. It is worth mentioning that, we located individual studies which showed different, such as negative or neutral results. Thus, further insights are needed about the impact of ICTs on education and the factors influencing the impact. Furthermore, the nature of the studies included in meta-analyses and reviews is different as they are based on different research methodologies and data gathering processes. For instance, in a meta-analysis, the impact among the studies investigated is measured in a particular way, depending on policy or research targets (e.g., results from national examinations, pre-/post-tests). Meanwhile, in literature reviews, qualitative studies offer additional insights and detail based on self-reports and research opinions on several different aspects and stakeholders who could affect and be affected by ICT integration. As a result, it was challenging to draw causal relationships between so many interrelating variables.

Despite the challenges mentioned above, this study envisaged examining school units as ecosystems that consist of several actors by bringing together several variables from different research epistemologies to provide an understanding of the integration of ICTs. However, the use of other tools and methodologies and models for evaluation of the impact of digital technologies on education could give more detailed data and more accurate results. For instance, self-reflection tools, like SELFIE—developed on the DigCompOrg framework- (Kampylis et al., 2015 ; Bocconi & Lightfoot, 2021 ) can help capture a school’s digital capacity and better assess the impact of ICTs on education. Furthermore, the development of a theory of change could be a good approach for documenting the impact of digital technologies on education. Specifically, theories of change are models used for the evaluation of interventions and their impact; they are developed to describe how interventions will work and give the desired outcomes (Mayne, 2015 ). Theory of change as a methodological approach has also been used by researchers to develop models for evaluation in the field of education (e.g., Aromatario et al., 2019 ; Chapman & Sammons, 2013 ; De Silva et al., 2014 ).

We also propose that future studies aim at similar investigations by applying more holistic approaches for impact assessment that can provide in-depth data about the impact of digital technologies on education. For instance, future studies could focus on different research questions about the technologies that are used during the interventions or the way the implementation takes place (e.g., What methodologies are used for documenting impact? How are experimental studies implemented? How can teachers be taken into account and trained on the technology and its functions? What are the elements of an appropriate and successful implementation? How is the whole intervention designed? On which learning theories is the technology implementation based?).

Future research could also focus on assessing the impact of digital technologies on various other subjects since there is a scarcity of research related to particular subjects, such as geography, history, arts, music, and design and technology. More research should also be done about the impact of ICTs on skills, emotions, and attitudes, and on equality, inclusion, social interaction, and special needs education. There is also a need for more research about the impact of ICTs on administration, management, digitalization, and home-school relationships. Additionally, although new forms of teaching and learning with the use of ICTs (e.g., blended, hybrid, and online learning) have initiated several investigations in mainstream classrooms, only a few studies have measured their impact on students’ learning. Additionally, our review did not document any study about the impact of flipped classrooms on K-12 education. Regarding teaching and learning approaches, it is worth noting that studies referred to STEM or STEAM did not investigate the impact of STEM/STEAM as an interdisciplinary approach to learning but only investigated the impact of ICTs on learning in each domain as a separate subject (science, technology, engineering, arts, mathematics). Hence, we propose future research to also investigate the impact of the STEM/STEAM approach on education. The impact of emerging technologies on education, such as AR, VR, robotics, and AI has also been investigated recently, but more work needs to be done.

Finally, we propose that future studies could focus on the way in which specific factors, e.g., infrastructure and government support, school leadership and management, students’ and teachers’ digital competencies, approaches teachers utilize in the teaching and learning (e.g., blended, online and hybrid learning, flipped classrooms, STEM/STEAM approach, project-based learning, inquiry-based learning), affect the impact of digital technologies on education. We hope that future studies will give detailed insights into the concept of schools’ digital transformation through further investigation of impacts and factors which influence digital capacity and transformation based on the results and the recommendations of the present study.

Acknowledgements

This project has received funding under Grant Agreement No Ref Ares (2021) 339036 7483039 as well as funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No 739578 and the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy. The UVa co-authors would like also to acknowledge funding from the European Regional Development Fund and the National Research Agency of the Spanish Ministry of Science and Innovation, under project grant PID2020-112584RB-C32.

Data availability statement

Declarations.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Archer K, Savage R, Sanghera-Sidhu S, Wood E, Gottardo A, Chen V. Examining the effectiveness of technology use in classrooms: A tertiary meta-analysis. Computers & Education. 2014; 78 :140–149. doi: 10.1016/j.compedu.2014.06.001. [ CrossRef ] [ Google Scholar ]
  • Aromatario O, Van Hoye A, Vuillemin A, Foucaut AM, Pommier J, Cambon L. Using theory of change to develop an intervention theory for designing and evaluating behavior change SDApps for healthy eating and physical exercise: The OCAPREV theory. BMC Public Health. 2019; 19 (1):1–12. doi: 10.1186/s12889-019-7828-4. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Arztmann, M., Hornstra, L., Jeuring, J., & Kester, L. (2022). Effects of games in STEM education: A meta-analysis on the moderating role of student background characteristics. Studies in Science Education , 1-37. 10.1080/03057267.2022.2057732
  • Bado N. Game-based learning pedagogy: A review of the literature. Interactive Learning Environments. 2022; 30 (5):936–948. doi: 10.1080/10494820.2019.1683587. [ CrossRef ] [ Google Scholar ]
  • Balanskat, A. (2009). Study of the impact of technology in primary schools – Synthesis Report. Empirica and European Schoolnet. Retrieved 30 June 2022 from: https://erte.dge.mec.pt/sites/default/files/Recursos/Estudos/synthesis_report_steps_en.pdf
  • Balanskat, A. (2006). The ICT Impact Report: A review of studies of ICT impact on schools in Europe, European Schoolnet. Retrieved 30 June 2022 from:  https://en.unesco.org/icted/content/ict-impact-report-review-studies-ict-impact-schools-europe
  • Balanskat, A., Blamire, R., & Kefala, S. (2006). The ICT impact report.  European Schoolnet . Retrieved from: http://colccti.colfinder.org/sites/default/files/ict_impact_report_0.pdf
  • Balyer, A., & Öz, Ö. (2018). Academicians’ views on digital transformation in education. International Online Journal of Education and Teaching (IOJET), 5 (4), 809–830. Retrieved 30 June 2022 from  http://iojet.org/index.php/IOJET/article/view/441/295
  • Baragash RS, Al-Samarraie H, Moody L, Zaqout F. Augmented reality and functional skills acquisition among individuals with special needs: A meta-analysis of group design studies. Journal of Special Education Technology. 2022; 37 (1):74–81. doi: 10.1177/0162643420910413. [ CrossRef ] [ Google Scholar ]
  • Bates, A. W. (2015). Teaching in a digital age: Guidelines for designing teaching and learning . Open Educational Resources Collection . 6. Retrieved 30 June 2022 from: https://irl.umsl.edu/oer/6
  • Bingimlas KA. Barriers to the successful integration of ICT in teaching and learning environments: A review of the literature. Eurasia Journal of Mathematics, Science and Technology Education. 2009; 5 (3):235–245. doi: 10.12973/ejmste/75275. [ CrossRef ] [ Google Scholar ]
  • Blaskó Z, Costa PD, Schnepf SV. Learning losses and educational inequalities in Europe: Mapping the potential consequences of the COVID-19 crisis. Journal of European Social Policy. 2022; 32 (4):361–375. doi: 10.1177/09589287221091687. [ CrossRef ] [ Google Scholar ]
  • Bocconi S, Lightfoot M. Scaling up and integrating the selfie tool for schools' digital capacity in education and training systems: Methodology and lessons learnt. European Training Foundation. 2021 doi: 10.2816/907029,JRC123936. [ CrossRef ] [ Google Scholar ]
  • Brooks, D. C., & McCormack, M. (2020). Driving Digital Transformation in Higher Education . Retrieved 30 June 2022 from: https://library.educause.edu/-/media/files/library/2020/6/dx2020.pdf?la=en&hash=28FB8C377B59AFB1855C225BBA8E3CFBB0A271DA
  • Cachia, R., Chaudron, S., Di Gioia, R., Velicu, A., & Vuorikari, R. (2021). Emergency remote schooling during COVID-19, a closer look at European families. Retrieved 30 June 2022 from  https://publications.jrc.ec.europa.eu/repository/handle/JRC125787
  • Çelik B. The effects of computer simulations on students’ science process skills: Literature review. Canadian Journal of Educational and Social Studies. 2022; 2 (1):16–28. doi: 10.53103/cjess.v2i1.17. [ CrossRef ] [ Google Scholar ]
  • Chapman, C., & Sammons, P. (2013). School Self-Evaluation for School Improvement: What Works and Why? . CfBT Education Trust. 60 Queens Road, Reading, RG1 4BS, England.
  • Chauhan S. A meta-analysis of the impact of technology on learning effectiveness of elementary students. Computers & Education. 2017; 105 :14–30. doi: 10.1016/j.compedu.2016.11.005. [ CrossRef ] [ Google Scholar ]
  • Chen, Q., Chan, K. L., Guo, S., Chen, M., Lo, C. K. M., & Ip, P. (2022a). Effectiveness of digital health interventions in reducing bullying and cyberbullying: a meta-analysis. Trauma, Violence, & Abuse , 15248380221082090. 10.1177/15248380221082090 [ PubMed ]
  • Chen B, Wang Y, Wang L. The effects of virtual reality-assisted language learning: A meta-analysis. Sustainability. 2022; 14 (6):3147. doi: 10.3390/su14063147. [ CrossRef ] [ Google Scholar ]
  • Cheok ML, Wong SL. Predictors of e-learning satisfaction in teaching and learning for school teachers: A literature review. International Journal of Instruction. 2015; 8 (1):75–90. doi: 10.12973/iji.2015.816a. [ CrossRef ] [ Google Scholar ]
  • Cheung, A. C., & Slavin, R. E. (2011). The Effectiveness of Education Technology for Enhancing Reading Achievement: A Meta-Analysis. Center for Research and reform in Education .
  • Coban, M., Bolat, Y. I., & Goksu, I. (2022). The potential of immersive virtual reality to enhance learning: A meta-analysis. Educational Research Review , 100452. 10.1016/j.edurev.2022.100452
  • Condie, R., & Munro, R. K. (2007). The impact of ICT in schools-a landscape review. Retrieved 30 June 2022 from: https://oei.org.ar/ibertic/evaluacion/sites/default/files/biblioteca/33_impact_ict_in_schools.pdf
  • Conrads, J., Rasmussen, M., Winters, N., Geniet, A., Langer, L., (2017). Digital Education Policies in Europe and Beyond: Key Design Principles for More Effective Policies. Redecker, C., P. Kampylis, M. Bacigalupo, Y. Punie (ed.), EUR 29000 EN, Publications Office of the European Union, Luxembourg, 10.2760/462941
  • Costa P, Castaño-Muñoz J, Kampylis P. Capturing schools’ digital capacity: Psychometric analyses of the SELFIE self-reflection tool. Computers & Education. 2021; 162 :104080. doi: 10.1016/j.compedu.2020.104080. [ CrossRef ] [ Google Scholar ]
  • Cussó-Calabuig R, Farran XC, Bosch-Capblanch X. Effects of intensive use of computers in secondary school on gender differences in attitudes towards ICT: A systematic review. Education and Information Technologies. 2018; 23 (5):2111–2139. doi: 10.1007/s10639-018-9706-6. [ CrossRef ] [ Google Scholar ]
  • Daniel SJ. Education and the COVID-19 pandemic. Prospects. 2020; 49 (1):91–96. doi: 10.1007/s11125-020-09464-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Delcker J, Ifenthaler D. Teachers’ perspective on school development at German vocational schools during the Covid-19 pandemic. Technology, Pedagogy and Education. 2021; 30 (1):125–139. doi: 10.1080/1475939X.2020.1857826. [ CrossRef ] [ Google Scholar ]
  • Delgado, A., Wardlow, L., O’Malley, K., & McKnight, K. (2015). Educational technology: A review of the integration, resources, and effectiveness of technology in K-12 classrooms. Journal of Information Technology Education Research , 14, 397. Retrieved 30 June 2022 from  http://www.jite.org/documents/Vol14/JITEv14ResearchP397-416Delgado1829.pdf
  • De Silva MJ, Breuer E, Lee L, Asher L, Chowdhary N, Lund C, Patel V. Theory of change: A theory-driven approach to enhance the Medical Research Council's framework for complex interventions. Trials. 2014; 15 (1):1–13. doi: 10.1186/1745-6215-15-267. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Di Pietro G, Biagi F, Costa P, Karpiński Z, Mazza J. The likely impact of COVID-19 on education: Reflections based on the existing literature and recent international datasets. Publications Office of the European Union; 2020. [ Google Scholar ]
  • Elkordy A, Lovinelli J. Competencies, Culture, and Change: A Model for Digital Transformation in K12 Educational Contexts. In: Ifenthaler D, Hofhues S, Egloffstein M, Helbig C, editors. Digital Transformation of Learning Organizations. Springer; 2020. pp. 203–219. [ Google Scholar ]
  • Eng TS. The impact of ICT on learning: A review of research. International Education Journal. 2005; 6 (5):635–650. [ Google Scholar ]
  • European Commission. (2020). Digital Education Action Plan 2021 – 2027. Resetting education and training for the digital age. Retrieved 30 June 2022 from  https://ec.europa.eu/education/sites/default/files/document-library-docs/deap-communication-sept2020_en.pdf
  • European Commission. (2019). 2 nd survey of schools: ICT in education. Objective 1: Benchmark progress in ICT in schools . Retrieved 30 June 2022 from: https://data.europa.eu/euodp/data/storage/f/2019-03-19T084831/FinalreportObjective1-BenchmarkprogressinICTinschools.pdf
  • Eurydice. (2019). Digital Education at School in Europe , Luxembourg: Publications Office of the European Union. Retrieved 30 June 2022 from: https://eacea.ec.europa.eu/national-policies/eurydice/content/digital-education-school-europe_en
  • Escueta, M., Quan, V., Nickow, A. J., & Oreopoulos, P. (2017). Education technology: An evidence-based review. Retrieved 30 June 2022 from  https://ssrn.com/abstract=3031695
  • Fadda D, Pellegrini M, Vivanet G, Zandonella Callegher C. Effects of digital games on student motivation in mathematics: A meta-analysis in K-12. Journal of Computer Assisted Learning. 2022; 38 (1):304–325. doi: 10.1111/jcal.12618. [ CrossRef ] [ Google Scholar ]
  • Fernández-Gutiérrez M, Gimenez G, Calero J. Is the use of ICT in education leading to higher student outcomes? Analysis from the Spanish Autonomous Communities. Computers & Education. 2020; 157 :103969. doi: 10.1016/j.compedu.2020.103969. [ CrossRef ] [ Google Scholar ]
  • Ferrari, A., Cachia, R., & Punie, Y. (2011). Educational change through technology: A challenge for obligatory schooling in Europe. Lecture Notes in Computer Science , 6964 , 97–110. Retrieved 30 June 2022  https://link.springer.com/content/pdf/10.1007/978-3-642-23985-4.pdf
  • Fielding, K., & Murcia, K. (2022). Research linking digital technologies to young children’s creativity: An interpretive framework and systematic review. Issues in Educational Research , 32 (1), 105–125. Retrieved 30 June 2022 from  http://www.iier.org.au/iier32/fielding-abs.html
  • Friedel, H., Bos, B., Lee, K., & Smith, S. (2013). The impact of mobile handheld digital devices on student learning: A literature review with meta-analysis. In Society for Information Technology & Teacher Education International Conference (pp. 3708–3717). Association for the Advancement of Computing in Education (AACE).
  • Fu JS. ICT in education: A critical literature review and its implications. International Journal of Education and Development Using Information and Communication Technology (IJEDICT) 2013; 9 (1):112–125. [ Google Scholar ]
  • Gaol FL, Prasolova-Førland E. Special section editorial: The frontiers of augmented and mixed reality in all levels of education. Education and Information Technologies. 2022; 27 (1):611–623. doi: 10.1007/s10639-021-10746-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garzón J, Acevedo J. Meta-analysis of the impact of Augmented Reality on students’ learning gains. Educational Research Review. 2019; 27 :244–260. doi: 10.1016/j.edurev.2019.04.001. [ CrossRef ] [ Google Scholar ]
  • Garzón, J., Baldiris, S., Gutiérrez, J., & Pavón, J. (2020). How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educational Research Review , 100334. 10.1016/j.edurev.2020.100334
  • Grgurović M, Chapelle CA, Shelley MC. A meta-analysis of effectiveness studies on computer technology-supported language learning. ReCALL. 2013; 25 (2):165–198. doi: 10.1017/S0958344013000013. [ CrossRef ] [ Google Scholar ]
  • Haßler B, Major L, Hennessy S. Tablet use in schools: A critical review of the evidence for learning outcomes. Journal of Computer Assisted Learning. 2016; 32 (2):139–156. doi: 10.1111/jcal.12123. [ CrossRef ] [ Google Scholar ]
  • Haleem A, Javaid M, Qadri MA, Suman R. Understanding the role of digital technologies in education: A review. Sustainable Operations and Computers. 2022; 3 :275–285. doi: 10.1016/j.susoc.2022.05.004. [ CrossRef ] [ Google Scholar ]
  • Hardman J. Towards a pedagogical model of teaching with ICTs for mathematics attainment in primary school: A review of studies 2008–2018. Heliyon. 2019; 5 (5):e01726. doi: 10.1016/j.heliyon.2019.e01726. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hattie J, Rogers HJ, Swaminathan H. The role of meta-analysis in educational research. In: Reid AD, Hart P, Peters MA, editors. A companion to research in education. Springer; 2014. pp. 197–207. [ Google Scholar ]
  • Hattie J. Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge. 2008 doi: 10.4324/9780203887332. [ CrossRef ] [ Google Scholar ]
  • Higgins S, Xiao Z, Katsipataki M. The impact of digital technology on learning: A summary for the education endowment foundation. Education Endowment Foundation and Durham University; 2012. [ Google Scholar ]
  • Higgins, K., Huscroft-D’Angelo, J., & Crawford, L. (2019). Effects of technology in mathematics on achievement, motivation, and attitude: A meta-analysis. Journal of Educational Computing Research , 57(2), 283-319.
  • Hillmayr D, Ziernwald L, Reinhold F, Hofer SI, Reiss KM. The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education. 2020; 153 (1038):97. doi: 10.1016/j.compedu.2020.103897. [ CrossRef ] [ Google Scholar ]
  • Istenic Starcic A, Bagon S. ICT-supported learning for inclusion of people with special needs: Review of seven educational technology journals, 1970–2011. British Journal of Educational Technology. 2014; 45 (2):202–230. doi: 10.1111/bjet.12086. [ CrossRef ] [ Google Scholar ]
  • Jewitt C, Clark W, Hadjithoma-Garstka C. The use of learning platforms to organise learning in English primary and secondary schools. Learning, Media and Technology. 2011; 36 (4):335–348. doi: 10.1080/17439884.2011.621955. [ CrossRef ] [ Google Scholar ]
  • JISC. (2020). What is digital transformation?.  Retrieved 30 June 2022 from: https://www.jisc.ac.uk/guides/digital-strategy-framework-for-university-leaders/what-is-digital-transformation
  • Kalati, A. T., & Kim, M. S. (2022). What is the effect of touchscreen technology on young children’s learning?: A systematic review. Education and Information Technologies , 1-19. 10.1007/s10639-021-10816-5
  • Kalemkuş, J., & Kalemkuş, F. (2022). Effect of the use of augmented reality applications on academic achievement of student in science education: Meta-analysis review. Interactive Learning Environments , 1-18. 10.1080/10494820.2022.2027458
  • Kao C-W. The effects of digital game-based learning task in English as a foreign language contexts: A meta-analysis. Education Journal. 2014; 42 (2):113–141. [ Google Scholar ]
  • Kampylis P, Punie Y, Devine J. Promoting effective digital-age learning - a European framework for digitally competent educational organisations. JRC Technical Reports. 2015 doi: 10.2791/54070. [ CrossRef ] [ Google Scholar ]
  • Kazu IY, Yalçin CK. Investigation of the effectiveness of hybrid learning on academic achievement: A meta-analysis study. International Journal of Progressive Education. 2022; 18 (1):249–265. doi: 10.29329/ijpe.2022.426.14. [ CrossRef ] [ Google Scholar ]
  • Koh C. A qualitative meta-analysis on the use of serious games to support learners with intellectual and developmental disabilities: What we know, what we need to know and what we can do. International Journal of Disability, Development and Education. 2022; 69 (3):919–950. doi: 10.1080/1034912X.2020.1746245. [ CrossRef ] [ Google Scholar ]
  • König J, Jäger-Biela DJ, Glutsch N. Adapting to online teaching during COVID-19 school closure: Teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education. 2020; 43 (4):608–622. doi: 10.1080/02619768.2020.1809650. [ CrossRef ] [ Google Scholar ]
  • Lawrence JE, Tar UA. Factors that influence teachers’ adoption and integration of ICT in teaching/learning process. Educational Media International. 2018; 55 (1):79–105. doi: 10.1080/09523987.2018.1439712. [ CrossRef ] [ Google Scholar ]
  • Lee, S., Kuo, L. J., Xu, Z., & Hu, X. (2020). The effects of technology-integrated classroom instruction on K-12 English language learners’ literacy development: A meta-analysis. Computer Assisted Language Learning , 1-32. 10.1080/09588221.2020.1774612
  • Lei, H., Chiu, M. M., Wang, D., Wang, C., & Xie, T. (2022a). Effects of game-based learning on students’ achievement in science: a meta-analysis. Journal of Educational Computing Research . 10.1177/07356331211064543
  • Lei H, Wang C, Chiu MM, Chen S. Do educational games affect students' achievement emotions? Evidence from a meta-analysis. Journal of Computer Assisted Learning. 2022; 38 (4):946–959. doi: 10.1111/jcal.12664. [ CrossRef ] [ Google Scholar ]
  • Liao YKC, Chang HW, Chen YW. Effects of computer application on elementary school student's achievement: A meta-analysis of students in Taiwan. Computers in the Schools. 2007; 24 (3–4):43–64. doi: 10.1300/J025v24n03_04. [ CrossRef ] [ Google Scholar ]
  • Li Q, Ma X. A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational Psychology Review. 2010; 22 (3):215–243. doi: 10.1007/s10648-010-9125-8. [ CrossRef ] [ Google Scholar ]
  • Liu, M., Pang, W., Guo, J., & Zhang, Y. (2022). A meta-analysis of the effect of multimedia technology on creative performance. Education and Information Technologies , 1-28. 10.1007/s10639-022-10981-1
  • Lu Z, Chiu MM, Cui Y, Mao W, Lei H. Effects of game-based learning on students’ computational thinking: A meta-analysis. Journal of Educational Computing Research. 2022 doi: 10.1177/07356331221100740. [ CrossRef ] [ Google Scholar ]
  • Martinez L, Gimenes M, Lambert E. Entertainment video games for academic learning: A systematic review. Journal of Educational Computing Research. 2022 doi: 10.1177/07356331211053848. [ CrossRef ] [ Google Scholar ]
  • Mayne J. Useful theory of change models. Canadian Journal of Program Evaluation. 2015; 30 (2):119–142. doi: 10.3138/cjpe.230. [ CrossRef ] [ Google Scholar ]
  • Moran J, Ferdig RE, Pearson PD, Wardrop J, Blomeyer RL., Jr Technology and reading performance in the middle-school grades: A meta-analysis with recommendations for policy and practice. Journal of Literacy Research. 2008; 40 (1):6–58. doi: 10.1080/10862960802070483. [ CrossRef ] [ Google Scholar ]
  • OECD. (2015). Students, Computers and Learning: Making the Connection . PISA, OECD Publishing, Paris. Retrieved from: 10.1787/9789264239555-en
  • OECD. (2021). OECD Digital Education Outlook 2021: Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots. Retrieved from: https://www.oecd-ilibrary.org/education/oecd-digital-education-outlook-2021_589b283f-en
  • Pan Y, Ke F, Xu X. A systematic review of the role of learning games in fostering mathematics education in K-12 settings. Educational Research Review. 2022; 36 :100448. doi: 10.1016/j.edurev.2022.100448. [ CrossRef ] [ Google Scholar ]
  • Pettersson F. Understanding digitalization and educational change in school by means of activity theory and the levels of learning concept. Education and Information Technologies. 2021; 26 (1):187–204. doi: 10.1007/s10639-020-10239-8. [ CrossRef ] [ Google Scholar ]
  • Pihir, I., Tomičić-Pupek, K., & Furjan, M. T. (2018). Digital transformation insights and trends. In Central European Conference on Information and Intelligent Systems (pp. 141–149). Faculty of Organization and Informatics Varazdin. Retrieved 30 June 2022 from https://www.proquest.com/conference-papers-proceedings/digital-transformation-insights-trends/docview/2125639934/se-2
  • Punie, Y., Zinnbauer, D., & Cabrera, M. (2006). A review of the impact of ICT on learning. Working Paper prepared for DG EAC. Retrieved 30 June 2022 from: http://www.eurosfaire.prd.fr/7pc/doc/1224678677_jrc47246n.pdf
  • Quah CY, Ng KH. A systematic literature review on digital storytelling authoring tool in education: January 2010 to January 2020. International Journal of Human-Computer Interaction. 2022; 38 (9):851–867. doi: 10.1080/10447318.2021.1972608. [ CrossRef ] [ Google Scholar ]
  • Ran H, Kim NJ, Secada WG. A meta-analysis on the effects of technology's functions and roles on students' mathematics achievement in K-12 classrooms. Journal of computer assisted learning. 2022; 38 (1):258–284. doi: 10.1111/jcal.12611. [ CrossRef ] [ Google Scholar ]
  • Ređep, N. B. (2021). Comparative overview of the digital preparedness of education systems in selected CEE countries. Center for Policy Studies. CEU Democracy Institute .
  • Rott, B., & Marouane, C. (2018). Digitalization in schools–organization, collaboration and communication. In Digital Marketplaces Unleashed (pp. 113–124). Springer, Berlin, Heidelberg.
  • Savva M, Higgins S, Beckmann N. Meta-analysis examining the effects of electronic storybooks on language and literacy outcomes for children in grades Pre-K to grade 2. Journal of Computer Assisted Learning. 2022; 38 (2):526–564. doi: 10.1111/jcal.12623. [ CrossRef ] [ Google Scholar ]
  • Schmid RF, Bernard RM, Borokhovski E, Tamim RM, Abrami PC, Surkes MA, Wade CA, Woods J. The effects of technology use in postsecondary education: A meta-analysis of classroom applications. Computers & Education. 2014; 72 :271–291. doi: 10.1016/j.compedu.2013.11.002. [ CrossRef ] [ Google Scholar ]
  • Schuele CM, Justice LM. The importance of effect sizes in the interpretation of research: Primer on research: Part 3. The ASHA Leader. 2006; 11 (10):14–27. doi: 10.1044/leader.FTR4.11102006.14. [ CrossRef ] [ Google Scholar ]
  • Schwabe, A., Lind, F., Kosch, L., & Boomgaarden, H. G. (2022). No negative effects of reading on screen on comprehension of narrative texts compared to print: A meta-analysis. Media Psychology , 1-18. 10.1080/15213269.2022.2070216
  • Sellar S. Data infrastructure: a review of expanding accountability systems and large-scale assessments in education. Discourse: Studies in the Cultural Politics of Education. 2015; 36 (5):765–777. doi: 10.1080/01596306.2014.931117. [ CrossRef ] [ Google Scholar ]
  • Stock WA. Systematic coding for research synthesis. In: Cooper H, Hedges LV, editors. The handbook of research synthesis, 236. Russel Sage; 1994. pp. 125–138. [ Google Scholar ]
  • Su, J., Zhong, Y., & Ng, D. T. K. (2022). A meta-review of literature on educational approaches for teaching AI at the K-12 levels in the Asia-Pacific region. Computers and Education: Artificial Intelligence , 100065. 10.1016/j.caeai.2022.100065
  • Su J, Yang W. Artificial intelligence in early childhood education: A scoping review. Computers and Education: Artificial Intelligence. 2022; 3 :100049. doi: 10.1016/j.caeai.2022.100049. [ CrossRef ] [ Google Scholar ]
  • Sung YT, Chang KE, Liu TC. The effects of integrating mobile devices with teaching and learning on students' learning performance: A meta-analysis and research synthesis. Computers & Education. 2016; 94 :252–275. doi: 10.1016/j.compedu.2015.11.008. [ CrossRef ] [ Google Scholar ]
  • Talan T, Doğan Y, Batdı V. Efficiency of digital and non-digital educational games: A comparative meta-analysis and a meta-thematic analysis. Journal of Research on Technology in Education. 2020; 52 (4):474–514. doi: 10.1080/15391523.2020.1743798. [ CrossRef ] [ Google Scholar ]
  • Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. Review of Educational research, 81 (1), 4–28. Retrieved 30 June 2022 from 10.3102/0034654310393361
  • Tamim, R. M., Borokhovski, E., Pickup, D., Bernard, R. M., & El Saadi, L. (2015). Tablets for teaching and learning: A systematic review and meta-analysis. Commonwealth of Learning. Retrieved from: http://oasis.col.org/bitstream/handle/11599/1012/2015_Tamim-et-al_Tablets-for-Teaching-and-Learning.pdf
  • Tang C, Mao S, Xing Z, Naumann S. Improving student creativity through digital technology products: A literature review. Thinking Skills and Creativity. 2022; 44 :101032. doi: 10.1016/j.tsc.2022.101032. [ CrossRef ] [ Google Scholar ]
  • Tolani-Brown, N., McCormac, M., & Zimmermann, R. (2011). An analysis of the research and impact of ICT in education in developing country contexts. In ICTs and sustainable solutions for the digital divide: Theory and perspectives (pp. 218–242). IGI Global.
  • Trucano, M. (2005). Knowledge Maps: ICTs in Education. Washington, DC: info Dev / World Bank. Retrieved 30 June 2022 from  https://files.eric.ed.gov/fulltext/ED496513.pdf
  • Ulum H. The effects of online education on academic success: A meta-analysis study. Education and Information Technologies. 2022; 27 (1):429–450. doi: 10.1007/s10639-021-10740-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Underwood, J. D. (2009). The impact of digital technology: A review of the evidence of the impact of digital technologies on formal education. Retrieved 30 June 2022 from: http://dera.ioe.ac.uk/id/eprint/10491
  • Verschaffel, L., Depaepe, F., & Mevarech, Z. (2019). Learning Mathematics in metacognitively oriented ICT-Based learning environments: A systematic review of the literature. Education Research International , 2019 . 10.1155/2019/3402035
  • Villena-Taranilla R, Tirado-Olivares S, Cózar-Gutiérrez R, González-Calero JA. Effects of virtual reality on learning outcomes in K-6 education: A meta-analysis. Educational Research Review. 2022; 35 :100434. doi: 10.1016/j.edurev.2022.100434. [ CrossRef ] [ Google Scholar ]
  • Voogt J, Knezek G, Cox M, Knezek D, ten Brummelhuis A. Under which conditions does ICT have a positive effect on teaching and learning? A call to action. Journal of Computer Assisted Learning. 2013; 29 (1):4–14. doi: 10.1111/j.1365-2729.2011.00453.x. [ CrossRef ] [ Google Scholar ]
  • Vuorikari, R., Punie, Y., & Cabrera, M. (2020). Emerging technologies and the teaching profession: Ethical and pedagogical considerations based on near-future scenarios  (No. JRC120183). Joint Research Centre. Retrieved 30 June 2022 from: https://publications.jrc.ec.europa.eu/repository/handle/JRC120183
  • Wang LH, Chen B, Hwang GJ, Guan JQ, Wang YQ. Effects of digital game-based STEM education on students’ learning achievement: A meta-analysis. International Journal of STEM Education. 2022; 9 (1):1–13. doi: 10.1186/s40594-022-00344-0. [ CrossRef ] [ Google Scholar ]
  • Wen X, Walters SM. The impact of technology on students’ writing performances in elementary classrooms: A meta-analysis. Computers and Education Open. 2022; 3 :100082. doi: 10.1016/j.caeo.2022.100082. [ CrossRef ] [ Google Scholar ]
  • Zheng B, Warschauer M, Lin CH, Chang C. Learning in one-to-one laptop environments: A meta-analysis and research synthesis. Review of Educational Research. 2016; 86 (4):1052–1084. doi: 10.3102/0034654316628645. [ CrossRef ] [ Google Scholar ]

Raising Sand's Value Awareness: Science and Communication Initiatives.

  • Drago, Teresa
  • Santos, Jacqueline
  • Surducan, Emanuel
  • Alberto, Ana
  • Afonso, João.
  • Fernandes, Aurélie

Sand is one of the most used resources in the world (50 billion tonnes per year). It plays a strategic key role in delivering geosystems services, maintaining biodiversity, supporting economic development, and securing livelihoods within communities (UNEP, 2022). Sand is everywhere in our societies: buildings, roads, dams and other infrastructures. Despite this "endless" use, sand is a finite resource, and its use occurs at a faster rate than its generation by geological processes. However, the importance of sand and the need of a sustainable management of this raw material are unknow to students at basic and secondary levels and to the public in general.The EDUCOAST project (funded by EEAGrants) aims to promote nature-based education in coastal and marine geosciences through experimental learning. A series of initiatives to increase awareness on sand conservation were carried out as part of the EDUCOAST project. They included field and lab activities for basic and secondary school students at sandy environments (such as barrier islands and dunes) and observation of various types of sand from around the world under binocular microscope. These "hands-on" activities focused on topics such as "what is the sand made of?" and "Let's get to know sand better". In total, about 500 students participated in these "hands-on" activities and the conducted surveys showed very positive feedback, where the students learnt more about these sandy environments (origin and their processes), the sand characteristics (grain-size, composition, carbonates contents) and the need for more sustainable management practices for the environmental conservation of the coastal systems.Communication and outreach play an important role in achieving the proposed objectives. In this context, the project also participated in various initiatives such as the "European Research Night", "Science in Summer" (promoted by the Portuguese Programme "Ciência Viva") and the "Week of Science and Technology" among others, making it possible to increase awareness in addressing issues like sand importance and conservation for approximately 700 people.These initiatives contributed to highlight the importance of public awareness and the potential for positive change through informed and engaged students and general public.This is a contribution of the EDUCOAST (EEAGrants, PT-INNOVATION-0067) and EMSO-PT (PINFRA/22157/2016) projects.This work was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) I.P./MCTES through national funds (PIDDAC) - UIDB/50019/2020 (https://doi.org/10.54499/ UIDB/50019/2020), UIDP/50019/2020 (https://doi.org/10.54499/UIDP/50019/2020) and LA/P/0068/2020 (https://doi.org/10.54499/LA/P/0068/2020)Reference: UNEP 2022. Sand and sustainability: 10 strategic recommendations to avert a crisis. GRID-Geneva, United Nations Environment Programme, Geneva, Switzerland

No Sources Found

Essay Service Examples Technology Technology in Education

Essay on the Importance of Technology in Education

  • Proper editing and formatting
  • Free revision, title page, and bibliography
  • Flexible prices and money-back guarantee

document

Our writers will provide you with an essay sample written from scratch: any topic, any deadline, any instructions.

reviews

Cite this paper

Related essay topics.

Get your paper done in as fast as 3 hours, 24/7.

Related articles

Essay on the Importance of Technology in Education

Most popular essays

  • Advantages of Technology
  • Technology in Education

Have you ever tried to imagine your life without high-tech technology? How people have found their...

  • Mobile Phone

Mobile technologies emerge as an innovative tool associated with different methods and strategies...

  • Digital Literacy

Starting digital literacy programs in education is important. Using digital media teaches children...

  • Disadvantages of Technology

Technology have changed the way human beings live. In the past, if someone wished to learn...

  • Effects of Technology

Every night, when I'm about to sleep, the smartest and the strangest ideas begin to pop out of my...

In this essay I will talk about a topic that is close to my heart, a topic we can all relate to on...

Increasing developments in technology and digital communication continuously affects learners in...

  • Virtual Reality

Our life can be hardly imagined without modern technology. Every day some scientists and engineers...

Nowadays, technology is all around the world. We use it on a daily basis to get our individual...

Join our 150k of happy users

  • Get original paper written according to your instructions
  • Save time for what matters most

Fair Use Policy

EduBirdie considers academic integrity to be the essential part of the learning process and does not support any violation of the academic standards. Should you have any questions regarding our Fair Use Policy or become aware of any violations, please do not hesitate to contact us via [email protected].

We are here 24/7 to write your paper in as fast as 3 hours.

Provide your email, and we'll send you this sample!

By providing your email, you agree to our Terms & Conditions and Privacy Policy .

Say goodbye to copy-pasting!

Get custom-crafted papers for you.

Enter your email, and we'll promptly send you the full essay. No need to copy piece by piece. It's in your inbox!

  • Election 2024
  • Entertainment
  • Newsletters
  • Photography
  • AP Investigations
  • AP Buyline Personal Finance
  • AP Buyline Shopping
  • Press Releases
  • Israel-Hamas War
  • Russia-Ukraine War
  • Global elections
  • Asia Pacific
  • Latin America
  • Middle East
  • Election Results
  • Delegate Tracker
  • AP & Elections
  • Auto Racing
  • 2024 Paris Olympic Games
  • Movie reviews
  • Book reviews
  • Financial Markets
  • Business Highlights
  • Financial wellness
  • Artificial Intelligence
  • Social Media

The UK will hold its first election in almost 5 years. Here’s what to know

The UK will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. The centre-right Conservatives took power during the depths of the global financial crisis and have won three more elections since then. But those years have been marked by a sluggish economy, declining public services and a series of scandals, making the Tories, as they are commonly known, easy targets for critics on the left and right. The Labour Party, which leans to the left and is lead by Sir Keir Starmer, is far ahead in most opinion polls after focusing its campaign on a single word: Change.

Image

FILE - The door to 10 Downing Street in London, Friday, July 8, 2022. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (AP Photo/Frank Augstein, File)

  • Copy Link copied

FILE - Britain’s Prime Minister Rishi Sunak and opposition Labour Party leader Keir Starmer, left, take part in the BBC’s Prime Ministerial Debate, in Nottingham, England, Wednesday June 26, 2024. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (Phil Noble/Pool via AP, File)

FILE - Britain’s Prime Minister Rishi Sunak speaks to the media, as heavy rain falls, outside 10 Downing Street in London Wednesday, May 22, 2024, as he announces that he is to call a General Election for July 4. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (AP Photo/Kin Cheung, File)

FILE - Britain’s Labour Party leader Keir Starmer speaks on stage at the launch of The Labour party’s 2024 general election manifesto in Manchester, England, Thursday, June 13, 2024. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (AP Photo/Jon Super, File)

FILE - A Union flag is displayed outside the Houses of Parliament, in London, Thursday, May 23, 2024. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (AP Photo/Kin Cheung, File)

FILE - Britain’s Nigel Farage, Reform UK party leader plays on a game in an amusement arcade holds out some coins whilst spending time with supporters in Clacton-On-Sea, Essex, England Friday, June 21, 2024. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (AP Photo/Kirsty Wigglesworth, File)

FILE - Liberal Democrats leader Ed Davey, takes part in a general election campaign event, at the center for adults with learning disabilities in Carshalton, London, Tuesday, June 18, 2024. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (AP Photo/Kin Cheung, File)

FILE - Britain’s Prime Minister and Conservative Party leader Rishi Sunak, delivers a speech as part of a Conservative campaign event in the build-up to the UK general election on July 4, in Leeds, northern England, Thursday, June 27, 2024. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (Darren Staples/Pool Photo via AP, File)

FILE - Britain’s Labour Party leader Keir Starmer, left, with Labour candidate Alex Baker, 2nd left, visits a veterans coffee morning at Aldershot Town Football Club in Aldershot, England, Saturday June 29, 2024, to mark Armed Forces Day, while on the General Election campaign trail. (Stefan Rousseau/PA via AP, File)

FILE - Britain’s Prime Minister Rishi Sunak reacts as he speaks to school children during an election campaign visit to the Holy Trinity Rosehill CofE Primary school in Teeside, northeast England, Friday, June 28, 2024. (AP Photo/Kin Cheung, Pool, File)

FILE - Britain’s Labour Party leader Keir Starmer smiles as he sits in the audience at the launch of The Labour party’s 2024 general election manifesto in Manchester, England, Thursday, June 13, 2024. The election will take place on July 4. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (AP Photo/Jon Super, File)

FILE - Reform UK party leader Nigel Farage speaks during an interview in Clacton-On-Sea, England, Friday, June 21, 2024. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (AP Photo/Kirsty Wigglesworth, File)

FILE - Britain’s Prime Minister Rishi Sunak takes part in the BBC’s Prime Ministerial Debate, in Nottingham, England, Wednesday June 26, 2024. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (Phil Noble/Pool via AP, File)

FILE - In this Thursday, Dec. 12, 2019 file photo, a polling station signpost lies on the pavement, in Twickenham, England. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (AP Photo/Frank Augstein, File)

FILE - Liberal Democrat leader Sir Ed Davey during a visit to Eastbourne Borough Football Club in East Sussex, while on the General Election campaign trail, Monday July 1, 2024. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (Gareth Fuller/PA via AP, File)

FILE - Labour Party leader Keir Starmer listens to a question from port workers during a general election campaign event Southampton Docks in Southampton, England, Monday, June 17, 2024. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (AP Photo/Kin Cheung, File)

FILE - British Prime Minister Rishi Sunak talks to journalists on his plane as he travels from Northern Ireland to Birmingham during a day of campaigning for this year’s General Election due to be held on July 4, on Friday May 24, 2024. The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power. (Henry Nicholls/Pool photo via AP, File)

LONDON (AP) — The United Kingdom will hold its first national election in almost five years on Thursday, with opinion polls suggesting that Prime Minister Rishi Sunak’s Conservative Party will be punished for failing to deliver on promises made during 14 years in power.

The center-right Conservatives took power during the depths of the global financial crisis and have won three more elections since then. But those years have been marked by a sluggish economy, declining public services and a series of scandals, making the Tories, as they are commonly known, easy targets for critics on the left and right.

The Labour Party , which leans to the left, is far ahead in most opinion polls after focusing its campaign on a single word: Change.

Image

But the Tories face other challenges as well. The new Reform Party is siphoning off votes from the rightwing of the Conservatives after criticizing the Tory leadership for failing to control immigration.

Here is a look at the election and what’s at stake.

AP AUDIO: The UK will hold its first election in almost 5 years. Here’s what to know

Correspondent Naeun Kim reports Britain’s governing party is gambling on a summer election, to be held this Thursday, July 4.

How will the election work?

People throughout the United Kingdom will elect all 650 members of the House of Commons, one for each local constituency. There are no primaries or run-offs, just a single round of voting on July 4.

Image

Britain uses a “first past the post” system of voting, which means that the candidate that finishes top in each constituency will be elected, even if they don’t get 50% of the vote. This has generally cemented the dominance of the two largest parties, Conservatives and Labour, because it is difficult for smaller parties to win seats unless they have concentrated support in particular areas.

How is the prime minister chosen?

Over 50 countries go to the polls in 2024

  • The year will test even the most robust democracies. Read more on what’s to come here .
  • Take a look at the 25 places where a change in leadership could resonate around the world.
  • Keep track of the latest AP elections coverage from around the world here.

The party that commands a majority in the Commons, either alone or with the support of another party, will form the next government and its leader will be prime minister.

That means the results will determine the political direction of the government, which has been led by the center-right Conservatives for the past 14 years. The center-left Labour Party is widely seen to be in the strongest position .

Who is running?

Sunak, a former Treasury chief who has been prime minister since October 2022, is leading his party into the election. His primary opponent is Keir Starmer , a former director of public prosecutions in England and leader of the Labour Party since April 2020.

But other parties, some of which have strong regional support, could be crucial to forming a coalition government if no one wins an overall majority.

The Scottish National Party , which campaigns for Scottish independence, the Liberal Democrats, and the Democratic Unionist Party, which seeks to maintain ties between Britain and Northern Ireland, are currently the three largest parties in Parliament after the Conservatives and Labour. Many observers suggest the new Reform Party, fronted by Brexit campaigner Nigel Farage, may siphon votes from the Conservatives.

Image

FILE - Britain’s Prime Minister Rishi Sunak and opposition Labour Party leader Keir Starmer, left, take part in the BBC’s Prime Ministerial Debate, in Nottingham, England, Wednesday June 26, 2024. (Phil Noble/Pool via AP, File)

Image

FILE - A Union flag is displayed outside the Houses of Parliament, in London, Thursday, May 23, 2024. (AP Photo/Kin Cheung, File)

Why are the Conservatives under pressure?

The Conservatives have faced one challenge after another since they took power in 2010. First there was the fallout from the global financial crisis, which swelled Britain’s debt and caused the Tories to impose years of austerity to balance the budget. They then led Britain out of the European Union , battled one of the deadliest COVID-19 outbreaks in western Europe, and saw inflation soar after Russia invaded Ukraine.

Regardless of the circumstances, many voters blame the Conservatives for the litany of problems facing Britain, from sewage spills and unreliable train service to the cost-of-living crisis, crime and the influx of migrants crossing the English Channel on inflatable boats.

On top of that, the party has been tarred by the repeated ethical lapses of government ministers, including lockdown-busting parties in government offices. The scandals chased former Prime Minister Boris Johnson from office and ultimately from Parliament after he was found to have lied to lawmakers . His successor, Liz Truss, lasted just 45 days after her economic policies cratered the economy .

What are the big issues?

Image

FILE - In this Thursday, Dec. 12, 2019 file photo, a polling station signpost lies on the pavement, in Twickenham, England. (AP Photo/Frank Augstein, File)

The economy: Britain has struggled with high inflation and slow economic growth, which have combined to make most people feel poorer. The Conservatives succeeded in controlling inflation, which slowed to 2% in the year through May after peaking at 11.1% in October 2022, but growth remains sluggish, raising questions about the government’s economic policies.

Immigration: Thousands of asylum seekers and economic migrants have crossed the English Channel in flimsy inflatable boats in recent years , triggering criticism that the government has lost control of Britain’s borders. The Conservatives’ signature policy for stopping the boats is a plan to deport some of these migrants to Rwanda. Critics say the plan violates international law, is inhumane, and will do nothing to stop people fleeing war, unrest and famine.

Health care: Britain’s National Health Service , which provides free health care to everyone, is plagued with long waiting lists for everything from dental care to cancer treatment. Newspapers are filled with stories about seriously ill patients forced to wait hours for an ambulance, then longer still for a hospital bed.

The environment: Sunak has backtracked on a series of environmental commitments , pushing back the deadline for ending the sale of gasoline- and diesel-powered passenger vehicles and authorizing new oil drilling in the North Sea. Critics say these are the wrong policies at a time the world is trying to combat climate change.

Why is the election being held now?

Image

FILE - Britain’s Prime Minister Rishi Sunak speaks to the media, as heavy rain falls, outside 10 Downing Street in London Wednesday, May 22, 2024, as he announces that he is to call a General Election for July 4. (AP Photo/Kin Cheung, File)

Sunak surprised pundits and most of his own lawmakers six weeks ago when he set the election for July 4, at least three months earlier than expected.

While most observers thought the vote would take place in the fall, Sunak gambled on a summer election, hoping that positive economic news would help him persuade voters that Conservative policies were beginning to work.

The decision was so startling that it landed the Tories in hot water. Allegations have emerged that party members and police officers assigned to protect government officials had placed wagers on a summer election , suggesting they had inside information and damaging Sunak’s ability to claim that his party is more trustworthy than Labour.

Commentators had been speculating about the timing of the election for months because the parliamentary term was scheduled to end in mid-December. While each parliament is elected for up to five years, the prime minister can call an election whenever it is most advantageous politically.

essay about technology and its importance in education

IMAGES

  1. Essay on Contribution of Technology in Education

    essay about technology and its importance in education

  2. Importance of Technology in Schools Essay Example

    essay about technology and its importance in education

  3. Benefits Of Technology In Education English Language Free Essay Example

    essay about technology and its importance in education

  4. ≫ Contribution of Technology in Education Free Essay Sample on Samploon.com

    essay about technology and its importance in education

  5. Essay on Contribution of Technology in Education

    essay about technology and its importance in education

  6. Technology Essay

    essay about technology and its importance in education

VIDEO

  1. Importance of Technology/Benefits of Technology/Essay on Technology in English/Short lines on Techno

  2. Technology essay in English 5 lines/Importance of Technology/Technology definition/Technology speech

  3. Technology Essay Writing || 10 lines Essay on Technology in English || Essay on Technology

  4. Importance of Technology Essay

  5. Write Essay on National Technology Day

  6. Essay on "Importance of Education"

COMMENTS

  1. Technology In Education Essay

    Here are 100, 200 and 500 word essays on Technology In Education. Technology plays a huge part in education. The students' learning process gets simpler as technology advances. Students can easily learn the concepts thanks to technologies utilised in schools and universities, such as computer labs and high-end equipment and instruments.

  2. The Importance of Technology in Education: [Essay Example ...

    Another importance of technology in education is technology can prepare students for the future. According to Cox, many students believe that with using technology in the classroom will help students prepare them for the digital future. Technology has changed the way people live. Many technologies have been implemented in the education sector.

  3. Realizing the promise: How can education technology improve learning

    Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning. 1. Take stock of how your current schools ...

  4. How Important Is Technology in Education?

    Increased Collaboration and Communication. Educational technology can foster collaboration. Not only can teachers engage with students during lessons, but students can also communicate with each other. Through online lessons and learning games, students get to work together to solve problems. In collaborative activities, students can share ...

  5. How technology is reinventing education

    New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed.

  6. Education: Impact of Technology

    Updated: Mar 21st, 2024. Technology's impact on education has been a popular discussion subject in recent years. Remote learning during the pandemic changed the public perspectives on the role of technology in teaching and learning. According to Himmelsbach (2022), educators realize the power of digital tools, devices, and applications.

  7. PDF The Positive Effects of Technology on Teaching and Student ...

    reason, technology integration is becoming more important in public schools. Students are now having to become more confident using computers (i.e. in order to take standardized tests ... training and then began integrating technology into general education lessons on a daily basis. This program also included a practical technology support plan ...

  8. PDF Technology and Its Use in Education: Present Roles and Future Prospects

    The role of technology, in a traditional school setting, is to facilitate, through increased. efficiency and effectiveness, the education of knowledge and skills. In order to fully examine this. thesis, we must first define several terms. Efficiency will be defined as the quickness by which.

  9. Why Do We Need Technology in Education?

    Using the Universal Design for Learning (UDL) (CAST, Inc., 2012) principles as a guide, technology can increase access to, and representation of, content, provide students with a variety of ways to communicate and express their knowledge, and motivate student learning through interest and engagement.

  10. Essay on the Importance of Technology in Education

    1. Introduction. Technology has become an integral part of education, revolutionizing the way students learn and teachers instruct. The purpose of this essay is to explore the significance of technology in education and its impact on modern-day learning environments. As we delve into this topic, we will examine the various ways in which ...

  11. The Role of Technology in Education

    Role of Technology in Education. Computer and internet technology has completely brought a new trend in the global education that makes it possible for people to learn from the comfort of their homes, thanks to the online professional development courses. The internet has led to an unprecedented degree of educational content to a wide audience ...

  12. Technology in Education: An Argumentative Perspective [Free Essay

    Introduction. This essay has engaged in an argumentative discussion about the role of technology in education, examining its potential benefits such as enhanced engagement, personalized learning, and skill development, while also addressing the risks of overreliance and inequity. By understanding both sides of the argument, educators and ...

  13. The Impact of Technology in Education

    The incorporation of technology in education has led to many positive changes in the teaching and learning process. It has expanded learning opportunities beyond traditional classrooms, enhanced engagement and collaboration, and improved efficiencies in teaching and administration. However, there are challenges that need to be addressed to ...

  14. 100 Words Essay on Impact of Technology on Education

    The Benefits of Technology in Education. One of the most significant benefits of technology in education is the democratization of knowledge. Digital platforms such as online libraries, e-books, and educational websites have made information accessible to anyone with an internet connection, breaking down geographical and socio-economic barriers.

  15. PDF Essay 6. Using Educational Technology to Enhance Learning and Teaching

    Essay 6. Using Educational Technology to Enhance Learning and Teaching Essay 6. Using Educational Technology to Enhance Learning and Teaching Introduction Information technology (IT) offers tremendous promise for enhancing the academic experience. Educational technologies include not only the Internet, which provides access to university websites

  16. The Role of Technology in Modern Education

    Body Paragraph 2: Enhancing Engagement and Collaboration. Technology also plays a crucial role in enhancing student engagement and collaboration. Interactive tools such as multimedia presentations, virtual simulations, and gamified learning experiences make education more engaging and enjoyable.

  17. Discovering the Importance of Technology in Education

    The 3 important roles technology plays in education are increased collaboration and communication, personalized learning opportunities, and engaging content. The future of technology in education is bright and full of possibilities. From virtual and augmented reality to artificial intelligence and machine learning, technology is constantly ...

  18. Information and communication technology (ICT) in education

    Information and Communications Technology (ICT) can impact student learning when teachers are digitally literate and understand how to integrate it into curriculum. Schools use a diverse set of ICT tools to communicate, create, disseminate, store, and manage information.(6) In some contexts, ICT has also become integral to the teaching-learning interaction, through such approaches as replacing ...

  19. (PDF) Integration of Technology in Education and its ...

    Volume 47, Issue 2, Page 5463, 2023; Arti cle no.AJESS.101584. ISSN: 2581- 6268. Integration of T echnology in Education. and its Impact on Learning and. T eaching. Dickson Mdhlalose a* and Gloria ...

  20. Impacts of digital technologies on education and factors influencing

    Introduction. Digital technologies have brought changes to the nature and scope of education. Versatile and disruptive technological innovations, such as smart devices, the Internet of Things (IoT), artificial intelligence (AI), augmented reality (AR) and virtual reality (VR), blockchain, and software applications have opened up new opportunities for advancing teaching and learning (Gaol ...

  21. Essay on the Benefits of Technology in Education

    Technology brought many different things to our life and it affected our current lifestyle so much. Improvement in technology provides many opportunities for the human to do everything even beyond their imagination. It made our life easier and better in many different aspects of our life such as work, education, healthcare, entertainment, etc.

  22. Importance of Technology in Education Essays

    1310 Words. 6 Pages. 4 Works Cited. Open Document. Everyday life involves technology. Everyday life is no longer simple. If one is not tech savvy, he or she may struggle to make his or her way through the day. In recent times technology has reached a new level of advancements and is taking over everywhere, including the classroom.

  23. Raising Sand's Value Awareness: Science and Communication Initiatives

    Sand is one of the most used resources in the world (50 billion tonnes per year). It plays a strategic key role in delivering geosystems services, maintaining biodiversity, supporting economic development, and securing livelihoods within communities (UNEP, 2022). Sand is everywhere in our societies: buildings, roads, dams and other infrastructures. Despite this "endless" use, sand is a finite ...

  24. Essay on the Importance of Technology in Education

    Words: 538. Page: 1. This essay sample was donated by a student to help the academic community. Papers provided by EduBirdie writers usually outdo students' samples. Cite this essay. Download. The evolution of technological know-how has impacted each component of our lives from banking to the way that we communicate with each other.

  25. UK election 2024: Candidates, how voting works, key issues

    The Associated Press is an independent global news organization dedicated to factual reporting. Founded in 1846, AP today remains the most trusted source of fast, accurate, unbiased news in all formats and the essential provider of the technology and services vital to the news business.