Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Open access
  • Published: 12 February 2024

Education reform and change driven by digital technology: a bibliometric study from a global perspective

  • Chengliang Wang 1 ,
  • Xiaojiao Chen 1 ,
  • Teng Yu   ORCID: orcid.org/0000-0001-5198-7261 2 , 3 ,
  • Yidan Liu 1 , 4 &
  • Yuhui Jing 1  

Humanities and Social Sciences Communications volume  11 , Article number:  256 ( 2024 ) Cite this article

9561 Accesses

3 Citations

1 Altmetric

Metrics details

  • Development studies
  • Science, technology and society

Amidst the global digital transformation of educational institutions, digital technology has emerged as a significant area of interest among scholars. Such technologies have played an instrumental role in enhancing learner performance and improving the effectiveness of teaching and learning. These digital technologies also ensure the sustainability and stability of education during the epidemic. Despite this, a dearth of systematic reviews exists regarding the current state of digital technology application in education. To address this gap, this study utilized the Web of Science Core Collection as a data source (specifically selecting the high-quality SSCI and SCIE) and implemented a topic search by setting keywords, yielding 1849 initial publications. Furthermore, following the PRISMA guidelines, we refined the selection to 588 high-quality articles. Using software tools such as CiteSpace, VOSviewer, and Charticulator, we reviewed these 588 publications to identify core authors (such as Selwyn, Henderson, Edwards), highly productive countries/regions (England, Australia, USA), key institutions (Monash University, Australian Catholic University), and crucial journals in the field ( Education and Information Technologies , Computers & Education , British Journal of Educational Technology ). Evolutionary analysis reveals four developmental periods in the research field of digital technology education application: the embryonic period, the preliminary development period, the key exploration, and the acceleration period of change. The study highlights the dual influence of technological factors and historical context on the research topic. Technology is a key factor in enabling education to transform and upgrade, and the context of the times is an important driving force in promoting the adoption of new technologies in the education system and the transformation and upgrading of education. Additionally, the study identifies three frontier hotspots in the field: physical education, digital transformation, and professional development under the promotion of digital technology. This study presents a clear framework for digital technology application in education, which can serve as a valuable reference for researchers and educational practitioners concerned with digital technology education application in theory and practice.

Similar content being viewed by others

article writing on use of technology in education

A bibliometric analysis of knowledge mapping in Chinese education digitalization research from 2012 to 2022

article writing on use of technology in education

Digital transformation and digital literacy in the context of complexity within higher education institutions: a systematic literature review

article writing on use of technology in education

Knowledge mapping of vocational education and training research (2004–2020): a visual analysis based on CiteSpace

Introduction.

Digital technology has become an essential component of modern education, facilitating the extension of temporal and spatial boundaries and enriching the pedagogical contexts (Selwyn and Facer, 2014 ). The advent of mobile communication technology has enabled learning through social media platforms (Szeto et al. 2015 ; Pires et al. 2022 ), while the advancement of augmented reality technology has disrupted traditional conceptions of learning environments and spaces (Perez-Sanagustin et al., 2014 ; Kyza and Georgiou, 2018 ). A wide range of digital technologies has enabled learning to become a norm in various settings, including the workplace (Sjöberg and Holmgren, 2021 ), home (Nazare et al. 2022 ), and online communities (Tang and Lam, 2014 ). Education is no longer limited to fixed locations and schedules, but has permeated all aspects of life, allowing learning to continue at any time and any place (Camilleri and Camilleri, 2016 ; Selwyn and Facer, 2014 ).

The advent of digital technology has led to the creation of several informal learning environments (Greenhow and Lewin, 2015 ) that exhibit divergent form, function, features, and patterns in comparison to conventional learning environments (Nygren et al. 2019 ). Consequently, the associated teaching and learning processes, as well as the strategies for the creation, dissemination, and acquisition of learning resources, have undergone a complete overhaul. The ensuing transformations have posed a myriad of novel issues, such as the optimal structuring of teaching methods by instructors and the adoption of appropriate learning strategies by students in the new digital technology environment. Consequently, an examination of the principles that underpin effective teaching and learning in this environment is a topic of significant interest to numerous scholars engaged in digital technology education research.

Over the course of the last two decades, digital technology has made significant strides in the field of education, notably in extending education time and space and creating novel educational contexts with sustainability. Despite research attempts to consolidate the application of digital technology in education, previous studies have only focused on specific aspects of digital technology, such as Pinto and Leite’s ( 2020 ) investigation into digital technology in higher education and Mustapha et al.’s ( 2021 ) examination of the role and value of digital technology in education during the pandemic. While these studies have provided valuable insights into the practical applications of digital technology in particular educational domains, they have not comprehensively explored the macro-mechanisms and internal logic of digital technology implementation in education. Additionally, these studies were conducted over a relatively brief period, making it challenging to gain a comprehensive understanding of the macro-dynamics and evolutionary process of digital technology in education. Some studies have provided an overview of digital education from an educational perspective but lack a precise understanding of technological advancement and change (Yang et al. 2022 ). Therefore, this study seeks to employ a systematic scientific approach to collate relevant research from 2000 to 2022, comprehend the internal logic and development trends of digital technology in education, and grasp the outstanding contribution of digital technology in promoting the sustainability of education in time and space. In summary, this study aims to address the following questions:

RQ1: Since the turn of the century, what is the productivity distribution of the field of digital technology education application research in terms of authorship, country/region, institutional and journal level?

RQ2: What is the development trend of research on the application of digital technology in education in the past two decades?

RQ3: What are the current frontiers of research on the application of digital technology in education?

Literature review

Although the term “digital technology” has become ubiquitous, a unified definition has yet to be agreed upon by scholars. Because the meaning of the word digital technology is closely related to the specific context. Within the educational research domain, Selwyn’s ( 2016 ) definition is widely favored by scholars (Pinto and Leite, 2020 ). Selwyn ( 2016 ) provides a comprehensive view of various concrete digital technologies and their applications in education through ten specific cases, such as immediate feedback in classes, orchestrating teaching, and community learning. Through these specific application scenarios, Selwyn ( 2016 ) argues that digital technology encompasses technologies associated with digital devices, including but not limited to tablets, smartphones, computers, and social media platforms (such as Facebook and YouTube). Furthermore, Further, the behavior of accessing the internet at any location through portable devices can be taken as an extension of the behavior of applying digital technology.

The evolving nature of digital technology has significant implications in the field of education. In the 1890s, the focus of digital technology in education was on comprehending the nuances of digital space, digital culture, and educational methodologies, with its connotations aligned more towards the idea of e-learning. The advent and subsequent widespread usage of mobile devices since the dawn of the new millennium have been instrumental in the rapid expansion of the concept of digital technology. Notably, mobile learning devices such as smartphones and tablets, along with social media platforms, have become integral components of digital technology (Conole and Alevizou, 2010 ; Batista et al. 2016 ). In recent times, the burgeoning application of AI technology in the education sector has played a vital role in enriching the digital technology lexicon (Banerjee et al. 2021 ). ChatGPT, for instance, is identified as a novel educational technology that has immense potential to revolutionize future education (Rospigliosi, 2023 ; Arif, Munaf and Ul-Haque, 2023 ).

Pinto and Leite ( 2020 ) conducted a comprehensive macroscopic survey of the use of digital technologies in the education sector and identified three distinct categories, namely technologies for assessment and feedback, mobile technologies, and Information Communication Technologies (ICT). This classification criterion is both macroscopic and highly condensed. In light of the established concept definitions of digital technology in the educational research literature, this study has adopted the characterizations of digital technology proposed by Selwyn ( 2016 ) and Pinto and Leite ( 2020 ) as crucial criteria for analysis and research inclusion. Specifically, this criterion encompasses several distinct types of digital technologies, including Information and Communication Technologies (ICT), Mobile tools, eXtended Reality (XR) Technologies, Assessment and Feedback systems, Learning Management Systems (LMS), Publish and Share tools, Collaborative systems, Social media, Interpersonal Communication tools, and Content Aggregation tools.

Methodology and materials

Research method: bibliometric.

The research on econometric properties has been present in various aspects of human production and life, yet systematic scientific theoretical guidance has been lacking, resulting in disorganization. In 1969, British scholar Pritchard ( 1969 ) proposed “bibliometrics,” which subsequently emerged as an independent discipline in scientific quantification research. Initially, Pritchard defined bibliometrics as “the application of mathematical and statistical methods to books and other media of communication,” however, the definition was not entirely rigorous. To remedy this, Hawkins ( 2001 ) expanded Pritchard’s definition to “the quantitative analysis of the bibliographic features of a body of literature.” De Bellis further clarified the objectives of bibliometrics, stating that it aims to analyze and identify patterns in literature, such as the most productive authors, institutions, countries, and journals in scientific disciplines, trends in literary production over time, and collaboration networks (De Bellis, 2009 ). According to Garfield ( 2006 ), bibliometric research enables the examination of the history and structure of a field, the flow of information within the field, the impact of journals, and the citation status of publications over a longer time scale. All of these definitions illustrate the unique role of bibliometrics as a research method for evaluating specific research fields.

This study uses CiteSpace, VOSviewer, and Charticulator to analyze data and create visualizations. Each of these three tools has its own strengths and can complement each other. CiteSpace and VOSviewer use set theory and probability theory to provide various visualization views in fields such as keywords, co-occurrence, and co-authors. They are easy to use and produce visually appealing graphics (Chen, 2006 ; van Eck and Waltman, 2009 ) and are currently the two most widely used bibliometric tools in the field of visualization (Pan et al. 2018 ). In this study, VOSviewer provided the data necessary for the Performance Analysis; Charticulator was then used to redraw using the tabular data exported from VOSviewer (for creating the chord diagram of country collaboration); this was to complement the mapping process, while CiteSpace was primarily utilized to generate keyword maps and conduct burst word analysis.

Data retrieval

This study selected documents from the Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) in the Web of Science Core Collection as the data source, for the following reasons:

(1) The Web of Science Core Collection, as a high-quality digital literature resource database, has been widely accepted by many researchers and is currently considered the most suitable database for bibliometric analysis (Jing et al. 2023a ). Compared to other databases, Web of Science provides more comprehensive data information (Chen et al. 2022a ), and also provides data formats suitable for analysis using VOSviewer and CiteSpace (Gaviria-Marin et al. 2019 ).

(2) The application of digital technology in the field of education is an interdisciplinary research topic, involving technical knowledge literature belonging to the natural sciences and education-related literature belonging to the social sciences. Therefore, it is necessary to select Science Citation Index Expanded (SCIE) and Social Science Citation Index (SSCI) as the sources of research data, ensuring the comprehensiveness of data while ensuring the reliability and persuasiveness of bibliometric research (Hwang and Tsai, 2011 ; Wang et al. 2022 ).

After establishing the source of research data, it is necessary to determine a retrieval strategy (Jing et al. 2023b ). The choice of a retrieval strategy should consider a balance between the breadth and precision of the search formula. That is to say, it should encompass all the literature pertaining to the research topic while excluding irrelevant documents as much as possible. In light of this, this study has set a retrieval strategy informed by multiple related papers (Mustapha et al. 2021 ; Luo et al. 2021 ). The research by Mustapha et al. ( 2021 ) guided us in selecting keywords (“digital” AND “technolog*”) to target digital technology, while Luo et al. ( 2021 ) informed the selection of terms (such as “instruct*,” “teach*,” and “education”) to establish links with the field of education. Then, based on the current application of digital technology in the educational domain and the scope of selection criteria, we constructed the final retrieval strategy. Following the general patterns of past research (Jing et al. 2023a , 2023b ), we conducted a specific screening using the topic search (Topics, TS) function in Web of Science. For the specific criteria used in the screening for this study, please refer to Table 1 .

Literature screening

Literature acquired through keyword searches may contain ostensibly related yet actually unrelated works. Therefore, to ensure the close relevance of literature included in the analysis to the research topic, it is often necessary to perform a manual screening process to identify the final literature to be analyzed, subsequent to completing the initial literature search.

The manual screening process consists of two steps. Initially, irrelevant literature is weeded out based on the title and abstract, with two members of the research team involved in this phase. This stage lasted about one week, resulting in 1106 articles being retained. Subsequently, a comprehensive review of the full text is conducted to accurately identify the literature required for the study. To carry out the second phase of manual screening effectively and scientifically, and to minimize the potential for researcher bias, the research team established the inclusion criteria presented in Table 2 . Three members were engaged in this phase, which took approximately 2 weeks, culminating in the retention of 588 articles after meticulous screening. The entire screening process is depicted in Fig. 1 , adhering to the PRISMA guidelines (Page et al. 2021 ).

figure 1

The process of obtaining and filtering the necessary literature data for research.

Data standardization

Nguyen and Hallinger ( 2020 ) pointed out that raw data extracted from scientific databases often contains multiple expressions of the same term, and not addressing these synonymous expressions could affect research results in bibliometric analysis. For instance, in the original data, the author list may include “Tsai, C. C.” and “Tsai, C.-C.”, while the keyword list may include “professional-development” and “professional development,” which often require merging. Therefore, before analyzing the selected literature, a data disambiguation process is necessary to standardize the data (Strotmann and Zhao, 2012 ; Van Eck and Waltman, 2019 ). This study adopted the data standardization process proposed by Taskin and Al ( 2019 ), mainly including the following standardization operations:

Firstly, the author and source fields in the data are corrected and standardized to differentiate authors with similar names.

Secondly, the study checks whether the journals to which the literature belongs have been renamed in the past over 20 years, so as to avoid the influence of periodical name change on the analysis results.

Finally, the keyword field is standardized by unifying parts of speech and singular/plural forms of keywords, which can help eliminate redundant entries in the knowledge graph.

Performance analysis (RQ1)

This section offers a thorough and detailed analysis of the state of research in the field of digital technology education. By utilizing descriptive statistics and visual maps, it provides a comprehensive overview of the development trends, authors, countries, institutions, and journal distribution within the field. The insights presented in this section are of great significance in advancing our understanding of the current state of research in this field and identifying areas for further investigation. The use of visual aids to display inter-country cooperation and the evolution of the field adds to the clarity and coherence of the analysis.

Time trend of the publications

To understand a research field, it is first necessary to understand the most basic quantitative information, among which the change in the number of publications per year best reflects the development trend of a research field. Figure 2 shows the distribution of publication dates.

figure 2

Time trend of the publications on application of digital technology in education.

From the Fig. 2 , it can be seen that the development of this field over the past over 20 years can be roughly divided into three stages. The first stage was from 2000 to 2007, during which the number of publications was relatively low. Due to various factors such as technological maturity, the academic community did not pay widespread attention to the role of digital technology in expanding the scope of teaching and learning. The second stage was from 2008 to 2019, during which the overall number of publications showed an upward trend, and the development of the field entered an accelerated period, attracting more and more scholars’ attention. The third stage was from 2020 to 2022, during which the number of publications stabilized at around 100. During this period, the impact of the pandemic led to a large number of scholars focusing on the role of digital technology in education during the pandemic, and research on the application of digital technology in education became a core topic in social science research.

Analysis of authors

An analysis of the author’s publication volume provides information about the representative scholars and core research strengths of a research area. Table 3 presents information on the core authors in adaptive learning research, including name, publication number, and average number of citations per article (based on the analysis and statistics from VOSviewer).

Variations in research foci among scholars abound. Within the field of digital technology education application research over the past two decades, Neil Selwyn stands as the most productive author, having published 15 papers garnering a total of 1027 citations, resulting in an average of 68.47 citations per paper. As a Professor at the Faculty of Education at Monash University, Selwyn concentrates on exploring the application of digital technology in higher education contexts (Selwyn et al. 2021 ), as well as related products in higher education such as Coursera, edX, and Udacity MOOC platforms (Bulfin et al. 2014 ). Selwyn’s contributions to the educational sociology perspective include extensive research on the impact of digital technology on education, highlighting the spatiotemporal extension of educational processes and practices through technological means as the greatest value of educational technology (Selwyn, 2012 ; Selwyn and Facer, 2014 ). In addition, he provides a blueprint for the development of future schools in 2030 based on the present impact of digital technology on education (Selwyn et al. 2019 ). The second most productive author in this field, Henderson, also offers significant contributions to the understanding of the important value of digital technology in education, specifically in the higher education setting, with a focus on the impact of the pandemic (Henderson et al. 2015 ; Cohen et al. 2022 ). In contrast, Edwards’ research interests focus on early childhood education, particularly the application of digital technology in this context (Edwards, 2013 ; Bird and Edwards, 2015 ). Additionally, on the technical level, Edwards also mainly prefers digital game technology, because it is a digital technology that children are relatively easy to accept (Edwards, 2015 ).

Analysis of countries/regions and organization

The present study aimed to ascertain the leading countries in digital technology education application research by analyzing 75 countries related to 558 works of literature. Table 4 depicts the top ten countries that have contributed significantly to this field in terms of publication count (based on the analysis and statistics from VOSviewer). Our analysis of Table 4 data shows that England emerged as the most influential country/region, with 92 published papers and 2401 citations. Australia and the United States secured the second and third ranks, respectively, with 90 papers (2187 citations) and 70 papers (1331 citations) published. Geographically, most of the countries featured in the top ten publication volumes are situated in Australia, North America, and Europe, with China being the only exception. Notably, all these countries, except China, belong to the group of developed nations, suggesting that economic strength is a prerequisite for fostering research in the digital technology education application field.

This study presents a visual representation of the publication output and cooperation relationships among different countries in the field of digital technology education application research. Specifically, a chord diagram is employed to display the top 30 countries in terms of publication output, as depicted in Fig. 3 . The chord diagram is composed of nodes and chords, where the nodes are positioned as scattered points along the circumference, and the length of each node corresponds to the publication output, with longer lengths indicating higher publication output. The chords, on the other hand, represent the cooperation relationships between any two countries, and are weighted based on the degree of closeness of the cooperation, with wider chords indicating closer cooperation. Through the analysis of the cooperation relationships, the findings suggest that the main publishing countries in this field are engaged in cooperative relationships with each other, indicating a relatively high level of international academic exchange and research internationalization.

figure 3

In the diagram, nodes are scattered along the circumference of a circle, with the length of each node representing the volume of publications. The weighted arcs connecting any two points on the circle are known as chords, representing the collaborative relationship between the two, with the width of the arc indicating the closeness of the collaboration.

Further analyzing Fig. 3 , we can extract more valuable information, enabling a deeper understanding of the connections between countries in the research field of digital technology in educational applications. It is evident that certain countries, such as the United States, China, and England, display thicker connections, indicating robust collaborative relationships in terms of productivity. These thicker lines signify substantial mutual contributions and shared objectives in certain sectors or fields, highlighting the interconnectedness and global integration in these areas. By delving deeper, we can also explore potential future collaboration opportunities through the chord diagram, identifying possible partners to propel research and development in this field. In essence, the chord diagram successfully encapsulates and conveys the multi-dimensionality of global productivity and cooperation, allowing for a comprehensive understanding of the intricate inter-country relationships and networks in a global context, providing valuable guidance and insights for future research and collaborations.

An in-depth examination of the publishing institutions is provided in Table 5 , showcasing the foremost 10 institutions ranked by their publication volume. Notably, Monash University and Australian Catholic University, situated in Australia, have recorded the most prolific publications within the digital technology education application realm, with 22 and 10 publications respectively. Moreover, the University of Oslo from Norway is featured among the top 10 publishing institutions, with an impressive average citation count of 64 per publication. It is worth highlighting that six institutions based in the United Kingdom were also ranked within the top 10 publishing institutions, signifying their leading position in this area of research.

Analysis of journals

Journals are the main carriers for publishing high-quality papers. Some scholars point out that the two key factors to measure the influence of journals in the specified field are the number of articles published and the number of citations. The more papers published in a magazine and the more citations, the greater its influence (Dzikowski, 2018 ). Therefore, this study utilized VOSviewer to statistically analyze the top 10 journals with the most publications in the field of digital technology in education and calculated the average citations per article (see Table 6 ).

Based on Table 6 , it is apparent that the highest number of articles in the domain of digital technology in education research were published in Education and Information Technologies (47 articles), Computers & Education (34 articles), and British Journal of Educational Technology (32 articles), indicating a higher article output compared to other journals. This underscores the fact that these three journals concentrate more on the application of digital technology in education. Furthermore, several other journals, such as Technology Pedagogy and Education and Sustainability, have published more than 15 articles in this domain. Sustainability represents the open access movement, which has notably facilitated research progress in this field, indicating that the development of open access journals in recent years has had a significant impact. Although there is still considerable disagreement among scholars on the optimal approach to achieve open access, the notion that research outcomes should be accessible to all is widely recognized (Huang et al. 2020 ). On further analysis of the research fields to which these journals belong, except for Sustainability, it is evident that they all pertain to educational technology, thus providing a qualitative definition of the research area of digital technology education from the perspective of journals.

Temporal keyword analysis: thematic evolution (RQ2)

The evolution of research themes is a dynamic process, and previous studies have attempted to present the developmental trajectory of fields by drawing keyword networks in phases (Kumar et al. 2021 ; Chen et al. 2022b ). To understand the shifts in research topics across different periods, this study follows past research and, based on the significant changes in the research field and corresponding technological advancements during the outlined periods, divides the timeline into four stages (the first stage from January 2000 to December 2005, the second stage from January 2006 to December 2011, the third stage from January 2012 to December 2017; and the fourth stage from January 2018 to December 2022). The division into these four stages was determined through a combination of bibliometric analysis and literature review, which presented a clear trajectory of the field’s development. The research analyzes the keyword networks for each time period (as there are only three articles in the first stage, it was not possible to generate an appropriate keyword co-occurrence map, hence only the keyword co-occurrence maps from the second to the fourth stages are provided), to understand the evolutionary track of the digital technology education application research field over time.

2000.1–2005.12: germination period

From January 2000 to December 2005, digital technology education application research was in its infancy. Only three studies focused on digital technology, all of which were related to computers. Due to the popularity of computers, the home became a new learning environment, highlighting the important role of digital technology in expanding the scope of learning spaces (Sutherland et al. 2000 ). In specific disciplines and contexts, digital technology was first favored in medical clinical practice, becoming an important tool for supporting the learning of clinical knowledge and practice (Tegtmeyer et al. 2001 ; Durfee et al. 2003 ).

2006.1–2011.12: initial development period

Between January 2006 and December 2011, it was the initial development period of digital technology education research. Significant growth was observed in research related to digital technology, and discussions and theoretical analyses about “digital natives” emerged. During this phase, scholars focused on the debate about “how to use digital technology reasonably” and “whether current educational models and school curriculum design need to be adjusted on a large scale” (Bennett and Maton, 2010 ; Selwyn, 2009 ; Margaryan et al. 2011 ). These theoretical and speculative arguments provided a unique perspective on the impact of cognitive digital technology on education and teaching. As can be seen from the vocabulary such as “rethinking”, “disruptive pedagogy”, and “attitude” in Fig. 4 , many scholars joined the calm reflection and analysis under the trend of digital technology (Laurillard, 2008 ; Vratulis et al. 2011 ). During this phase, technology was still undergoing dramatic changes. The development of mobile technology had already caught the attention of many scholars (Wong et al. 2011 ), but digital technology represented by computers was still very active (Selwyn et al. 2011 ). The change in technological form would inevitably lead to educational transformation. Collins and Halverson ( 2010 ) summarized the prospects and challenges of using digital technology for learning and educational practices, believing that digital technology would bring a disruptive revolution to the education field and bring about a new educational system. In addition, the term “teacher education” in Fig. 4 reflects the impact of digital technology development on teachers. The rapid development of technology has widened the generation gap between teachers and students. To ensure smooth communication between teachers and students, teachers must keep up with the trend of technological development and establish a lifelong learning concept (Donnison, 2009 ).

figure 4

In the diagram, each node represents a keyword, with the size of the node indicating the frequency of occurrence of the keyword. The connections represent the co-occurrence relationships between keywords, with a higher frequency of co-occurrence resulting in tighter connections.

2012.1–2017.12: critical exploration period

During the period spanning January 2012 to December 2017, the application of digital technology in education research underwent a significant exploration phase. As can be seen from Fig. 5 , different from the previous stage, the specific elements of specific digital technology have started to increase significantly, including the enrichment of technological contexts, the greater variety of research methods, and the diversification of learning modes. Moreover, the temporal and spatial dimensions of the learning environment were further de-emphasized, as noted in previous literature (Za et al. 2014 ). Given the rapidly accelerating pace of technological development, the education system in the digital era is in urgent need of collaborative evolution and reconstruction, as argued by Davis, Eickelmann, and Zaka ( 2013 ).

figure 5

In the domain of digital technology, social media has garnered substantial scholarly attention as a promising avenue for learning, as noted by Pasquini and Evangelopoulos ( 2016 ). The implementation of social media in education presents several benefits, including the liberation of education from the restrictions of physical distance and time, as well as the erasure of conventional educational boundaries. The user-generated content (UGC) model in social media has emerged as a crucial source for knowledge creation and distribution, with the widespread adoption of mobile devices. Moreover, social networks have become an integral component of ubiquitous learning environments (Hwang et al. 2013 ). The utilization of social media allows individuals to function as both knowledge producers and recipients, which leads to a blurring of the conventional roles of learners and teachers. On mobile platforms, the roles of learners and teachers are not fixed, but instead interchangeable.

In terms of research methodology, the prevalence of empirical studies with survey designs in the field of educational technology during this period is evident from the vocabulary used, such as “achievement,” “acceptance,” “attitude,” and “ict.” in Fig. 5 . These studies aim to understand learners’ willingness to adopt and attitudes towards new technologies, and some seek to investigate the impact of digital technologies on learning outcomes through quasi-experimental designs (Domínguez et al. 2013 ). Among these empirical studies, mobile learning emerged as a hot topic, and this is not surprising. First, the advantages of mobile learning environments over traditional ones have been empirically demonstrated (Hwang et al. 2013 ). Second, learners born around the turn of the century have been heavily influenced by digital technologies and have developed their own learning styles that are more open to mobile devices as a means of learning. Consequently, analyzing mobile learning as a relatively novel mode of learning has become an important issue for scholars in the field of educational technology.

The intervention of technology has led to the emergence of several novel learning modes, with the blended learning model being the most representative one in the current phase. Blended learning, a novel concept introduced in the information age, emphasizes the integration of the benefits of traditional learning methods and online learning. This learning mode not only highlights the prominent role of teachers in guiding, inspiring, and monitoring the learning process but also underlines the importance of learners’ initiative, enthusiasm, and creativity in the learning process. Despite being an early conceptualization, blended learning’s meaning has been expanded by the widespread use of mobile technology and social media in education. The implementation of new technologies, particularly mobile devices, has resulted in the transformation of curriculum design and increased flexibility and autonomy in students’ learning processes (Trujillo Maza et al. 2016 ), rekindling scholarly attention to this learning mode. However, some scholars have raised concerns about the potential drawbacks of the blended learning model, such as its significant impact on the traditional teaching system, the lack of systematic coping strategies and relevant policies in several schools and regions (Moskal et al. 2013 ).

2018.1–2022.12: accelerated transformation period

The period spanning from January 2018 to December 2022 witnessed a rapid transformation in the application of digital technology in education research. The field of digital technology education research reached a peak period of publication, largely influenced by factors such as the COVID-19 pandemic (Yu et al. 2023 ). Research during this period was built upon the achievements, attitudes, and social media of the previous phase, and included more elements that reflect the characteristics of this research field, such as digital literacy, digital competence, and professional development, as depicted in Fig. 6 . Alongside this, scholars’ expectations for the value of digital technology have expanded, and the pursuit of improving learning efficiency and performance is no longer the sole focus. Some research now aims to cultivate learners’ motivation and enhance their self-efficacy by applying digital technology in a reasonable manner, as demonstrated by recent studies (Beardsley et al. 2021 ; Creely et al. 2021 ).

figure 6

The COVID-19 pandemic has emerged as a crucial backdrop for the digital technology’s role in sustaining global education, as highlighted by recent scholarly research (Zhou et al. 2022 ; Pan and Zhang, 2020 ; Mo et al. 2022 ). The online learning environment, which is supported by digital technology, has become the primary battleground for global education (Yu, 2022 ). This social context has led to various studies being conducted, with some scholars positing that the pandemic has impacted the traditional teaching order while also expanding learning possibilities in terms of patterns and forms (Alabdulaziz, 2021 ). Furthermore, the pandemic has acted as a catalyst for teacher teaching and technological innovation, and this viewpoint has been empirically substantiated (Moorhouse and Wong, 2021 ). Additionally, some scholars believe that the pandemic’s push is a crucial driving force for the digital transformation of the education system, serving as an essential mechanism for overcoming the system’s inertia (Romero et al. 2021 ).

The rapid outbreak of the pandemic posed a challenge to the large-scale implementation of digital technologies, which was influenced by a complex interplay of subjective and objective factors. Objective constraints included the lack of infrastructure in some regions to support digital technologies, while subjective obstacles included psychological resistance among certain students and teachers (Moorhouse, 2021 ). These factors greatly impacted the progress of online learning during the pandemic. Additionally, Timotheou et al. ( 2023 ) conducted a comprehensive systematic review of existing research on digital technology use during the pandemic, highlighting the critical role played by various factors such as learners’ and teachers’ digital skills, teachers’ personal attributes and professional development, school leadership and management, and administration in facilitating the digitalization and transformation of schools.

The current stage of research is characterized by the pivotal term “digital literacy,” denoting a growing interest in learners’ attitudes and adoption of emerging technologies. Initially, the term “literacy” was restricted to fundamental abilities and knowledge associated with books and print materials (McMillan, 1996 ). However, with the swift advancement of computers and digital technology, there have been various attempts to broaden the scope of literacy beyond its traditional meaning, including game literacy (Buckingham and Burn, 2007 ), information literacy (Eisenberg, 2008 ), and media literacy (Turin and Friesem, 2020 ). Similarly, digital literacy has emerged as a crucial concept, and Gilster and Glister ( 1997 ) were the first to introduce this concept, referring to the proficiency in utilizing technology and processing digital information in academic, professional, and daily life settings. In practical educational settings, learners who possess higher digital literacy often exhibit an aptitude for quickly mastering digital devices and applying them intelligently to education and teaching (Yu, 2022 ).

The utilization of digital technology in education has undergone significant changes over the past two decades, and has been a crucial driver of educational reform with each new technological revolution. The impact of these changes on the underlying logic of digital technology education applications has been noticeable. From computer technology to more recent developments such as virtual reality (VR), augmented reality (AR), and artificial intelligence (AI), the acceleration in digital technology development has been ongoing. Educational reforms spurred by digital technology development continue to be dynamic, as each new digital innovation presents new possibilities and models for teaching practice. This is especially relevant in the post-pandemic era, where the importance of technological progress in supporting teaching cannot be overstated (Mughal et al. 2022 ). Existing digital technologies have already greatly expanded the dimensions of education in both time and space, while future digital technologies aim to expand learners’ perceptions. Researchers have highlighted the potential of integrated technology and immersive technology in the development of the educational metaverse, which is highly anticipated to create a new dimension for the teaching and learning environment, foster a new value system for the discipline of educational technology, and more effectively and efficiently achieve the grand educational blueprint of the United Nations’ Sustainable Development Goals (Zhang et al. 2022 ; Li and Yu, 2023 ).

Hotspot evolution analysis (RQ3)

The examination of keyword evolution reveals a consistent trend in the advancement of digital technology education application research. The emergence and transformation of keywords serve as indicators of the varying research interests in this field. Thus, the utilization of the burst detection function available in CiteSpace allowed for the identification of the top 10 burst words that exhibited a high level of burst strength. This outcome is illustrated in Table 7 .

According to the results presented in Table 7 , the explosive terminology within the realm of digital technology education research has exhibited a concentration mainly between the years 2018 and 2022. Prior to this time frame, the emerging keywords were limited to “information technology” and “computer”. Notably, among them, computer, as an emergent keyword, has always had a high explosive intensity from 2008 to 2018, which reflects the important position of computer in digital technology and is the main carrier of many digital technologies such as Learning Management Systems (LMS) and Assessment and Feedback systems (Barlovits et al. 2022 ).

Since 2018, an increasing number of research studies have focused on evaluating the capabilities of learners to accept, apply, and comprehend digital technologies. As indicated by the use of terms such as “digital literacy” and “digital skill,” the assessment of learners’ digital literacy has become a critical task. Scholarly efforts have been directed towards the development of literacy assessment tools and the implementation of empirical assessments. Furthermore, enhancing the digital literacy of both learners and educators has garnered significant attention. (Nagle, 2018 ; Yu, 2022 ). Simultaneously, given the widespread use of various digital technologies in different formal and informal learning settings, promoting learners’ digital skills has become a crucial objective for contemporary schools (Nygren et al. 2019 ; Forde and OBrien, 2022 ).

Since 2020, the field of applied research on digital technology education has witnessed the emergence of three new hotspots, all of which have been affected to some extent by the pandemic. Firstly, digital technology has been widely applied in physical education, which is one of the subjects that has been severely affected by the pandemic (Parris et al. 2022 ; Jiang and Ning, 2022 ). Secondly, digital transformation has become an important measure for most schools, especially higher education institutions, to cope with the impact of the pandemic globally (García-Morales et al. 2021 ). Although the concept of digital transformation was proposed earlier, the COVID-19 pandemic has greatly accelerated this transformation process. Educational institutions must carefully redesign their educational products to face this new situation, providing timely digital learning methods, environments, tools, and support systems that have far-reaching impacts on modern society (Krishnamurthy, 2020 ; Salas-Pilco et al. 2022 ). Moreover, the professional development of teachers has become a key mission of educational institutions in the post-pandemic era. Teachers need to have a certain level of digital literacy and be familiar with the tools and online teaching resources used in online teaching, which has become a research hotspot today. Organizing digital skills training for teachers to cope with the application of emerging technologies in education is an important issue for teacher professional development and lifelong learning (Garzón-Artacho et al. 2021 ). As the main organizers and practitioners of emergency remote teaching (ERT) during the pandemic, teachers must put cognitive effort into their professional development to ensure effective implementation of ERT (Romero-Hall and Jaramillo Cherrez, 2022 ).

The burst word “digital transformation” reveals that we are in the midst of an ongoing digital technology revolution. With the emergence of innovative digital technologies such as ChatGPT and Microsoft 365 Copilot, technology trends will continue to evolve, albeit unpredictably. While the impact of these advancements on school education remains uncertain, it is anticipated that the widespread integration of technology will significantly affect the current education system. Rejecting emerging technologies without careful consideration is unwise. Like any revolution, the technological revolution in the education field has both positive and negative aspects. Detractors argue that digital technology disrupts learning and memory (Baron, 2021 ) or causes learners to become addicted and distracted from learning (Selwyn and Aagaard, 2020 ). On the other hand, the prudent use of digital technology in education offers a glimpse of a golden age of open learning. Educational leaders and practitioners have the opportunity to leverage cutting-edge digital technologies to address current educational challenges and develop a rational path for the sustainable and healthy growth of education.

Discussion on performance analysis (RQ1)

The field of digital technology education application research has experienced substantial growth since the turn of the century, a phenomenon that is quantifiably apparent through an analysis of authorship, country/region contributions, and institutional engagement. This expansion reflects the increased integration of digital technologies in educational settings and the heightened scholarly interest in understanding and optimizing their use.

Discussion on authorship productivity in digital technology education research

The authorship distribution within digital technology education research is indicative of the field’s intellectual structure and depth. A primary figure in this domain is Neil Selwyn, whose substantial citation rate underscores the profound impact of his work. His focus on the implications of digital technology in higher education and educational sociology has proven to be seminal. Selwyn’s research trajectory, especially the exploration of spatiotemporal extensions of education through technology, provides valuable insights into the multifaceted role of digital tools in learning processes (Selwyn et al. 2019 ).

Other notable contributors, like Henderson and Edwards, present diversified research interests, such as the impact of digital technologies during the pandemic and their application in early childhood education, respectively. Their varied focuses highlight the breadth of digital technology education research, encompassing pedagogical innovation, technological adaptation, and policy development.

Discussion on country/region-level productivity and collaboration

At the country/region level, the United Kingdom, specifically England, emerges as a leading contributor with 92 published papers and a significant citation count. This is closely followed by Australia and the United States, indicating a strong English-speaking research axis. Such geographical concentration of scholarly output often correlates with investment in research and development, technological infrastructure, and the prevalence of higher education institutions engaging in cutting-edge research.

China’s notable inclusion as the only non-Western country among the top contributors to the field suggests a growing research capacity and interest in digital technology in education. However, the lower average citation per paper for China could reflect emerging engagement or different research focuses that may not yet have achieved the same international recognition as Western counterparts.

The chord diagram analysis furthers this understanding, revealing dense interconnections between countries like the United States, China, and England, which indicates robust collaborations. Such collaborations are fundamental in addressing global educational challenges and shaping international research agendas.

Discussion on institutional-level contributions to digital technology education

Institutional productivity in digital technology education research reveals a constellation of universities driving the field forward. Monash University and the Australian Catholic University have the highest publication output, signaling Australia’s significant role in advancing digital education research. The University of Oslo’s remarkable average citation count per publication indicates influential research contributions, potentially reflecting high-quality studies that resonate with the broader academic community.

The strong showing of UK institutions, including the University of London, The Open University, and the University of Cambridge, reinforces the UK’s prominence in this research field. Such institutions are often at the forefront of pedagogical innovation, benefiting from established research cultures and funding mechanisms that support sustained inquiry into digital education.

Discussion on journal publication analysis

An examination of journal outputs offers a lens into the communicative channels of the field’s knowledge base. Journals such as Education and Information Technologies , Computers & Education , and the British Journal of Educational Technology not only serve as the primary disseminators of research findings but also as indicators of research quality and relevance. The impact factor (IF) serves as a proxy for the quality and influence of these journals within the academic community.

The high citation counts for articles published in Computers & Education suggest that research disseminated through this medium has a wide-reaching impact and is of particular interest to the field. This is further evidenced by its significant IF of 11.182, indicating that the journal is a pivotal platform for seminal work in the application of digital technology in education.

The authorship, regional, and institutional productivity in the field of digital technology education application research collectively narrate the evolution of this domain since the turn of the century. The prominence of certain authors and countries underscores the importance of socioeconomic factors and existing academic infrastructure in fostering research productivity. Meanwhile, the centrality of specific journals as outlets for high-impact research emphasizes the role of academic publishing in shaping the research landscape.

As the field continues to grow, future research may benefit from leveraging the collaborative networks that have been elucidated through this analysis, perhaps focusing on underrepresented regions to broaden the scope and diversity of research. Furthermore, the stabilization of publication numbers in recent years invites a deeper exploration into potential plateaus in research trends or saturation in certain sub-fields, signaling an opportunity for novel inquiries and methodological innovations.

Discussion on the evolutionary trends (RQ2)

The evolution of the research field concerning the application of digital technology in education over the past two decades is a story of convergence, diversification, and transformation, shaped by rapid technological advancements and shifting educational paradigms.

At the turn of the century, the inception of digital technology in education was largely exploratory, with a focus on how emerging computer technologies could be harnessed to enhance traditional learning environments. Research from this early period was primarily descriptive, reflecting on the potential and challenges of incorporating digital tools into the educational setting. This phase was critical in establishing the fundamental discourse that would guide subsequent research, as it set the stage for understanding the scope and impact of digital technology in learning spaces (Wang et al. 2023 ).

As the first decade progressed, the narrative expanded to encompass the pedagogical implications of digital technologies. This was a period of conceptual debates, where terms like “digital natives” and “disruptive pedagogy” entered the academic lexicon, underscoring the growing acknowledgment of digital technology as a transformative force within education (Bennett and Maton, 2010 ). During this time, the research began to reflect a more nuanced understanding of the integration of technology, considering not only its potential to change where and how learning occurred but also its implications for educational equity and access.

In the second decade, with the maturation of internet connectivity and mobile technology, the focus of research shifted from theoretical speculations to empirical investigations. The proliferation of digital devices and the ubiquity of social media influenced how learners interacted with information and each other, prompting a surge in studies that sought to measure the impact of these tools on learning outcomes. The digital divide and issues related to digital literacy became central concerns, as scholars explored the varying capacities of students and educators to engage with technology effectively.

Throughout this period, there was an increasing emphasis on the individualization of learning experiences, facilitated by adaptive technologies that could cater to the unique needs and pacing of learners (Jing et al. 2023a ). This individualization was coupled with a growing recognition of the importance of collaborative learning, both online and offline, and the role of digital tools in supporting these processes. Blended learning models, which combined face-to-face instruction with online resources, emerged as a significant trend, advocating for a balance between traditional pedagogies and innovative digital strategies.

The later years, particularly marked by the COVID-19 pandemic, accelerated the necessity for digital technology in education, transforming it from a supplementary tool to an essential platform for delivering education globally (Mo et al. 2022 ; Mustapha et al. 2021 ). This era brought about an unprecedented focus on online learning environments, distance education, and virtual classrooms. Research became more granular, examining not just the pedagogical effectiveness of digital tools, but also their role in maintaining continuity of education during crises, their impact on teacher and student well-being, and their implications for the future of educational policy and infrastructure.

Across these two decades, the research field has seen a shift from examining digital technology as an external addition to the educational process, to viewing it as an integral component of curriculum design, instructional strategies, and even assessment methods. The emergent themes have broadened from a narrow focus on specific tools or platforms to include wider considerations such as data privacy, ethical use of technology, and the environmental impact of digital tools.

Moreover, the field has moved from considering the application of digital technology in education as a primarily cognitive endeavor to recognizing its role in facilitating socio-emotional learning, digital citizenship, and global competencies. Researchers have increasingly turned their attention to the ways in which technology can support collaborative skills, cultural understanding, and ethical reasoning within diverse student populations.

In summary, the past over twenty years in the research field of digital technology applications in education have been characterized by a progression from foundational inquiries to complex analyses of digital integration. This evolution has mirrored the trajectory of technology itself, from a facilitative tool to a pervasive ecosystem defining contemporary educational experiences. As we look to the future, the field is poised to delve into the implications of emerging technologies like AI, AR, and VR, and their potential to redefine the educational landscape even further. This ongoing metamorphosis suggests that the application of digital technology in education will continue to be a rich area of inquiry, demanding continual adaptation and forward-thinking from educators and researchers alike.

Discussion on the study of research hotspots (RQ3)

The analysis of keyword evolution in digital technology education application research elucidates the current frontiers in the field, reflecting a trajectory that is in tandem with the rapidly advancing digital age. This landscape is sculpted by emergent technological innovations and shaped by the demands of an increasingly digital society.

Interdisciplinary integration and pedagogical transformation

One of the frontiers identified from recent keyword bursts includes the integration of digital technology into diverse educational contexts, particularly noted with the keyword “physical education.” The digitalization of disciplines traditionally characterized by physical presence illustrates the pervasive reach of technology and signifies a push towards interdisciplinary integration where technology is not only a facilitator but also a transformative agent. This integration challenges educators to reconceptualize curriculum delivery to accommodate digital tools that can enhance or simulate the physical aspects of learning.

Digital literacy and skills acquisition

Another pivotal frontier is the focus on “digital literacy” and “digital skill”, which has intensified in recent years. This suggests a shift from mere access to technology towards a comprehensive understanding and utilization of digital tools. In this realm, the emphasis is not only on the ability to use technology but also on critical thinking, problem-solving, and the ethical use of digital resources (Yu, 2022 ). The acquisition of digital literacy is no longer an additive skill but a fundamental aspect of modern education, essential for navigating and contributing to the digital world.

Educational digital transformation

The keyword “digital transformation” marks a significant research frontier, emphasizing the systemic changes that education institutions must undergo to align with the digital era (Romero et al. 2021 ). This transformation includes the redesigning of learning environments, pedagogical strategies, and assessment methods to harness digital technology’s full potential. Research in this area explores the complexity of institutional change, addressing the infrastructural, cultural, and policy adjustments needed for a seamless digital transition.

Engagement and participation

Further exploration into “engagement” and “participation” underscores the importance of student-centered learning environments that are mediated by technology. The current frontiers examine how digital platforms can foster collaboration, inclusivity, and active learning, potentially leading to more meaningful and personalized educational experiences. Here, the use of technology seeks to support the emotional and cognitive aspects of learning, moving beyond the transactional view of education to one that is relational and interactive.

Professional development and teacher readiness

As the field evolves, “professional development” emerges as a crucial area, particularly in light of the pandemic which necessitated emergency remote teaching. The need for teacher readiness in a digital age is a pressing frontier, with research focusing on the competencies required for educators to effectively integrate technology into their teaching practices. This includes familiarity with digital tools, pedagogical innovation, and an ongoing commitment to personal and professional growth in the digital domain.

Pandemic as a catalyst

The recent pandemic has acted as a catalyst for accelerated research and application in this field, particularly in the domains of “digital transformation,” “professional development,” and “physical education.” This period has been a litmus test for the resilience and adaptability of educational systems to continue their operations in an emergency. Research has thus been directed at understanding how digital technologies can support not only continuity but also enhance the quality and reach of education in such contexts.

Ethical and societal considerations

The frontier of digital technology in education is also expanding to consider broader ethical and societal implications. This includes issues of digital equity, data privacy, and the sociocultural impact of technology on learning communities. The research explores how educational technology can be leveraged to address inequities and create more equitable learning opportunities for all students, regardless of their socioeconomic background.

Innovation and emerging technologies

Looking forward, the frontiers are set to be influenced by ongoing and future technological innovations, such as artificial intelligence (AI) (Wu and Yu, 2023 ; Chen et al. 2022a ). The exploration into how these technologies can be integrated into educational practices to create immersive and adaptive learning experiences represents a bold new chapter for the field.

In conclusion, the current frontiers of research on the application of digital technology in education are multifaceted and dynamic. They reflect an overarching movement towards deeper integration of technology in educational systems and pedagogical practices, where the goals are not only to facilitate learning but to redefine it. As these frontiers continue to expand and evolve, they will shape the educational landscape, requiring a concerted effort from researchers, educators, policymakers, and technologists to navigate the challenges and harness the opportunities presented by the digital revolution in education.

Conclusions and future research

Conclusions.

The utilization of digital technology in education is a research area that cuts across multiple technical and educational domains and continues to experience dynamic growth due to the continuous progress of technology. In this study, a systematic review of this field was conducted through bibliometric techniques to examine its development trajectory. The primary focus of the review was to investigate the leading contributors, productive national institutions, significant publications, and evolving development patterns. The study’s quantitative analysis resulted in several key conclusions that shed light on this research field’s current state and future prospects.

(1) The research field of digital technology education applications has entered a stage of rapid development, particularly in recent years due to the impact of the pandemic, resulting in a peak of publications. Within this field, several key authors (Selwyn, Henderson, Edwards, etc.) and countries/regions (England, Australia, USA, etc.) have emerged, who have made significant contributions. International exchanges in this field have become frequent, with a high degree of internationalization in academic research. Higher education institutions in the UK and Australia are the core productive forces in this field at the institutional level.

(2) Education and Information Technologies , Computers & Education , and the British Journal of Educational Technology are notable journals that publish research related to digital technology education applications. These journals are affiliated with the research field of educational technology and provide effective communication platforms for sharing digital technology education applications.

(3) Over the past two decades, research on digital technology education applications has progressed from its early stages of budding, initial development, and critical exploration to accelerated transformation, and it is currently approaching maturity. Technological progress and changes in the times have been key driving forces for educational transformation and innovation, and both have played important roles in promoting the continuous development of education.

(4) Influenced by the pandemic, three emerging frontiers have emerged in current research on digital technology education applications, which are physical education, digital transformation, and professional development under the promotion of digital technology. These frontier research hotspots reflect the core issues that the education system faces when encountering new technologies. The evolution of research hotspots shows that technology breakthroughs in education’s original boundaries of time and space create new challenges. The continuous self-renewal of education is achieved by solving one hotspot problem after another.

The present study offers significant practical implications for scholars and practitioners in the field of digital technology education applications. Firstly, it presents a well-defined framework of the existing research in this area, serving as a comprehensive guide for new entrants to the field and shedding light on the developmental trajectory of this research domain. Secondly, the study identifies several contemporary research hotspots, thus offering a valuable decision-making resource for scholars aiming to explore potential research directions. Thirdly, the study undertakes an exhaustive analysis of published literature to identify core journals in the field of digital technology education applications, with Sustainability being identified as a promising open access journal that publishes extensively on this topic. This finding can potentially facilitate scholars in selecting appropriate journals for their research outputs.

Limitation and future research

Influenced by some objective factors, this study also has some limitations. First of all, the bibliometrics analysis software has high standards for data. In order to ensure the quality and integrity of the collected data, the research only selects the periodical papers in SCIE and SSCI indexes, which are the core collection of Web of Science database, and excludes other databases, conference papers, editorials and other publications, which may ignore some scientific research and original opinions in the field of digital technology education and application research. In addition, although this study used professional software to carry out bibliometric analysis and obtained more objective quantitative data, the analysis and interpretation of data will inevitably have a certain subjective color, and the influence of subjectivity on data analysis cannot be completely avoided. As such, future research endeavors will broaden the scope of literature screening and proactively engage scholars in the field to gain objective and state-of-the-art insights, while minimizing the adverse impact of personal subjectivity on research analysis.

Data availability

The datasets analyzed during the current study are available in the Dataverse repository: https://doi.org/10.7910/DVN/F9QMHY

Alabdulaziz MS (2021) COVID-19 and the use of digital technology in mathematics education. Educ Inf Technol 26(6):7609–7633. https://doi.org/10.1007/s10639-021-10602-3

Arif TB, Munaf U, Ul-Haque I (2023) The future of medical education and research: is ChatGPT a blessing or blight in disguise? Med Educ Online 28. https://doi.org/10.1080/10872981.2023.2181052

Banerjee M, Chiew D, Patel KT, Johns I, Chappell D, Linton N, Cole GD, Francis DP, Szram J, Ross J, Zaman S (2021) The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ 21. https://doi.org/10.1186/s12909-021-02870-x

Barlovits S, Caldeira A, Fesakis G, Jablonski S, Koutsomanoli Filippaki D, Lázaro C, Ludwig M, Mammana MF, Moura A, Oehler DXK, Recio T, Taranto E, Volika S(2022) Adaptive, synchronous, and mobile online education: developing the ASYMPTOTE learning environment. Mathematics 10:1628. https://doi.org/10.3390/math10101628

Article   Google Scholar  

Baron NS(2021) Know what? How digital technologies undermine learning and remembering J Pragmat 175:27–37. https://doi.org/10.1016/j.pragma.2021.01.011

Batista J, Morais NS, Ramos F (2016) Researching the use of communication technologies in higher education institutions in Portugal. https://doi.org/10.4018/978-1-5225-0571-6.ch057

Beardsley M, Albó L, Aragón P, Hernández-Leo D (2021) Emergency education effects on teacher abilities and motivation to use digital technologies. Br J Educ Technol 52. https://doi.org/10.1111/bjet.13101

Bennett S, Maton K(2010) Beyond the “digital natives” debate: towards a more nuanced understanding of students’ technology experiences J Comput Assist Learn 26:321–331. https://doi.org/10.1111/j.1365-2729.2010.00360.x

Buckingham D, Burn A (2007) Game literacy in theory and practice 16:323–349

Google Scholar  

Bulfin S, Pangrazio L, Selwyn N (2014) Making “MOOCs”: the construction of a new digital higher education within news media discourse. In: The International Review of Research in Open and Distributed Learning 15. https://doi.org/10.19173/irrodl.v15i5.1856

Camilleri MA, Camilleri AC(2016) Digital learning resources and ubiquitous technologies in education Technol Knowl Learn 22:65–82. https://doi.org/10.1007/s10758-016-9287-7

Chen C(2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature J Am Soc Inf Sci Technol 57:359–377. https://doi.org/10.1002/asi.20317

Chen J, Dai J, Zhu K, Xu L(2022) Effects of extended reality on language learning: a meta-analysis Front Psychol 13:1016519. https://doi.org/10.3389/fpsyg.2022.1016519

Article   PubMed   PubMed Central   Google Scholar  

Chen J, Wang CL, Tang Y (2022b) Knowledge mapping of volunteer motivation: a bibliometric analysis and cross-cultural comparative study. Front Psychol 13. https://doi.org/10.3389/fpsyg.2022.883150

Cohen A, Soffer T, Henderson M(2022) Students’ use of technology and their perceptions of its usefulness in higher education: International comparison J Comput Assist Learn 38(5):1321–1331. https://doi.org/10.1111/jcal.12678

Collins A, Halverson R(2010) The second educational revolution: rethinking education in the age of technology J Comput Assist Learn 26:18–27. https://doi.org/10.1111/j.1365-2729.2009.00339.x

Conole G, Alevizou P (2010) A literature review of the use of Web 2.0 tools in higher education. Walton Hall, Milton Keynes, UK: the Open University, retrieved 17 February

Creely E, Henriksen D, Crawford R, Henderson M(2021) Exploring creative risk-taking and productive failure in classroom practice. A case study of the perceived self-efficacy and agency of teachers at one school Think Ski Creat 42:100951. https://doi.org/10.1016/j.tsc.2021.100951

Davis N, Eickelmann B, Zaka P(2013) Restructuring of educational systems in the digital age from a co-evolutionary perspective J Comput Assist Learn 29:438–450. https://doi.org/10.1111/jcal.12032

De Belli N (2009) Bibliometrics and citation analysis: from the science citation index to cybermetrics, Scarecrow Press. https://doi.org/10.1111/jcal.12032

Domínguez A, Saenz-de-Navarrete J, de-Marcos L, Fernández-Sanz L, Pagés C, Martínez-Herráiz JJ(2013) Gamifying learning experiences: practical implications and outcomes Comput Educ 63:380–392. https://doi.org/10.1016/j.compedu.2012.12.020

Donnison S (2009) Discourses in conflict: the relationship between Gen Y pre-service teachers, digital technologies and lifelong learning. Australasian J Educ Technol 25. https://doi.org/10.14742/ajet.1138

Durfee SM, Jain S, Shaffer K (2003) Incorporating electronic media into medical student education. Acad Radiol 10:205–210. https://doi.org/10.1016/s1076-6332(03)80046-6

Dzikowski P(2018) A bibliometric analysis of born global firms J Bus Res 85:281–294. https://doi.org/10.1016/j.jbusres.2017.12.054

van Eck NJ, Waltman L(2009) Software survey: VOSviewer, a computer program for bibliometric mapping Scientometrics 84:523–538 https://doi.org/10.1007/s11192-009-0146-3

Edwards S(2013) Digital play in the early years: a contextual response to the problem of integrating technologies and play-based pedagogies in the early childhood curriculum Eur Early Child Educ Res J 21:199–212. https://doi.org/10.1080/1350293x.2013.789190

Edwards S(2015) New concepts of play and the problem of technology, digital media and popular-culture integration with play-based learning in early childhood education Technol Pedagogy Educ 25:513–532 https://doi.org/10.1080/1475939x.2015.1108929

Article   MathSciNet   Google Scholar  

Eisenberg MB(2008) Information literacy: essential skills for the information age DESIDOC J Libr Inf Technol 28:39–47. https://doi.org/10.14429/djlit.28.2.166

Forde C, OBrien A (2022) A literature review of barriers and opportunities presented by digitally enhanced practical skill teaching and learning in health science education. Med Educ Online 27. https://doi.org/10.1080/10872981.2022.2068210

García-Morales VJ, Garrido-Moreno A, Martín-Rojas R (2021) The transformation of higher education after the COVID disruption: emerging challenges in an online learning scenario. Front Psychol 12. https://doi.org/10.3389/fpsyg.2021.616059

Garfield E(2006) The history and meaning of the journal impact factor JAMA 295:90. https://doi.org/10.1001/jama.295.1.90

Article   PubMed   Google Scholar  

Garzón-Artacho E, Sola-Martínez T, Romero-Rodríguez JM, Gómez-García G(2021) Teachers’ perceptions of digital competence at the lifelong learning stage Heliyon 7:e07513. https://doi.org/10.1016/j.heliyon.2021.e07513

Gaviria-Marin M, Merigó JM, Baier-Fuentes H(2019) Knowledge management: a global examination based on bibliometric analysis Technol Forecast Soc Change 140:194–220. https://doi.org/10.1016/j.techfore.2018.07.006

Gilster P, Glister P (1997) Digital literacy. Wiley Computer Pub, New York

Greenhow C, Lewin C(2015) Social media and education: reconceptualizing the boundaries of formal and informal learning Learn Media Technol 41:6–30. https://doi.org/10.1080/17439884.2015.1064954

Hawkins DT(2001) Bibliometrics of electronic journals in information science Infor Res 7(1):7–1. http://informationr.net/ir/7-1/paper120.html

Henderson M, Selwyn N, Finger G, Aston R(2015) Students’ everyday engagement with digital technology in university: exploring patterns of use and “usefulness J High Educ Policy Manag 37:308–319 https://doi.org/10.1080/1360080x.2015.1034424

Huang CK, Neylon C, Hosking R, Montgomery L, Wilson KS, Ozaygen A, Brookes-Kenworthy C (2020) Evaluating the impact of open access policies on research institutions. eLife 9. https://doi.org/10.7554/elife.57067

Hwang GJ, Tsai CC(2011) Research trends in mobile and ubiquitous learning: a review of publications in selected journals from 2001 to 2010 Br J Educ Technol 42:E65–E70. https://doi.org/10.1111/j.1467-8535.2011.01183.x

Hwang GJ, Wu PH, Zhuang YY, Huang YM(2013) Effects of the inquiry-based mobile learning model on the cognitive load and learning achievement of students Interact Learn Environ 21:338–354. https://doi.org/10.1080/10494820.2011.575789

Jiang S, Ning CF (2022) Interactive communication in the process of physical education: are social media contributing to the improvement of physical training performance. Universal Access Inf Soc, 1–10. https://doi.org/10.1007/s10209-022-00911-w

Jing Y, Zhao L, Zhu KK, Wang H, Wang CL, Xia Q(2023) Research landscape of adaptive learning in education: a bibliometric study on research publications from 2000 to 2022 Sustainability 15:3115–3115. https://doi.org/10.3390/su15043115

Jing Y, Wang CL, Chen Y, Wang H, Yu T, Shadiev R (2023b) Bibliometric mapping techniques in educational technology research: a systematic literature review. Educ Inf Technol 1–29. https://doi.org/10.1007/s10639-023-12178-6

Krishnamurthy S (2020) The future of business education: a commentary in the shadow of the Covid-19 pandemic. J Bus Res. https://doi.org/10.1016/j.jbusres.2020.05.034

Kumar S, Lim WM, Pandey N, Christopher Westland J (2021) 20 years of electronic commerce research. Electron Commer Res 21:1–40

Kyza EA, Georgiou Y(2018) Scaffolding augmented reality inquiry learning: the design and investigation of the TraceReaders location-based, augmented reality platform Interact Learn Environ 27:211–225. https://doi.org/10.1080/10494820.2018.1458039

Laurillard D(2008) Technology enhanced learning as a tool for pedagogical innovation J Philos Educ 42:521–533. https://doi.org/10.1111/j.1467-9752.2008.00658.x

Li M, Yu Z (2023) A systematic review on the metaverse-based blended English learning. Front Psychol 13. https://doi.org/10.3389/fpsyg.2022.1087508

Luo H, Li G, Feng Q, Yang Y, Zuo M (2021) Virtual reality in K-12 and higher education: a systematic review of the literature from 2000 to 2019. J Comput Assist Learn. https://doi.org/10.1111/jcal.12538

Margaryan A, Littlejohn A, Vojt G(2011) Are digital natives a myth or reality? University students’ use of digital technologies Comput Educ 56:429–440. https://doi.org/10.1016/j.compedu.2010.09.004

McMillan S(1996) Literacy and computer literacy: definitions and comparisons Comput Educ 27:161–170. https://doi.org/10.1016/s0360-1315(96)00026-7

Mo CY, Wang CL, Dai J, Jin P (2022) Video playback speed influence on learning effect from the perspective of personalized adaptive learning: a study based on cognitive load theory. Front Psychology 13. https://doi.org/10.3389/fpsyg.2022.839982

Moorhouse BL (2021) Beginning teaching during COVID-19: newly qualified Hong Kong teachers’ preparedness for online teaching. Educ Stud 1–17. https://doi.org/10.1080/03055698.2021.1964939

Moorhouse BL, Wong KM (2021) The COVID-19 Pandemic as a catalyst for teacher pedagogical and technological innovation and development: teachers’ perspectives. Asia Pac J Educ 1–16. https://doi.org/10.1080/02188791.2021.1988511

Moskal P, Dziuban C, Hartman J (2013) Blended learning: a dangerous idea? Internet High Educ 18:15–23

Mughal MY, Andleeb N, Khurram AFA, Ali MY, Aslam MS, Saleem MN (2022) Perceptions of teaching-learning force about Metaverse for education: a qualitative study. J. Positive School Psychol 6:1738–1745

Mustapha I, Thuy Van N, Shahverdi M, Qureshi MI, Khan N (2021) Effectiveness of digital technology in education during COVID-19 pandemic. a bibliometric analysis. Int J Interact Mob Technol 15:136

Nagle J (2018) Twitter, cyber-violence, and the need for a critical social media literacy in teacher education: a review of the literature. Teach Teach Education 76:86–94

Nazare J, Woolf A, Sysoev I, Ballinger S, Saveski M, Walker M, Roy D (2022) Technology-assisted coaching can increase engagement with learning technology at home and caregivers’ awareness of it. Comput Educ 188:104565

Nguyen UP, Hallinger P (2020) Assessing the distinctive contributions of simulation & gaming to the literature, 1970-2019: a bibliometric review. Simul Gaming 104687812094156. https://doi.org/10.1177/1046878120941569

Nygren H, Nissinen K, Hämäläinen R, Wever B(2019) Lifelong learning: formal, non-formal and informal learning in the context of the use of problem-solving skills in technology-rich environments Br J Educ Technol 50:1759–1770. https://doi.org/10.1111/bjet.12807

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 88:105906

Pan SL, Zhang S(2020) From fighting COVID-19 pandemic to tackling sustainable development goals: an opportunity for responsible information systems research Int J Inf Manage 55:102196. https://doi.org/10.1016/j.ijinfomgt.2020.102196

Pan X, Yan E, Cui M, Hua W(2018) Examining the usage, citation, and diffusion patterns of bibliometric mapping software: a comparative study of three tools J Informetr 12:481–493. https://doi.org/10.1016/j.joi.2018.03.005

Parris Z, Cale L, Harris J, Casey A (2022) Physical activity for health, covid-19 and social media: what, where and why?. Movimento, 28. https://doi.org/10.22456/1982-8918.122533

Pasquini LA, Evangelopoulos N (2016) Sociotechnical stewardship in higher education: a field study of social media policy documents. J Comput High Educ 29:218–239

Pérez-Sanagustín M, Hernández-Leo D, Santos P, Delgado Kloos C, Blat J(2014) Augmenting reality and formality of informal and non-formal settings to enhance blended learning IEEE Trans Learn Technol 7:118–131. https://doi.org/10.1109/TLT.2014.2312719

Pinto M, Leite C (2020) Digital technologies in support of students learning in Higher Education: literature review. Digital Education Review 343–360. https://doi.org/10.1344/der.2020.37.343-360

Pires F, Masanet MJ, Tomasena JM, Scolari CA(2022) Learning with YouTube: beyond formal and informal through new actors, strategies and affordances Convergence 28(3):838–853. https://doi.org/10.1177/1354856521102054

Pritchard A (1969) Statistical bibliography or bibliometrics 25:348

Romero M, Romeu T, Guitert M, Baztán P (2021) Digital transformation in higher education: the UOC case. In ICERI2021 Proceedings (pp. 6695–6703). IATED https://doi.org/10.21125/iceri.2021.1512

Romero-Hall E, Jaramillo Cherrez N (2022) Teaching in times of disruption: faculty digital literacy in higher education during the COVID-19 pandemic. Innovations in Education and Teaching International 1–11. https://doi.org/10.1080/14703297.2022.2030782

Rospigliosi PA(2023) Artificial intelligence in teaching and learning: what questions should we ask of ChatGPT? Interactive Learning Environments 31:1–3. https://doi.org/10.1080/10494820.2023.2180191

Salas-Pilco SZ, Yang Y, Zhang Z(2022) Student engagement in online learning in Latin American higher education during the COVID-19 pandemic: a systematic review. Br J Educ Technol 53(3):593–619. https://doi.org/10.1111/bjet.13190

Selwyn N(2009) The digital native-myth and reality In Aslib proceedings 61(4):364–379. https://doi.org/10.1108/00012530910973776

Selwyn N(2012) Making sense of young people, education and digital technology: the role of sociological theory Oxford Review of Education 38:81–96. https://doi.org/10.1080/03054985.2011.577949

Selwyn N, Facer K(2014) The sociology of education and digital technology: past, present and future Oxford Rev Educ 40:482–496. https://doi.org/10.1080/03054985.2014.933005

Selwyn N, Banaji S, Hadjithoma-Garstka C, Clark W(2011) Providing a platform for parents? Exploring the nature of parental engagement with school Learning Platforms J Comput Assist Learn 27:314–323. https://doi.org/10.1111/j.1365-2729.2011.00428.x

Selwyn N, Aagaard J (2020) Banning mobile phones from classrooms-an opportunity to advance understandings of technology addiction, distraction and cyberbullying. Br J Educ Technol 52. https://doi.org/10.1111/bjet.12943

Selwyn N, O’Neill C, Smith G, Andrejevic M, Gu X (2021) A necessary evil? The rise of online exam proctoring in Australian universities. Media Int Austr 1329878X2110058. https://doi.org/10.1177/1329878x211005862

Selwyn N, Pangrazio L, Nemorin S, Perrotta C (2019) What might the school of 2030 be like? An exercise in social science fiction. Learn, Media Technol 1–17. https://doi.org/10.1080/17439884.2020.1694944

Selwyn, N (2016) What works and why?* Understanding successful technology enabled learning within institutional contexts 2016 Final report Appendices (Part B). Monash University Griffith University

Sjöberg D, Holmgren R (2021) Informal workplace learning in swedish police education-a teacher perspective. Vocations and Learning. https://doi.org/10.1007/s12186-021-09267-3

Strotmann A, Zhao D (2012) Author name disambiguation: what difference does it make in author-based citation analysis? J Am Soc Inf Sci Technol 63:1820–1833

Article   CAS   Google Scholar  

Sutherland R, Facer K, Furlong R, Furlong J(2000) A new environment for education? The computer in the home. Comput Educ 34:195–212. https://doi.org/10.1016/s0360-1315(99)00045-7

Szeto E, Cheng AY-N, Hong J-C(2015) Learning with social media: how do preservice teachers integrate YouTube and Social Media in teaching? Asia-Pac Educ Res 25:35–44. https://doi.org/10.1007/s40299-015-0230-9

Tang E, Lam C(2014) Building an effective online learning community (OLC) in blog-based teaching portfolios Int High Educ 20:79–85. https://doi.org/10.1016/j.iheduc.2012.12.002

Taskin Z, Al U(2019) Natural language processing applications in library and information science Online Inf Rev 43:676–690. https://doi.org/10.1108/oir-07-2018-0217

Tegtmeyer K, Ibsen L, Goldstein B(2001) Computer-assisted learning in critical care: from ENIAC to HAL Crit Care Med 29:N177–N182. https://doi.org/10.1097/00003246-200108001-00006

Article   CAS   PubMed   Google Scholar  

Timotheou S, Miliou O, Dimitriadis Y, Sobrino SV, Giannoutsou N, Cachia R, Moné AM, Ioannou A(2023) Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: a literature review. Educ Inf Technol 28(6):6695–6726. https://doi.org/10.1007/s10639-022-11431-8

Trujillo Maza EM, Gómez Lozano MT, Cardozo Alarcón AC, Moreno Zuluaga L, Gamba Fadul M (2016) Blended learning supported by digital technology and competency-based medical education: a case study of the social medicine course at the Universidad de los Andes, Colombia. Int J Educ Technol High Educ 13. https://doi.org/10.1186/s41239-016-0027-9

Turin O, Friesem Y(2020) Is that media literacy?: Israeli and US media scholars’ perceptions of the field J Media Lit Educ 12:132–144. https://doi.org/10.1007/s11192-009-0146-3

Van Eck NJ, Waltman L (2019) VOSviewer manual. Universiteit Leiden

Vratulis V, Clarke T, Hoban G, Erickson G(2011) Additive and disruptive pedagogies: the use of slowmation as an example of digital technology implementation Teach Teach Educ 27:1179–1188. https://doi.org/10.1016/j.tate.2011.06.004

Wang CL, Dai J, Xu LJ (2022) Big data and data mining in education: a bibliometrics study from 2010 to 2022. In 2022 7th International Conference on Cloud Computing and Big Data Analytics ( ICCCBDA ) (pp. 507-512). IEEE. https://doi.org/10.1109/icccbda55098.2022.9778874

Wang CL, Dai J, Zhu KK, Yu T, Gu XQ (2023) Understanding the continuance intention of college students toward new E-learning spaces based on an integrated model of the TAM and TTF. Int J Hum-Comput Int 1–14. https://doi.org/10.1080/10447318.2023.2291609

Wong L-H, Boticki I, Sun J, Looi C-K(2011) Improving the scaffolds of a mobile-assisted Chinese character forming game via a design-based research cycle Comput Hum Behav 27:1783–1793. https://doi.org/10.1016/j.chb.2011.03.005

Wu R, Yu Z (2023) Do AI chatbots improve students learning outcomes? Evidence from a meta-analysis. Br J Educ Technol. https://doi.org/10.1111/bjet.13334

Yang D, Zhou J, Shi D, Pan Q, Wang D, Chen X, Liu J (2022) Research status, hotspots, and evolutionary trends of global digital education via knowledge graph analysis. Sustainability 14:15157–15157. https://doi.org/10.3390/su142215157

Yu T, Dai J, Wang CL (2023) Adoption of blended learning: Chinese university students’ perspectives. Humanit Soc Sci Commun 10:390. https://doi.org/10.3390/su142215157

Yu Z (2022) Sustaining student roles, digital literacy, learning achievements, and motivation in online learning environments during the COVID-19 pandemic. Sustainability 14:4388. https://doi.org/10.3390/su14084388

Za S, Spagnoletti P, North-Samardzic A(2014) Organisational learning as an emerging process: the generative role of digital tools in informal learning practices Br J Educ Technol 45:1023–1035. https://doi.org/10.1111/bjet.12211

Zhang X, Chen Y, Hu L, Wang Y (2022) The metaverse in education: definition, framework, features, potential applications, challenges, and future research topics. Front Psychol 13:1016300. https://doi.org/10.3389/fpsyg.2022.1016300

Zhou M, Dzingirai C, Hove K, Chitata T, Mugandani R (2022) Adoption, use and enhancement of virtual learning during COVID-19. Education and Information Technologies. https://doi.org/10.1007/s10639-022-10985-x

Download references

Acknowledgements

This research was supported by the Zhejiang Provincial Social Science Planning Project, “Mechanisms and Pathways for Empowering Classroom Teaching through Learning Spaces under the Strategy of High-Quality Education Development”, the 2022 National Social Science Foundation Education Youth Project “Research on the Strategy of Creating Learning Space Value and Empowering Classroom Teaching under the background of ‘Double Reduction’” (Grant No. CCA220319) and the National College Student Innovation and Entrepreneurship Training Program of China (Grant No. 202310337023).

Author information

Authors and affiliations.

College of Educational Science and Technology, Zhejiang University of Technology, Zhejiang, China

Chengliang Wang, Xiaojiao Chen, Yidan Liu & Yuhui Jing

Graduate School of Business, Universiti Sains Malaysia, Minden, Malaysia

Department of Management, The Chinese University of Hong Kong, Hong Kong, China

College of Humanities and Social Sciences, Beihang University, Beijing, China

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization: Y.J., C.W.; methodology, C.W.; software, C.W., Y.L.; writing-original draft preparation, C.W., Y.L.; writing-review and editing, T.Y., Y.L., C.W.; supervision, X.C., T.Y.; project administration, Y.J.; funding acquisition, X.C., Y.L. All authors read and approved the final manuscript. All authors have read and approved the re-submission of the manuscript.

Corresponding author

Correspondence to Yuhui Jing .

Ethics declarations

Ethical approval.

Ethical approval was not required as the study did not involve human participants.

Informed consent

Informed consent was not required as the study did not involve human participants.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Wang, C., Chen, X., Yu, T. et al. Education reform and change driven by digital technology: a bibliometric study from a global perspective. Humanit Soc Sci Commun 11 , 256 (2024). https://doi.org/10.1057/s41599-024-02717-y

Download citation

Received : 11 July 2023

Accepted : 17 January 2024

Published : 12 February 2024

DOI : https://doi.org/10.1057/s41599-024-02717-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

A meta-analysis of learners’ continuance intention toward online education platforms.

  • Chengliang Wang

Education and Information Technologies (2024)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

article writing on use of technology in education

REALIZING THE PROMISE:

Leading up to the 75th anniversary of the UN General Assembly, this “Realizing the promise: How can education technology improve learning for all?” publication kicks off the Center for Universal Education’s first playbook in a series to help improve education around the world.

It is intended as an evidence-based tool for ministries of education, particularly in low- and middle-income countries, to adopt and more successfully invest in education technology.

While there is no single education initiative that will achieve the same results everywhere—as school systems differ in learners and educators, as well as in the availability and quality of materials and technologies—an important first step is understanding how technology is used given specific local contexts and needs.

The surveys in this playbook are designed to be adapted to collect this information from educators, learners, and school leaders and guide decisionmakers in expanding the use of technology.  

Introduction

While technology has disrupted most sectors of the economy and changed how we communicate, access information, work, and even play, its impact on schools, teaching, and learning has been much more limited. We believe that this limited impact is primarily due to technology being been used to replace analog tools, without much consideration given to playing to technology’s comparative advantages. These comparative advantages, relative to traditional “chalk-and-talk” classroom instruction, include helping to scale up standardized instruction, facilitate differentiated instruction, expand opportunities for practice, and increase student engagement. When schools use technology to enhance the work of educators and to improve the quality and quantity of educational content, learners will thrive.

Further, COVID-19 has laid bare that, in today’s environment where pandemics and the effects of climate change are likely to occur, schools cannot always provide in-person education—making the case for investing in education technology.

Here we argue for a simple yet surprisingly rare approach to education technology that seeks to:

  • Understand the needs, infrastructure, and capacity of a school system—the diagnosis;
  • Survey the best available evidence on interventions that match those conditions—the evidence; and
  • Closely monitor the results of innovations before they are scaled up—the prognosis.

RELATED CONTENT

article writing on use of technology in education

Podcast: How education technology can improve learning for all students

article writing on use of technology in education

To make ed tech work, set clear goals, review the evidence, and pilot before you scale

The framework.

Our approach builds on a simple yet intuitive theoretical framework created two decades ago by two of the most prominent education researchers in the United States, David K. Cohen and Deborah Loewenberg Ball. They argue that what matters most to improve learning is the interactions among educators and learners around educational materials. We believe that the failed school-improvement efforts in the U.S. that motivated Cohen and Ball’s framework resemble the ed-tech reforms in much of the developing world to date in the lack of clarity improving the interactions between educators, learners, and the educational material. We build on their framework by adding parents as key agents that mediate the relationships between learners and educators and the material (Figure 1).

Figure 1: The instructional core

Adapted from Cohen and Ball (1999)

As the figure above suggests, ed-tech interventions can affect the instructional core in a myriad of ways. Yet, just because technology can do something, it does not mean it should. School systems in developing countries differ along many dimensions and each system is likely to have different needs for ed-tech interventions, as well as different infrastructure and capacity to enact such interventions.

The diagnosis:

How can school systems assess their needs and preparedness.

A useful first step for any school system to determine whether it should invest in education technology is to diagnose its:

  • Specific needs to improve student learning (e.g., raising the average level of achievement, remediating gaps among low performers, and challenging high performers to develop higher-order skills);
  • Infrastructure to adopt technology-enabled solutions (e.g., electricity connection, availability of space and outlets, stock of computers, and Internet connectivity at school and at learners’ homes); and
  • Capacity to integrate technology in the instructional process (e.g., learners’ and educators’ level of familiarity and comfort with hardware and software, their beliefs about the level of usefulness of technology for learning purposes, and their current uses of such technology).

Before engaging in any new data collection exercise, school systems should take full advantage of existing administrative data that could shed light on these three main questions. This could be in the form of internal evaluations but also international learner assessments, such as the Program for International Student Assessment (PISA), the Trends in International Mathematics and Science Study (TIMSS), and/or the Progress in International Literacy Study (PIRLS), and the Teaching and Learning International Study (TALIS). But if school systems lack information on their preparedness for ed-tech reforms or if they seek to complement existing data with a richer set of indicators, we developed a set of surveys for learners, educators, and school leaders. Download the full report to see how we map out the main aspects covered by these surveys, in hopes of highlighting how they could be used to inform decisions around the adoption of ed-tech interventions.

The evidence:

How can school systems identify promising ed-tech interventions.

There is no single “ed-tech” initiative that will achieve the same results everywhere, simply because school systems differ in learners and educators, as well as in the availability and quality of materials and technologies. Instead, to realize the potential of education technology to accelerate student learning, decisionmakers should focus on four potential uses of technology that play to its comparative advantages and complement the work of educators to accelerate student learning (Figure 2). These comparative advantages include:

  • Scaling up quality instruction, such as through prerecorded quality lessons.
  • Facilitating differentiated instruction, through, for example, computer-adaptive learning and live one-on-one tutoring.
  • Expanding opportunities to practice.
  • Increasing learner engagement through videos and games.

Figure 2: Comparative advantages of technology

Here we review the evidence on ed-tech interventions from 37 studies in 20 countries*, organizing them by comparative advantage. It’s important to note that ours is not the only way to classify these interventions (e.g., video tutorials could be considered as a strategy to scale up instruction or increase learner engagement), but we believe it may be useful to highlight the needs that they could address and why technology is well positioned to do so.

When discussing specific studies, we report the magnitude of the effects of interventions using standard deviations (SDs). SDs are a widely used metric in research to express the effect of a program or policy with respect to a business-as-usual condition (e.g., test scores). There are several ways to make sense of them. One is to categorize the magnitude of the effects based on the results of impact evaluations. In developing countries, effects below 0.1 SDs are considered to be small, effects between 0.1 and 0.2 SDs are medium, and those above 0.2 SDs are large (for reviews that estimate the average effect of groups of interventions, called “meta analyses,” see e.g., Conn, 2017; Kremer, Brannen, & Glennerster, 2013; McEwan, 2014; Snilstveit et al., 2015; Evans & Yuan, 2020.)

*In surveying the evidence, we began by compiling studies from prior general and ed-tech specific evidence reviews that some of us have written and from ed-tech reviews conducted by others. Then, we tracked the studies cited by the ones we had previously read and reviewed those, as well. In identifying studies for inclusion, we focused on experimental and quasi-experimental evaluations of education technology interventions from pre-school to secondary school in low- and middle-income countries that were released between 2000 and 2020. We only included interventions that sought to improve student learning directly (i.e., students’ interaction with the material), as opposed to interventions that have impacted achievement indirectly, by reducing teacher absence or increasing parental engagement. This process yielded 37 studies in 20 countries (see the full list of studies in Appendix B).

Scaling up standardized instruction

One of the ways in which technology may improve the quality of education is through its capacity to deliver standardized quality content at scale. This feature of technology may be particularly useful in three types of settings: (a) those in “hard-to-staff” schools (i.e., schools that struggle to recruit educators with the requisite training and experience—typically, in rural and/or remote areas) (see, e.g., Urquiola & Vegas, 2005); (b) those in which many educators are frequently absent from school (e.g., Chaudhury, Hammer, Kremer, Muralidharan, & Rogers, 2006; Muralidharan, Das, Holla, & Mohpal, 2017); and/or (c) those in which educators have low levels of pedagogical and subject matter expertise (e.g., Bietenbeck, Piopiunik, & Wiederhold, 2018; Bold et al., 2017; Metzler & Woessmann, 2012; Santibañez, 2006) and do not have opportunities to observe and receive feedback (e.g., Bruns, Costa, & Cunha, 2018; Cilliers, Fleisch, Prinsloo, & Taylor, 2018). Technology could address this problem by: (a) disseminating lessons delivered by qualified educators to a large number of learners (e.g., through prerecorded or live lessons); (b) enabling distance education (e.g., for learners in remote areas and/or during periods of school closures); and (c) distributing hardware preloaded with educational materials.

Prerecorded lessons

Technology seems to be well placed to amplify the impact of effective educators by disseminating their lessons. Evidence on the impact of prerecorded lessons is encouraging, but not conclusive. Some initiatives that have used short instructional videos to complement regular instruction, in conjunction with other learning materials, have raised student learning on independent assessments. For example, Beg et al. (2020) evaluated an initiative in Punjab, Pakistan in which grade 8 classrooms received an intervention that included short videos to substitute live instruction, quizzes for learners to practice the material from every lesson, tablets for educators to learn the material and follow the lesson, and LED screens to project the videos onto a classroom screen. After six months, the intervention improved the performance of learners on independent tests of math and science by 0.19 and 0.24 SDs, respectively but had no discernible effect on the math and science section of Punjab’s high-stakes exams.

One study suggests that approaches that are far less technologically sophisticated can also improve learning outcomes—especially, if the business-as-usual instruction is of low quality. For example, Naslund-Hadley, Parker, and Hernandez-Agramonte (2014) evaluated a preschool math program in Cordillera, Paraguay that used audio segments and written materials four days per week for an hour per day during the school day. After five months, the intervention improved math scores by 0.16 SDs, narrowing gaps between low- and high-achieving learners, and between those with and without educators with formal training in early childhood education.

Yet, the integration of prerecorded material into regular instruction has not always been successful. For example, de Barros (2020) evaluated an intervention that combined instructional videos for math and science with infrastructure upgrades (e.g., two “smart” classrooms, two TVs, and two tablets), printed workbooks for students, and in-service training for educators of learners in grades 9 and 10 in Haryana, India (all materials were mapped onto the official curriculum). After 11 months, the intervention negatively impacted math achievement (by 0.08 SDs) and had no effect on science (with respect to business as usual classes). It reduced the share of lesson time that educators devoted to instruction and negatively impacted an index of instructional quality. Likewise, Seo (2017) evaluated several combinations of infrastructure (solar lights and TVs) and prerecorded videos (in English and/or bilingual) for grade 11 students in northern Tanzania and found that none of the variants improved student learning, even when the videos were used. The study reports effects from the infrastructure component across variants, but as others have noted (Muralidharan, Romero, & Wüthrich, 2019), this approach to estimating impact is problematic.

A very similar intervention delivered after school hours, however, had sizeable effects on learners’ basic skills. Chiplunkar, Dhar, and Nagesh (2020) evaluated an initiative in Chennai (the capital city of the state of Tamil Nadu, India) delivered by the same organization as above that combined short videos that explained key concepts in math and science with worksheets, facilitator-led instruction, small groups for peer-to-peer learning, and occasional career counseling and guidance for grade 9 students. These lessons took place after school for one hour, five times a week. After 10 months, it had large effects on learners’ achievement as measured by tests of basic skills in math and reading, but no effect on a standardized high-stakes test in grade 10 or socio-emotional skills (e.g., teamwork, decisionmaking, and communication).

Drawing general lessons from this body of research is challenging for at least two reasons. First, all of the studies above have evaluated the impact of prerecorded lessons combined with several other components (e.g., hardware, print materials, or other activities). Therefore, it is possible that the effects found are due to these additional components, rather than to the recordings themselves, or to the interaction between the two (see Muralidharan, 2017 for a discussion of the challenges of interpreting “bundled” interventions). Second, while these studies evaluate some type of prerecorded lessons, none examines the content of such lessons. Thus, it seems entirely plausible that the direction and magnitude of the effects depends largely on the quality of the recordings (e.g., the expertise of the educator recording it, the amount of preparation that went into planning the recording, and its alignment with best teaching practices).

These studies also raise three important questions worth exploring in future research. One of them is why none of the interventions discussed above had effects on high-stakes exams, even if their materials are typically mapped onto the official curriculum. It is possible that the official curricula are simply too challenging for learners in these settings, who are several grade levels behind expectations and who often need to reinforce basic skills (see Pritchett & Beatty, 2015). Another question is whether these interventions have long-term effects on teaching practices. It seems plausible that, if these interventions are deployed in contexts with low teaching quality, educators may learn something from watching the videos or listening to the recordings with learners. Yet another question is whether these interventions make it easier for schools to deliver instruction to learners whose native language is other than the official medium of instruction.

Distance education

Technology can also allow learners living in remote areas to access education. The evidence on these initiatives is encouraging. For example, Johnston and Ksoll (2017) evaluated a program that broadcasted live instruction via satellite to rural primary school students in the Volta and Greater Accra regions of Ghana. For this purpose, the program also equipped classrooms with the technology needed to connect to a studio in Accra, including solar panels, a satellite modem, a projector, a webcam, microphones, and a computer with interactive software. After two years, the intervention improved the numeracy scores of students in grades 2 through 4, and some foundational literacy tasks, but it had no effect on attendance or classroom time devoted to instruction, as captured by school visits. The authors interpreted these results as suggesting that the gains in achievement may be due to improving the quality of instruction that children received (as opposed to increased instructional time). Naik, Chitre, Bhalla, and Rajan (2019) evaluated a similar program in the Indian state of Karnataka and also found positive effects on learning outcomes, but it is not clear whether those effects are due to the program or due to differences in the groups of students they compared to estimate the impact of the initiative.

In one context (Mexico), this type of distance education had positive long-term effects. Navarro-Sola (2019) took advantage of the staggered rollout of the telesecundarias (i.e., middle schools with lessons broadcasted through satellite TV) in 1968 to estimate its impact. The policy had short-term effects on students’ enrollment in school: For every telesecundaria per 50 children, 10 students enrolled in middle school and two pursued further education. It also had a long-term influence on the educational and employment trajectory of its graduates. Each additional year of education induced by the policy increased average income by nearly 18 percent. This effect was attributable to more graduates entering the labor force and shifting from agriculture and the informal sector. Similarly, Fabregas (2019) leveraged a later expansion of this policy in 1993 and found that each additional telesecundaria per 1,000 adolescents led to an average increase of 0.2 years of education, and a decline in fertility for women, but no conclusive evidence of long-term effects on labor market outcomes.

It is crucial to interpret these results keeping in mind the settings where the interventions were implemented. As we mention above, part of the reason why they have proven effective is that the “counterfactual” conditions for learning (i.e., what would have happened to learners in the absence of such programs) was either to not have access to schooling or to be exposed to low-quality instruction. School systems interested in taking up similar interventions should assess the extent to which their learners (or parts of their learner population) find themselves in similar conditions to the subjects of the studies above. This illustrates the importance of assessing the needs of a system before reviewing the evidence.

Preloaded hardware

Technology also seems well positioned to disseminate educational materials. Specifically, hardware (e.g., desktop computers, laptops, or tablets) could also help deliver educational software (e.g., word processing, reference texts, and/or games). In theory, these materials could not only undergo a quality assurance review (e.g., by curriculum specialists and educators), but also draw on the interactions with learners for adjustments (e.g., identifying areas needing reinforcement) and enable interactions between learners and educators.

In practice, however, most initiatives that have provided learners with free computers, laptops, and netbooks do not leverage any of the opportunities mentioned above. Instead, they install a standard set of educational materials and hope that learners find them helpful enough to take them up on their own. Students rarely do so, and instead use the laptops for recreational purposes—often, to the detriment of their learning (see, e.g., Malamud & Pop-Eleches, 2011). In fact, free netbook initiatives have not only consistently failed to improve academic achievement in math or language (e.g., Cristia et al., 2017), but they have had no impact on learners’ general computer skills (e.g., Beuermann et al., 2015). Some of these initiatives have had small impacts on cognitive skills, but the mechanisms through which those effects occurred remains unclear.

To our knowledge, the only successful deployment of a free laptop initiative was one in which a team of researchers equipped the computers with remedial software. Mo et al. (2013) evaluated a version of the One Laptop per Child (OLPC) program for grade 3 students in migrant schools in Beijing, China in which the laptops were loaded with a remedial software mapped onto the national curriculum for math (similar to the software products that we discuss under “practice exercises” below). After nine months, the program improved math achievement by 0.17 SDs and computer skills by 0.33 SDs. If a school system decides to invest in free laptops, this study suggests that the quality of the software on the laptops is crucial.

To date, however, the evidence suggests that children do not learn more from interacting with laptops than they do from textbooks. For example, Bando, Gallego, Gertler, and Romero (2016) compared the effect of free laptop and textbook provision in 271 elementary schools in disadvantaged areas of Honduras. After seven months, students in grades 3 and 6 who had received the laptops performed on par with those who had received the textbooks in math and language. Further, even if textbooks essentially become obsolete at the end of each school year, whereas laptops can be reloaded with new materials for each year, the costs of laptop provision (not just the hardware, but also the technical assistance, Internet, and training associated with it) are not yet low enough to make them a more cost-effective way of delivering content to learners.

Evidence on the provision of tablets equipped with software is encouraging but limited. For example, de Hoop et al. (2020) evaluated a composite intervention for first grade students in Zambia’s Eastern Province that combined infrastructure (electricity via solar power), hardware (projectors and tablets), and educational materials (lesson plans for educators and interactive lessons for learners, both loaded onto the tablets and mapped onto the official Zambian curriculum). After 14 months, the intervention had improved student early-grade reading by 0.4 SDs, oral vocabulary scores by 0.25 SDs, and early-grade math by 0.22 SDs. It also improved students’ achievement by 0.16 on a locally developed assessment. The multifaceted nature of the program, however, makes it challenging to identify the components that are driving the positive effects. Pitchford (2015) evaluated an intervention that provided tablets equipped with educational “apps,” to be used for 30 minutes per day for two months to develop early math skills among students in grades 1 through 3 in Lilongwe, Malawi. The evaluation found positive impacts in math achievement, but the main study limitation is that it was conducted in a single school.

Facilitating differentiated instruction

Another way in which technology may improve educational outcomes is by facilitating the delivery of differentiated or individualized instruction. Most developing countries massively expanded access to schooling in recent decades by building new schools and making education more affordable, both by defraying direct costs, as well as compensating for opportunity costs (Duflo, 2001; World Bank, 2018). These initiatives have not only rapidly increased the number of learners enrolled in school, but have also increased the variability in learner’ preparation for schooling. Consequently, a large number of learners perform well below grade-based curricular expectations (see, e.g., Duflo, Dupas, & Kremer, 2011; Pritchett & Beatty, 2015). These learners are unlikely to get much from “one-size-fits-all” instruction, in which a single educator delivers instruction deemed appropriate for the middle (or top) of the achievement distribution (Banerjee & Duflo, 2011). Technology could potentially help these learners by providing them with: (a) instruction and opportunities for practice that adjust to the level and pace of preparation of each individual (known as “computer-adaptive learning” (CAL)); or (b) live, one-on-one tutoring.

Computer-adaptive learning

One of the main comparative advantages of technology is its ability to diagnose students’ initial learning levels and assign students to instruction and exercises of appropriate difficulty. No individual educator—no matter how talented—can be expected to provide individualized instruction to all learners in his/her class simultaneously . In this respect, technology is uniquely positioned to complement traditional teaching. This use of technology could help learners master basic skills and help them get more out of schooling.

Although many software products evaluated in recent years have been categorized as CAL, many rely on a relatively coarse level of differentiation at an initial stage (e.g., a diagnostic test) without further differentiation. We discuss these initiatives under the category of “increasing opportunities for practice” below. CAL initiatives complement an initial diagnostic with dynamic adaptation (i.e., at each response or set of responses from learners) to adjust both the initial level of difficulty and rate at which it increases or decreases, depending on whether learners’ responses are correct or incorrect.

Existing evidence on this specific type of programs is highly promising. Most famously, Banerjee et al. (2007) evaluated CAL software in Vadodara, in the Indian state of Gujarat, in which grade 4 students were offered two hours of shared computer time per week before and after school, during which they played games that involved solving math problems. The level of difficulty of such problems adjusted based on students’ answers. This program improved math achievement by 0.35 and 0.47 SDs after one and two years of implementation, respectively. Consistent with the promise of personalized learning, the software improved achievement for all students. In fact, one year after the end of the program, students assigned to the program still performed 0.1 SDs better than those assigned to a business as usual condition. More recently, Muralidharan, et al. (2019) evaluated a “blended learning” initiative in which students in grades 4 through 9 in Delhi, India received 45 minutes of interaction with CAL software for math and language, and 45 minutes of small group instruction before or after going to school. After only 4.5 months, the program improved achievement by 0.37 SDs in math and 0.23 SDs in Hindi. While all learners benefited from the program in absolute terms, the lowest performing learners benefited the most in relative terms, since they were learning very little in school.

We see two important limitations from this body of research. First, to our knowledge, none of these initiatives has been evaluated when implemented during the school day. Therefore, it is not possible to distinguish the effect of the adaptive software from that of additional instructional time. Second, given that most of these programs were facilitated by local instructors, attempts to distinguish the effect of the software from that of the instructors has been mostly based on noncausal evidence. A frontier challenge in this body of research is to understand whether CAL software can increase the effectiveness of school-based instruction by substituting part of the regularly scheduled time for math and language instruction.

Live one-on-one tutoring

Recent improvements in the speed and quality of videoconferencing, as well as in the connectivity of remote areas, have enabled yet another way in which technology can help personalization: live (i.e., real-time) one-on-one tutoring. While the evidence on in-person tutoring is scarce in developing countries, existing studies suggest that this approach works best when it is used to personalize instruction (see, e.g., Banerjee et al., 2007; Banerji, Berry, & Shotland, 2015; Cabezas, Cuesta, & Gallego, 2011).

There are almost no studies on the impact of online tutoring—possibly, due to the lack of hardware and Internet connectivity in low- and middle-income countries. One exception is Chemin and Oledan (2020)’s recent evaluation of an online tutoring program for grade 6 students in Kianyaga, Kenya to learn English from volunteers from a Canadian university via Skype ( videoconferencing software) for one hour per week after school. After 10 months, program beneficiaries performed 0.22 SDs better in a test of oral comprehension, improved their comfort using technology for learning, and became more willing to engage in cross-cultural communication. Importantly, while the tutoring sessions used the official English textbooks and sought in part to help learners with their homework, tutors were trained on several strategies to teach to each learner’s individual level of preparation, focusing on basic skills if necessary. To our knowledge, similar initiatives within a country have not yet been rigorously evaluated.

Expanding opportunities for practice

A third way in which technology may improve the quality of education is by providing learners with additional opportunities for practice. In many developing countries, lesson time is primarily devoted to lectures, in which the educator explains the topic and the learners passively copy explanations from the blackboard. This setup leaves little time for in-class practice. Consequently, learners who did not understand the explanation of the material during lecture struggle when they have to solve homework assignments on their own. Technology could potentially address this problem by allowing learners to review topics at their own pace.

Practice exercises

Technology can help learners get more out of traditional instruction by providing them with opportunities to implement what they learn in class. This approach could, in theory, allow some learners to anchor their understanding of the material through trial and error (i.e., by realizing what they may not have understood correctly during lecture and by getting better acquainted with special cases not covered in-depth in class).

Existing evidence on practice exercises reflects both the promise and the limitations of this use of technology in developing countries. For example, Lai et al. (2013) evaluated a program in Shaanxi, China where students in grades 3 and 5 were required to attend two 40-minute remedial sessions per week in which they first watched videos that reviewed the material that had been introduced in their math lessons that week and then played games to practice the skills introduced in the video. After four months, the intervention improved math achievement by 0.12 SDs. Many other evaluations of comparable interventions have found similar small-to-moderate results (see, e.g., Lai, Luo, Zhang, Huang, & Rozelle, 2015; Lai et al., 2012; Mo et al., 2015; Pitchford, 2015). These effects, however, have been consistently smaller than those of initiatives that adjust the difficulty of the material based on students’ performance (e.g., Banerjee et al., 2007; Muralidharan, et al., 2019). We hypothesize that these programs do little for learners who perform several grade levels behind curricular expectations, and who would benefit more from a review of foundational concepts from earlier grades.

We see two important limitations from this research. First, most initiatives that have been evaluated thus far combine instructional videos with practice exercises, so it is hard to know whether their effects are driven by the former or the latter. In fact, the program in China described above allowed learners to ask their peers whenever they did not understand a difficult concept, so it potentially also captured the effect of peer-to-peer collaboration. To our knowledge, no studies have addressed this gap in the evidence.

Second, most of these programs are implemented before or after school, so we cannot distinguish the effect of additional instructional time from that of the actual opportunity for practice. The importance of this question was first highlighted by Linden (2008), who compared two delivery mechanisms for game-based remedial math software for students in grades 2 and 3 in a network of schools run by a nonprofit organization in Gujarat, India: one in which students interacted with the software during the school day and another one in which students interacted with the software before or after school (in both cases, for three hours per day). After a year, the first version of the program had negatively impacted students’ math achievement by 0.57 SDs and the second one had a null effect. This study suggested that computer-assisted learning is a poor substitute for regular instruction when it is of high quality, as was the case in this well-functioning private network of schools.

In recent years, several studies have sought to remedy this shortcoming. Mo et al. (2014) were among the first to evaluate practice exercises delivered during the school day. They evaluated an initiative in Shaanxi, China in which students in grades 3 and 5 were required to interact with the software similar to the one in Lai et al. (2013) for two 40-minute sessions per week. The main limitation of this study, however, is that the program was delivered during regularly scheduled computer lessons, so it could not determine the impact of substituting regular math instruction. Similarly, Mo et al. (2020) evaluated a self-paced and a teacher-directed version of a similar program for English for grade 5 students in Qinghai, China. Yet, the key shortcoming of this study is that the teacher-directed version added several components that may also influence achievement, such as increased opportunities for teachers to provide students with personalized assistance when they struggled with the material. Ma, Fairlie, Loyalka, and Rozelle (2020) compared the effectiveness of additional time-delivered remedial instruction for students in grades 4 to 6 in Shaanxi, China through either computer-assisted software or using workbooks. This study indicates whether additional instructional time is more effective when using technology, but it does not address the question of whether school systems may improve the productivity of instructional time during the school day by substituting educator-led with computer-assisted instruction.

Increasing learner engagement

Another way in which technology may improve education is by increasing learners’ engagement with the material. In many school systems, regular “chalk and talk” instruction prioritizes time for educators’ exposition over opportunities for learners to ask clarifying questions and/or contribute to class discussions. This, combined with the fact that many developing-country classrooms include a very large number of learners (see, e.g., Angrist & Lavy, 1999; Duflo, Dupas, & Kremer, 2015), may partially explain why the majority of those students are several grade levels behind curricular expectations (e.g., Muralidharan, et al., 2019; Muralidharan & Zieleniak, 2014; Pritchett & Beatty, 2015). Technology could potentially address these challenges by: (a) using video tutorials for self-paced learning and (b) presenting exercises as games and/or gamifying practice.

Video tutorials

Technology can potentially increase learner effort and understanding of the material by finding new and more engaging ways to deliver it. Video tutorials designed for self-paced learning—as opposed to videos for whole class instruction, which we discuss under the category of “prerecorded lessons” above—can increase learner effort in multiple ways, including: allowing learners to focus on topics with which they need more help, letting them correct errors and misconceptions on their own, and making the material appealing through visual aids. They can increase understanding by breaking the material into smaller units and tackling common misconceptions.

In spite of the popularity of instructional videos, there is relatively little evidence on their effectiveness. Yet, two recent evaluations of different versions of the Khan Academy portal, which mainly relies on instructional videos, offer some insight into their impact. First, Ferman, Finamor, and Lima (2019) evaluated an initiative in 157 public primary and middle schools in five cities in Brazil in which the teachers of students in grades 5 and 9 were taken to the computer lab to learn math from the platform for 50 minutes per week. The authors found that, while the intervention slightly improved learners’ attitudes toward math, these changes did not translate into better performance in this subject. The authors hypothesized that this could be due to the reduction of teacher-led math instruction.

More recently, Büchel, Jakob, Kühnhanss, Steffen, and Brunetti (2020) evaluated an after-school, offline delivery of the Khan Academy portal in grades 3 through 6 in 302 primary schools in Morazán, El Salvador. Students in this study received 90 minutes per week of additional math instruction (effectively nearly doubling total math instruction per week) through teacher-led regular lessons, teacher-assisted Khan Academy lessons, or similar lessons assisted by technical supervisors with no content expertise. (Importantly, the first group provided differentiated instruction, which is not the norm in Salvadorian schools). All three groups outperformed both schools without any additional lessons and classrooms without additional lessons in the same schools as the program. The teacher-assisted Khan Academy lessons performed 0.24 SDs better, the supervisor-led lessons 0.22 SDs better, and the teacher-led regular lessons 0.15 SDs better, but the authors could not determine whether the effects across versions were different.

Together, these studies suggest that instructional videos work best when provided as a complement to, rather than as a substitute for, regular instruction. Yet, the main limitation of these studies is the multifaceted nature of the Khan Academy portal, which also includes other components found to positively improve learner achievement, such as differentiated instruction by students’ learning levels. While the software does not provide the type of personalization discussed above, learners are asked to take a placement test and, based on their score, educators assign them different work. Therefore, it is not clear from these studies whether the effects from Khan Academy are driven by its instructional videos or to the software’s ability to provide differentiated activities when combined with placement tests.

Games and gamification

Technology can also increase learner engagement by presenting exercises as games and/or by encouraging learner to play and compete with others (e.g., using leaderboards and rewards)—an approach known as “gamification.” Both approaches can increase learner motivation and effort by presenting learners with entertaining opportunities for practice and by leveraging peers as commitment devices.

There are very few studies on the effects of games and gamification in low- and middle-income countries. Recently, Araya, Arias Ortiz, Bottan, and Cristia (2019) evaluated an initiative in which grade 4 students in Santiago, Chile were required to participate in two 90-minute sessions per week during the school day with instructional math software featuring individual and group competitions (e.g., tracking each learner’s standing in his/her class and tournaments between sections). After nine months, the program led to improvements of 0.27 SDs in the national student assessment in math (it had no spillover effects on reading). However, it had mixed effects on non-academic outcomes. Specifically, the program increased learners’ willingness to use computers to learn math, but, at the same time, increased their anxiety toward math and negatively impacted learners’ willingness to collaborate with peers. Finally, given that one of the weekly sessions replaced regular math instruction and the other one represented additional math instructional time, it is not clear whether the academic effects of the program are driven by the software or the additional time devoted to learning math.

The prognosis:

How can school systems adopt interventions that match their needs.

Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning.

1. Take stock of how your current schools, educators, and learners are engaging with technology .

Carry out a short in-school survey to understand the current practices and potential barriers to adoption of technology (we have included suggested survey instruments in the Appendices); use this information in your decisionmaking process. For example, we learned from conversations with current and former ministers of education from various developing regions that a common limitation to technology use is regulations that hold school leaders accountable for damages to or losses of devices. Another common barrier is lack of access to electricity and Internet, or even the availability of sufficient outlets for charging devices in classrooms. Understanding basic infrastructure and regulatory limitations to the use of education technology is a first necessary step. But addressing these limitations will not guarantee that introducing or expanding technology use will accelerate learning. The next steps are thus necessary.

“In Africa, the biggest limit is connectivity. Fiber is expensive, and we don’t have it everywhere. The continent is creating a digital divide between cities, where there is fiber, and the rural areas.  The [Ghanaian] administration put in schools offline/online technologies with books, assessment tools, and open source materials. In deploying this, we are finding that again, teachers are unfamiliar with it. And existing policies prohibit students to bring their own tablets or cell phones. The easiest way to do it would have been to let everyone bring their own device. But policies are against it.” H.E. Matthew Prempeh, Minister of Education of Ghana, on the need to understand the local context.

2. Consider how the introduction of technology may affect the interactions among learners, educators, and content .

Our review of the evidence indicates that technology may accelerate student learning when it is used to scale up access to quality content, facilitate differentiated instruction, increase opportunities for practice, or when it increases learner engagement. For example, will adding electronic whiteboards to classrooms facilitate access to more quality content or differentiated instruction? Or will these expensive boards be used in the same way as the old chalkboards? Will providing one device (laptop or tablet) to each learner facilitate access to more and better content, or offer students more opportunities to practice and learn? Solely introducing technology in classrooms without additional changes is unlikely to lead to improved learning and may be quite costly. If you cannot clearly identify how the interactions among the three key components of the instructional core (educators, learners, and content) may change after the introduction of technology, then it is probably not a good idea to make the investment. See Appendix A for guidance on the types of questions to ask.

3. Once decisionmakers have a clear idea of how education technology can help accelerate student learning in a specific context, it is important to define clear objectives and goals and establish ways to regularly assess progress and make course corrections in a timely manner .

For instance, is the education technology expected to ensure that learners in early grades excel in foundational skills—basic literacy and numeracy—by age 10? If so, will the technology provide quality reading and math materials, ample opportunities to practice, and engaging materials such as videos or games? Will educators be empowered to use these materials in new ways? And how will progress be measured and adjusted?

4. How this kind of reform is approached can matter immensely for its success.

It is easy to nod to issues of “implementation,” but that needs to be more than rhetorical. Keep in mind that good use of education technology requires thinking about how it will affect learners, educators, and parents. After all, giving learners digital devices will make no difference if they get broken, are stolen, or go unused. Classroom technologies only matter if educators feel comfortable putting them to work. Since good technology is generally about complementing or amplifying what educators and learners already do, it is almost always a mistake to mandate programs from on high. It is vital that technology be adopted with the input of educators and families and with attention to how it will be used. If technology goes unused or if educators use it ineffectually, the results will disappoint—no matter the virtuosity of the technology. Indeed, unused education technology can be an unnecessary expenditure for cash-strapped education systems. This is why surveying context, listening to voices in the field, examining how technology is used, and planning for course correction is essential.

5. It is essential to communicate with a range of stakeholders, including educators, school leaders, parents, and learners .

Technology can feel alien in schools, confuse parents and (especially) older educators, or become an alluring distraction. Good communication can help address all of these risks. Taking care to listen to educators and families can help ensure that programs are informed by their needs and concerns. At the same time, deliberately and consistently explaining what technology is and is not supposed to do, how it can be most effectively used, and the ways in which it can make it more likely that programs work as intended. For instance, if teachers fear that technology is intended to reduce the need for educators, they will tend to be hostile; if they believe that it is intended to assist them in their work, they will be more receptive. Absent effective communication, it is easy for programs to “fail” not because of the technology but because of how it was used. In short, past experience in rolling out education programs indicates that it is as important to have a strong intervention design as it is to have a solid plan to socialize it among stakeholders.

article writing on use of technology in education

Beyond reopening: A leapfrog moment to transform education?

On September 14, the Center for Universal Education (CUE) will host a webinar to discuss strategies, including around the effective use of education technology, for ensuring resilient schools in the long term and to launch a new education technology playbook “Realizing the promise: How can education technology improve learning for all?”

file-pdf Full Playbook – Realizing the promise: How can education technology improve learning for all? file-pdf References file-pdf Appendix A – Instruments to assess availability and use of technology file-pdf Appendix B – List of reviewed studies file-pdf Appendix C – How may technology affect interactions among students, teachers, and content?

About the Authors

Alejandro j. ganimian, emiliana vegas, frederick m. hess.

  • Media Relations
  • Terms and Conditions
  • Privacy Policy

Advertisement

Advertisement

Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: A literature review

  • Published: 21 November 2022
  • Volume 28 , pages 6695–6726, ( 2023 )

Cite this article

article writing on use of technology in education

  • Stella Timotheou 1 ,
  • Ourania Miliou 1 ,
  • Yiannis Dimitriadis 2 ,
  • Sara Villagrá Sobrino 2 ,
  • Nikoleta Giannoutsou 2 ,
  • Romina Cachia 3 ,
  • Alejandra Martínez Monés 2 &
  • Andri Ioannou   ORCID: orcid.org/0000-0002-3570-6578 1  

65k Accesses

54 Citations

4 Altmetric

Explore all metrics

Digital technologies have brought changes to the nature and scope of education and led education systems worldwide to adopt strategies and policies for ICT integration. The latter brought about issues regarding the quality of teaching and learning with ICTs, especially concerning the understanding, adaptation, and design of the education systems in accordance with current technological trends. These issues were emphasized during the recent COVID-19 pandemic that accelerated the use of digital technologies in education, generating questions regarding digitalization in schools. Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses. Such results have engendered the need for schools to learn and build upon the experience to enhance their digital capacity and preparedness, increase their digitalization levels, and achieve a successful digital transformation. Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem, there is a need to show how these impacts are interconnected and identify the factors that can encourage an effective and efficient change in the school environments. For this purpose, we conducted a non-systematic literature review. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors that affect the schools’ digital capacity and digital transformation. The findings suggest that ICT integration in schools impacts more than just students’ performance; it affects several other school-related aspects and stakeholders, too. Furthermore, various factors affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the digital transformation process. The study results shed light on how ICTs can positively contribute to the digital transformation of schools and which factors should be considered for schools to achieve effective and efficient change.

Similar content being viewed by others

article writing on use of technology in education

A comprehensive AI policy education framework for university teaching and learning

article writing on use of technology in education

A systematic literature review of ICT integration in secondary education: what works, what does not, and what next?

article writing on use of technology in education

A systematic review of TPACK research in primary mathematics education

Avoid common mistakes on your manuscript.

1 Introduction

Digital technologies have brought changes to the nature and scope of education. Versatile and disruptive technological innovations, such as smart devices, the Internet of Things (IoT), artificial intelligence (AI), augmented reality (AR) and virtual reality (VR), blockchain, and software applications have opened up new opportunities for advancing teaching and learning (Gaol & Prasolova-Førland, 2021 ; OECD, 2021 ). Hence, in recent years, education systems worldwide have increased their investment in the integration of information and communication technology (ICT) (Fernández-Gutiérrez et al., 2020 ; Lawrence & Tar, 2018 ) and prioritized their educational agendas to adapt strategies or policies around ICT integration (European Commission, 2019 ). The latter brought about issues regarding the quality of teaching and learning with ICTs (Bates, 2015 ), especially concerning the understanding, adaptation, and design of education systems in accordance with current technological trends (Balyer & Öz, 2018 ). Studies have shown that despite the investment made in the integration of technology in schools, the results have not been promising, and the intended outcomes have not yet been achieved (Delgado et al., 2015 ; Lawrence & Tar, 2018 ). These issues were exacerbated during the COVID-19 pandemic, which forced teaching across education levels to move online (Daniel, 2020 ). Online teaching accelerated the use of digital technologies generating questions regarding the process, the nature, the extent, and the effectiveness of digitalization in schools (Cachia et al., 2021 ; König et al., 2020 ). Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses (Blaskó et al., 2021 ; Di Pietro et al, 2020 ). Such results have engendered the need for schools to learn and build upon the experience in order to enhance their digital capacity (European Commission, 2020 ) and increase their digitalization levels (Costa et al., 2021 ). Digitalization offers possibilities for fundamental improvement in schools (OECD, 2021 ; Rott & Marouane, 2018 ) and touches many aspects of a school’s development (Delcker & Ifenthaler, 2021 ) . However, it is a complex process that requires large-scale transformative changes beyond the technical aspects of technology and infrastructure (Pettersson, 2021 ). Namely, digitalization refers to “ a series of deep and coordinated culture, workforce, and technology shifts and operating models ” (Brooks & McCormack, 2020 , p. 3) that brings cultural, organizational, and operational change through the integration of digital technologies (JISC, 2020 ). A successful digital transformation requires that schools increase their digital capacity levels, establishing the necessary “ culture, policies, infrastructure as well as digital competence of students and staff to support the effective integration of technology in teaching and learning practices ” (Costa et al, 2021 , p.163).

Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem (Eng, 2005 ), there is a need to show how the different elements of the impact are interconnected and to identify the factors that can encourage an effective and efficient change in the school environment. To address the issues outlined above, we formulated the following research questions:

a) What is the impact of digital technologies on education?

b) Which factors might affect a school’s digital capacity and transformation?

In the present investigation, we conducted a non-systematic literature review of publications pertaining to the impact of digital technologies on education and the factors that affect a school’s digital capacity and transformation. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors which affect the schools’ digital capacity and digital transformation.

2 Methodology

The non-systematic literature review presented herein covers the main theories and research published over the past 17 years on the topic. It is based on meta-analyses and review papers found in scholarly, peer-reviewed content databases and other key studies and reports related to the concepts studied (e.g., digitalization, digital capacity) from professional and international bodies (e.g., the OECD). We searched the Scopus database, which indexes various online journals in the education sector with an international scope, to collect peer-reviewed academic papers. Furthermore, we used an all-inclusive Google Scholar search to include relevant key terms or to include studies found in the reference list of the peer-reviewed papers, and other key studies and reports related to the concepts studied by professional and international bodies. Lastly, we gathered sources from the Publications Office of the European Union ( https://op.europa.eu/en/home ); namely, documents that refer to policies related to digital transformation in education.

Regarding search terms, we first searched resources on the impact of digital technologies on education by performing the following search queries: “impact” OR “effects” AND “digital technologies” AND “education”, “impact” OR “effects” AND “ICT” AND “education”. We further refined our results by adding the terms “meta-analysis” and “review” or by adjusting the search options based on the features of each database to avoid collecting individual studies that would provide limited contributions to a particular domain. We relied on meta-analyses and review studies as these consider the findings of multiple studies to offer a more comprehensive view of the research in a given area (Schuele & Justice, 2006 ). Specifically, meta-analysis studies provided quantitative evidence based on statistically verifiable results regarding the impact of educational interventions that integrate digital technologies in school classrooms (Higgins et al., 2012 ; Tolani-Brown et al., 2011 ).

However, quantitative data does not offer explanations for the challenges or difficulties experienced during ICT integration in learning and teaching (Tolani-Brown et al., 2011 ). To fill this gap, we analyzed literature reviews and gathered in-depth qualitative evidence of the benefits and implications of technology integration in schools. In the analysis presented herein, we also included policy documents and reports from professional and international bodies and governmental reports, which offered useful explanations of the key concepts of this study and provided recent evidence on digital capacity and transformation in education along with policy recommendations. The inclusion and exclusion criteria that were considered in this study are presented in Table 1 .

To ensure a reliable extraction of information from each study and assist the research synthesis we selected the study characteristics of interest (impact) and constructed coding forms. First, an overview of the synthesis was provided by the principal investigator who described the processes of coding, data entry, and data management. The coders followed the same set of instructions but worked independently. To ensure a common understanding of the process between coders, a sample of ten studies was tested. The results were compared, and the discrepancies were identified and resolved. Additionally, to ensure an efficient coding process, all coders participated in group meetings to discuss additions, deletions, and modifications (Stock, 1994 ). Due to the methodological diversity of the studied documents we began to synthesize the literature review findings based on similar study designs. Specifically, most of the meta-analysis studies were grouped in one category due to the quantitative nature of the measured impact. These studies tended to refer to student achievement (Hattie et al., 2014 ). Then, we organized the themes of the qualitative studies in several impact categories. Lastly, we synthesized both review and meta-analysis data across the categories. In order to establish a collective understanding of the concept of impact, we referred to a previous impact study by Balanskat ( 2009 ) which investigated the impact of technology in primary schools. In this context, the impact had a more specific ICT-related meaning and was described as “ a significant influence or effect of ICT on the measured or perceived quality of (parts of) education ” (Balanskat, 2009 , p. 9). In the study presented herein, the main impacts are in relation to learning and learners, teaching, and teachers, as well as other key stakeholders who are directly or indirectly connected to the school unit.

The study’s results identified multiple dimensions of the impact of digital technologies on students’ knowledge, skills, and attitudes; on equality, inclusion, and social integration; on teachers’ professional and teaching practices; and on other school-related aspects and stakeholders. The data analysis indicated various factors that might affect the schools’ digital capacity and transformation, such as digital competencies, the teachers’ personal characteristics and professional development, as well as the school’s leadership and management, administration, infrastructure, etc. The impacts and factors found in the literature review are presented below.

3.1 Impacts of digital technologies on students’ knowledge, skills, attitudes, and emotions

The impact of ICT use on students’ knowledge, skills, and attitudes has been investigated early in the literature. Eng ( 2005 ) found a small positive effect between ICT use and students' learning. Specifically, the author reported that access to computer-assisted instruction (CAI) programs in simulation or tutorial modes—used to supplement rather than substitute instruction – could enhance student learning. The author reported studies showing that teachers acknowledged the benefits of ICT on pupils with special educational needs; however, the impact of ICT on students' attainment was unclear. Balanskat et al. ( 2006 ) found a statistically significant positive association between ICT use and higher student achievement in primary and secondary education. The authors also reported improvements in the performance of low-achieving pupils. The use of ICT resulted in further positive gains for students, namely increased attention, engagement, motivation, communication and process skills, teamwork, and gains related to their behaviour towards learning. Evidence from qualitative studies showed that teachers, students, and parents recognized the positive impact of ICT on students' learning regardless of their competence level (strong/weak students). Punie et al. ( 2006 ) documented studies that showed positive results of ICT-based learning for supporting low-achieving pupils and young people with complex lives outside the education system. Liao et al. ( 2007 ) reported moderate positive effects of computer application instruction (CAI, computer simulations, and web-based learning) over traditional instruction on primary school student's achievement. Similarly, Tamim et al. ( 2011 ) reported small to moderate positive effects between the use of computer technology (CAI, ICT, simulations, computer-based instruction, digital and hypermedia) and student achievement in formal face-to-face classrooms compared to classrooms that did not use technology. Jewitt et al., ( 2011 ) found that the use of learning platforms (LPs) (virtual learning environments, management information systems, communication technologies, and information- and resource-sharing technologies) in schools allowed primary and secondary students to access a wider variety of quality learning resources, engage in independent and personalized learning, and conduct self- and peer-review; LPs also provide opportunities for teacher assessment and feedback. Similar findings were reported by Fu ( 2013 ), who documented a list of benefits and opportunities of ICT use. According to the author, the use of ICTs helps students access digital information and course content effectively and efficiently, supports student-centered and self-directed learning, as well as the development of a creative learning environment where more opportunities for critical thinking skills are offered, and promotes collaborative learning in a distance-learning environment. Higgins et al. ( 2012 ) found consistent but small positive associations between the use of technology and learning outcomes of school-age learners (5–18-year-olds) in studies linking the provision and use of technology with attainment. Additionally, Chauhan ( 2017 ) reported a medium positive effect of technology on the learning effectiveness of primary school students compared to students who followed traditional learning instruction.

The rise of mobile technologies and hardware devices instigated investigations into their impact on teaching and learning. Sung et al. ( 2016 ) reported a moderate effect on students' performance from the use of mobile devices in the classroom compared to the use of desktop computers or the non-use of mobile devices. Schmid et al. ( 2014 ) reported medium–low to low positive effects of technology integration (e.g., CAI, ICTs) in the classroom on students' achievement and attitude compared to not using technology or using technology to varying degrees. Tamim et al. ( 2015 ) found a low statistically significant effect of the use of tablets and other smart devices in educational contexts on students' achievement outcomes. The authors suggested that tablets offered additional advantages to students; namely, they reported improvements in students’ notetaking, organizational and communication skills, and creativity. Zheng et al. ( 2016 ) reported a small positive effect of one-to-one laptop programs on students’ academic achievement across subject areas. Additional reported benefits included student-centered, individualized, and project-based learning enhanced learner engagement and enthusiasm. Additionally, the authors found that students using one-to-one laptop programs tended to use technology more frequently than in non-laptop classrooms, and as a result, they developed a range of skills (e.g., information skills, media skills, technology skills, organizational skills). Haßler et al. ( 2016 ) found that most interventions that included the use of tablets across the curriculum reported positive learning outcomes. However, from 23 studies, five reported no differences, and two reported a negative effect on students' learning outcomes. Similar results were indicated by Kalati and Kim ( 2022 ) who investigated the effect of touchscreen technologies on young students’ learning. Specifically, from 53 studies, 34 advocated positive effects of touchscreen devices on children’s learning, 17 obtained mixed findings and two studies reported negative effects.

More recently, approaches that refer to the impact of gamification with the use of digital technologies on teaching and learning were also explored. A review by Pan et al. ( 2022 ) that examined the role of learning games in fostering mathematics education in K-12 settings, reported that gameplay improved students’ performance. Integration of digital games in teaching was also found as a promising pedagogical practice in STEM education that could lead to increased learning gains (Martinez et al., 2022 ; Wang et al., 2022 ). However, although Talan et al. ( 2020 ) reported a medium effect of the use of educational games (both digital and non-digital) on academic achievement, the effect of non-digital games was higher.

Over the last two years, the effects of more advanced technologies on teaching and learning were also investigated. Garzón and Acevedo ( 2019 ) found that AR applications had a medium effect on students' learning outcomes compared to traditional lectures. Similarly, Garzón et al. ( 2020 ) showed that AR had a medium impact on students' learning gains. VR applications integrated into various subjects were also found to have a moderate effect on students’ learning compared to control conditions (traditional classes, e.g., lectures, textbooks, and multimedia use, e.g., images, videos, animation, CAI) (Chen et al., 2022b ). Villena-Taranilla et al. ( 2022 ) noted the moderate effect of VR technologies on students’ learning when these were applied in STEM disciplines. In the same meta-analysis, Villena-Taranilla et al. ( 2022 ) highlighted the role of immersive VR, since its effect on students’ learning was greater (at a high level) across educational levels (K-6) compared to semi-immersive and non-immersive integrations. In another meta-analysis study, the effect size of the immersive VR was small and significantly differentiated across educational levels (Coban et al., 2022 ). The impact of AI on education was investigated by Su and Yang ( 2022 ) and Su et al. ( 2022 ), who showed that this technology significantly improved students’ understanding of AI computer science and machine learning concepts.

It is worth noting that the vast majority of studies referred to learning gains in specific subjects. Specifically, several studies examined the impact of digital technologies on students’ literacy skills and reported positive effects on language learning (Balanskat et al., 2006 ; Grgurović et al., 2013 ; Friedel et al., 2013 ; Zheng et al., 2016 ; Chen et al., 2022b ; Savva et al., 2022 ). Also, several studies documented positive effects on specific language learning areas, namely foreign language learning (Kao, 2014 ), writing (Higgins et al., 2012 ; Wen & Walters, 2022 ; Zheng et al., 2016 ), as well as reading and comprehension (Cheung & Slavin, 2011 ; Liao et al., 2007 ; Schwabe et al., 2022 ). ICTs were also found to have a positive impact on students' performance in STEM (science, technology, engineering, and mathematics) disciplines (Arztmann et al., 2022 ; Bado, 2022 ; Villena-Taranilla et al., 2022 ; Wang et al., 2022 ). Specifically, a number of studies reported positive impacts on students’ achievement in mathematics (Balanskat et al., 2006 ; Hillmayr et al., 2020 ; Li & Ma, 2010 ; Pan et al., 2022 ; Ran et al., 2022 ; Verschaffel et al., 2019 ; Zheng et al., 2016 ). Furthermore, studies documented positive effects of ICTs on science learning (Balanskat et al., 2006 ; Liao et al., 2007 ; Zheng et al., 2016 ; Hillmayr et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ; Lei et al., 2022a ). Çelik ( 2022 ) also noted that computer simulations can help students understand learning concepts related to science. Furthermore, some studies documented that the use of ICTs had a positive impact on students’ achievement in other subjects, such as geography, history, music, and arts (Chauhan, 2017 ; Condie & Munro, 2007 ), and design and technology (Balanskat et al., 2006 ).

More specific positive learning gains were reported in a number of skills, e.g., problem-solving skills and pattern exploration skills (Higgins et al., 2012 ), metacognitive learning outcomes (Verschaffel et al., 2019 ), literacy skills, computational thinking skills, emotion control skills, and collaborative inquiry skills (Lu et al., 2022 ; Su & Yang, 2022 ; Su et al., 2022 ). Additionally, several investigations have reported benefits from the use of ICT on students’ creativity (Fielding & Murcia, 2022 ; Liu et al., 2022 ; Quah & Ng, 2022 ). Lastly, digital technologies were also found to be beneficial for enhancing students’ lifelong learning skills (Haleem et al., 2022 ).

Apart from gaining knowledge and skills, studies also reported improvement in motivation and interest in mathematics (Higgins et. al., 2019 ; Fadda et al., 2022 ) and increased positive achievement emotions towards several subjects during interventions using educational games (Lei et al., 2022a ). Chen et al. ( 2022a ) also reported a small but positive effect of digital health approaches in bullying and cyberbullying interventions with K-12 students, demonstrating that technology-based approaches can help reduce bullying and related consequences by providing emotional support, empowerment, and change of attitude. In their meta-review study, Su et al. ( 2022 ) also documented that AI technologies effectively strengthened students’ attitudes towards learning. In another meta-analysis, Arztmann et al. ( 2022 ) reported positive effects of digital games on motivation and behaviour towards STEM subjects.

3.2 Impacts of digital technologies on equality, inclusion and social integration

Although most of the reviewed studies focused on the impact of ICTs on students’ knowledge, skills, and attitudes, reports were also made on other aspects in the school context, such as equality, inclusion, and social integration. Condie and Munro ( 2007 ) documented research interventions investigating how ICT can support pupils with additional or special educational needs. While those interventions were relatively small scale and mostly based on qualitative data, their findings indicated that the use of ICTs enabled the development of communication, participation, and self-esteem. A recent meta-analysis (Baragash et al., 2022 ) with 119 participants with different disabilities, reported a significant overall effect size of AR on their functional skills acquisition. Koh’s meta-analysis ( 2022 ) also revealed that students with intellectual and developmental disabilities improved their competence and performance when they used digital games in the lessons.

Istenic Starcic and Bagon ( 2014 ) found that the role of ICT in inclusion and the design of pedagogical and technological interventions was not sufficiently explored in educational interventions with people with special needs; however, some benefits of ICT use were found in students’ social integration. The issue of gender and technology use was mentioned in a small number of studies. Zheng et al. ( 2016 ) reported a statistically significant positive interaction between one-to-one laptop programs and gender. Specifically, the results showed that girls and boys alike benefitted from the laptop program, but the effect on girls’ achievement was smaller than that on boys’. Along the same lines, Arztmann et al. ( 2022 ) reported no difference in the impact of game-based learning between boys and girls, arguing that boys and girls equally benefited from game-based interventions in STEM domains. However, results from a systematic review by Cussó-Calabuig et al. ( 2018 ) found limited and low-quality evidence on the effects of intensive use of computers on gender differences in computer anxiety, self-efficacy, and self-confidence. Based on their view, intensive use of computers can reduce gender differences in some areas and not in others, depending on contextual and implementation factors.

3.3 Impacts of digital technologies on teachers’ professional and teaching practices

Various research studies have explored the impact of ICT on teachers’ instructional practices and student assessment. Friedel et al. ( 2013 ) found that the use of mobile devices by students enabled teachers to successfully deliver content (e.g., mobile serious games), provide scaffolding, and facilitate synchronous collaborative learning. The integration of digital games in teaching and learning activities also gave teachers the opportunity to study and apply various pedagogical practices (Bado, 2022 ). Specifically, Bado ( 2022 ) found that teachers who implemented instructional activities in three stages (pre-game, game, and post-game) maximized students’ learning outcomes and engagement. For instance, during the pre-game stage, teachers focused on lectures and gameplay training, at the game stage teachers provided scaffolding on content, addressed technical issues, and managed the classroom activities. During the post-game stage, teachers organized activities for debriefing to ensure that the gameplay had indeed enhanced students’ learning outcomes.

Furthermore, ICT can increase efficiency in lesson planning and preparation by offering possibilities for a more collaborative approach among teachers. The sharing of curriculum plans and the analysis of students’ data led to clearer target settings and improvements in reporting to parents (Balanskat et al., 2006 ).

Additionally, the use and application of digital technologies in teaching and learning were found to enhance teachers’ digital competence. Balanskat et al. ( 2006 ) documented studies that revealed that the use of digital technologies in education had a positive effect on teachers’ basic ICT skills. The greatest impact was found on teachers with enough experience in integrating ICTs in their teaching and/or who had recently participated in development courses for the pedagogical use of technologies in teaching. Punie et al. ( 2006 ) reported that the provision of fully equipped multimedia portable computers and the development of online teacher communities had positive impacts on teachers’ confidence and competence in the use of ICTs.

Moreover, online assessment via ICTs benefits instruction. In particular, online assessments support the digitalization of students’ work and related logistics, allow teachers to gather immediate feedback and readjust to new objectives, and support the improvement of the technical quality of tests by providing more accurate results. Additionally, the capabilities of ICTs (e.g., interactive media, simulations) create new potential methods of testing specific skills, such as problem-solving and problem-processing skills, meta-cognitive skills, creativity and communication skills, and the ability to work productively in groups (Punie et al., 2006 ).

3.4 Impacts of digital technologies on other school-related aspects and stakeholders

There is evidence that the effective use of ICTs and the data transmission offered by broadband connections help improve administration (Balanskat et al., 2006 ). Specifically, ICTs have been found to provide better management systems to schools that have data gathering procedures in place. Condie and Munro ( 2007 ) reported impacts from the use of ICTs in schools in the following areas: attendance monitoring, assessment records, reporting to parents, financial management, creation of repositories for learning resources, and sharing of information amongst staff. Such data can be used strategically for self-evaluation and monitoring purposes which in turn can result in school improvements. Additionally, they reported that online access to other people with similar roles helped to reduce headteachers’ isolation by offering them opportunities to share insights into the use of ICT in learning and teaching and how it could be used to support school improvement. Furthermore, ICTs provided more efficient and successful examination management procedures, namely less time-consuming reporting processes compared to paper-based examinations and smooth communications between schools and examination authorities through electronic data exchange (Punie et al., 2006 ).

Zheng et al. ( 2016 ) reported that the use of ICTs improved home-school relationships. Additionally, Escueta et al. ( 2017 ) reported several ICT programs that had improved the flow of information from the school to parents. Particularly, they documented that the use of ICTs (learning management systems, emails, dedicated websites, mobile phones) allowed for personalized and customized information exchange between schools and parents, such as attendance records, upcoming class assignments, school events, and students’ grades, which generated positive results on students’ learning outcomes and attainment. Such information exchange between schools and families prompted parents to encourage their children to put more effort into their schoolwork.

The above findings suggest that the impact of ICT integration in schools goes beyond students’ performance in school subjects. Specifically, it affects a number of school-related aspects, such as equality and social integration, professional and teaching practices, and diverse stakeholders. In Table 2 , we summarize the different impacts of digital technologies on school stakeholders based on the literature review, while in Table 3 we organized the tools/platforms and practices/policies addressed in the meta-analyses, literature reviews, EU reports, and international bodies included in the manuscript.

Additionally, based on the results of the literature review, there are many types of digital technologies with different affordances (see, for example, studies on VR vs Immersive VR), which evolve over time (e.g. starting from CAIs in 2005 to Augmented and Virtual reality 2020). Furthermore, these technologies are linked to different pedagogies and policy initiatives, which are critical factors in the study of impact. Table 3 summarizes the different tools and practices that have been used to examine the impact of digital technologies on education since 2005 based on the review results.

3.5 Factors that affect the integration of digital technologies

Although the analysis of the literature review demonstrated different impacts of the use of digital technology on education, several authors highlighted the importance of various factors, besides the technology itself, that affect this impact. For example, Liao et al. ( 2007 ) suggested that future studies should carefully investigate which factors contribute to positive outcomes by clarifying the exact relationship between computer applications and learning. Additionally, Haßler et al., ( 2016 ) suggested that the neutral findings regarding the impact of tablets on students learning outcomes in some of the studies included in their review should encourage educators, school leaders, and school officials to further investigate the potential of such devices in teaching and learning. Several other researchers suggested that a number of variables play a significant role in the impact of ICTs on students’ learning that could be attributed to the school context, teaching practices and professional development, the curriculum, and learners’ characteristics (Underwood, 2009 ; Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Tang et al., 2022 ).

3.5.1 Digital competencies

One of the most common challenges reported in studies that utilized digital tools in the classroom was the lack of students’ skills on how to use them. Fu ( 2013 ) found that students’ lack of technical skills is a barrier to the effective use of ICT in the classroom. Tamim et al. ( 2015 ) reported that students faced challenges when using tablets and smart mobile devices, associated with the technical issues or expertise needed for their use and the distracting nature of the devices and highlighted the need for teachers’ professional development. Higgins et al. ( 2012 ) reported that skills training about the use of digital technologies is essential for learners to fully exploit the benefits of instruction.

Delgado et al. ( 2015 ), meanwhile, reported studies that showed a strong positive association between teachers’ computer skills and students’ use of computers. Teachers’ lack of ICT skills and familiarization with technologies can become a constraint to the effective use of technology in the classroom (Balanskat et al., 2006 ; Delgado et al., 2015 ).

It is worth noting that the way teachers are introduced to ICTs affects the impact of digital technologies on education. Previous studies have shown that teachers may avoid using digital technologies due to limited digital skills (Balanskat, 2006 ), or they prefer applying “safe” technologies, namely technologies that their own teachers used and with which they are familiar (Condie & Munro, 2007 ). In this regard, the provision of digital skills training and exposure to new digital tools might encourage teachers to apply various technologies in their lessons (Condie & Munro, 2007 ). Apart from digital competence, technical support in the school setting has also been shown to affect teachers’ use of technology in their classrooms (Delgado et al., 2015 ). Ferrari et al. ( 2011 ) found that while teachers’ use of ICT is high, 75% stated that they needed more institutional support and a shift in the mindset of educational actors to achieve more innovative teaching practices. The provision of support can reduce time and effort as well as cognitive constraints, which could cause limited ICT integration in the school lessons by teachers (Escueta et al., 2017 ).

3.5.2 Teachers’ personal characteristics, training approaches, and professional development

Teachers’ personal characteristics and professional development affect the impact of digital technologies on education. Specifically, Cheok and Wong ( 2015 ) found that teachers’ personal characteristics (e.g., anxiety, self-efficacy) are associated with their satisfaction and engagement with technology. Bingimlas ( 2009 ) reported that lack of confidence, resistance to change, and negative attitudes in using new technologies in teaching are significant determinants of teachers’ levels of engagement in ICT. The same author reported that the provision of technical support, motivation support (e.g., awards, sufficient time for planning), and training on how technologies can benefit teaching and learning can eliminate the above barriers to ICT integration. Archer et al. ( 2014 ) found that comfort levels in using technology are an important predictor of technology integration and argued that it is essential to provide teachers with appropriate training and ongoing support until they are comfortable with using ICTs in the classroom. Hillmayr et al. ( 2020 ) documented that training teachers on ICT had an important effecton students’ learning.

According to Balanskat et al. ( 2006 ), the impact of ICTs on students’ learning is highly dependent on the teachers’ capacity to efficiently exploit their application for pedagogical purposes. Results obtained from the Teaching and Learning International Survey (TALIS) (OECD, 2021 ) revealed that although schools are open to innovative practices and have the capacity to adopt them, only 39% of teachers in the European Union reported that they are well or very well prepared to use digital technologies for teaching. Li and Ma ( 2010 ) and Hardman ( 2019 ) showed that the positive effect of technology on students’ achievement depends on the pedagogical practices used by teachers. Schmid et al. ( 2014 ) reported that learning was best supported when students were engaged in active, meaningful activities with the use of technological tools that provided cognitive support. Tamim et al. ( 2015 ) compared two different pedagogical uses of tablets and found a significant moderate effect when the devices were used in a student-centered context and approach rather than within teacher-led environments. Similarly, Garzón and Acevedo ( 2019 ) and Garzón et al. ( 2020 ) reported that the positive results from the integration of AR applications could be attributed to the existence of different variables which could influence AR interventions (e.g., pedagogical approach, learning environment, and duration of the intervention). Additionally, Garzón et al. ( 2020 ) suggested that the pedagogical resources that teachers used to complement their lectures and the pedagogical approaches they applied were crucial to the effective integration of AR on students’ learning gains. Garzón and Acevedo ( 2019 ) also emphasized that the success of a technology-enhanced intervention is based on both the technology per se and its characteristics and on the pedagogical strategies teachers choose to implement. For instance, their results indicated that the collaborative learning approach had the highest impact on students’ learning gains among other approaches (e.g., inquiry-based learning, situated learning, or project-based learning). Ran et al. ( 2022 ) also found that the use of technology to design collaborative and communicative environments showed the largest moderator effects among the other approaches.

Hattie ( 2008 ) reported that the effective use of computers is associated with training teachers in using computers as a teaching and learning tool. Zheng et al. ( 2016 ) noted that in addition to the strategies teachers adopt in teaching, ongoing professional development is also vital in ensuring the success of technology implementation programs. Sung et al. ( 2016 ) found that research on the use of mobile devices to support learning tends to report that the insufficient preparation of teachers is a major obstacle in implementing effective mobile learning programs in schools. Friedel et al. ( 2013 ) found that providing training and support to teachers increased the positive impact of the interventions on students’ learning gains. Trucano ( 2005 ) argued that positive impacts occur when digital technologies are used to enhance teachers’ existing pedagogical philosophies. Higgins et al. ( 2012 ) found that the types of technologies used and how they are used could also affect students’ learning. The authors suggested that training and professional development of teachers that focuses on the effective pedagogical use of technology to support teaching and learning is an important component of successful instructional approaches (Higgins et al., 2012 ). Archer et al. ( 2014 ) found that studies that reported ICT interventions during which teachers received training and support had moderate positive effects on students’ learning outcomes, which were significantly higher than studies where little or no detail about training and support was mentioned. Fu ( 2013 ) reported that the lack of teachers’ knowledge and skills on the technical and instructional aspects of ICT use in the classroom, in-service training, pedagogy support, technical and financial support, as well as the lack of teachers’ motivation and encouragement to integrate ICT on their teaching were significant barriers to the integration of ICT in education.

3.5.3 School leadership and management

Management and leadership are important cornerstones in the digital transformation process (Pihir et al., 2018 ). Zheng et al. ( 2016 ) documented leadership among the factors positively affecting the successful implementation of technology integration in schools. Strong leadership, strategic planning, and systematic integration of digital technologies are prerequisites for the digital transformation of education systems (Ređep, 2021 ). Management and leadership play a significant role in formulating policies that are translated into practice and ensure that developments in ICT become embedded into the life of the school and in the experiences of staff and pupils (Condie & Munro, 2007 ). Policy support and leadership must include the provision of an overall vision for the use of digital technologies in education, guidance for students and parents, logistical support, as well as teacher training (Conrads et al., 2017 ). Unless there is a commitment throughout the school, with accountability for progress at key points, it is unlikely for ICT integration to be sustained or become part of the culture (Condie & Munro, 2007 ). To achieve this, principals need to adopt and promote a whole-institution strategy and build a strong mutual support system that enables the school’s technological maturity (European Commission, 2019 ). In this context, school culture plays an essential role in shaping the mindsets and beliefs of school actors towards successful technology integration. Condie and Munro ( 2007 ) emphasized the importance of the principal’s enthusiasm and work as a source of inspiration for the school staff and the students to cultivate a culture of innovation and establish sustainable digital change. Specifically, school leaders need to create conditions in which the school staff is empowered to experiment and take risks with technology (Elkordy & Lovinelli, 2020 ).

In order for leaders to achieve the above, it is important to develop capacities for learning and leading, advocating professional learning, and creating support systems and structures (European Commission, 2019 ). Digital technology integration in education systems can be challenging and leadership needs guidance to achieve it. Such guidance can be introduced through the adoption of new methods and techniques in strategic planning for the integration of digital technologies (Ređep, 2021 ). Even though the role of leaders is vital, the relevant training offered to them has so far been inadequate. Specifically, only a third of the education systems in Europe have put in place national strategies that explicitly refer to the training of school principals (European Commission, 2019 , p. 16).

3.5.4 Connectivity, infrastructure, and government and other support

The effective integration of digital technologies across levels of education presupposes the development of infrastructure, the provision of digital content, and the selection of proper resources (Voogt et al., 2013 ). Particularly, a high-quality broadband connection in the school increases the quality and quantity of educational activities. There is evidence that ICT increases and formalizes cooperative planning between teachers and cooperation with managers, which in turn has a positive impact on teaching practices (Balanskat et al., 2006 ). Additionally, ICT resources, including software and hardware, increase the likelihood of teachers integrating technology into the curriculum to enhance their teaching practices (Delgado et al., 2015 ). For example, Zheng et al. ( 2016 ) found that the use of one-on-one laptop programs resulted in positive changes in teaching and learning, which would not have been accomplished without the infrastructure and technical support provided to teachers. Delgado et al. ( 2015 ) reported that limited access to technology (insufficient computers, peripherals, and software) and lack of technical support are important barriers to ICT integration. Access to infrastructure refers not only to the availability of technology in a school but also to the provision of a proper amount and the right types of technology in locations where teachers and students can use them. Effective technical support is a central element of the whole-school strategy for ICT (Underwood, 2009 ). Bingimlas ( 2009 ) reported that lack of technical support in the classroom and whole-school resources (e.g., failing to connect to the Internet, printers not printing, malfunctioning computers, and working on old computers) are significant barriers that discourage the use of ICT by teachers. Moreover, poor quality and inadequate hardware maintenance, and unsuitable educational software may discourage teachers from using ICTs (Balanskat et al., 2006 ; Bingimlas, 2009 ).

Government support can also impact the integration of ICTs in teaching. Specifically, Balanskat et al. ( 2006 ) reported that government interventions and training programs increased teachers’ enthusiasm and positive attitudes towards ICT and led to the routine use of embedded ICT.

Lastly, another important factor affecting digital transformation is the development and quality assurance of digital learning resources. Such resources can be support textbooks and related materials or resources that focus on specific subjects or parts of the curriculum. Policies on the provision of digital learning resources are essential for schools and can be achieved through various actions. For example, some countries are financing web portals that become repositories, enabling teachers to share resources or create their own. Additionally, they may offer e-learning opportunities or other services linked to digital education. In other cases, specific agencies of projects have also been set up to develop digital resources (Eurydice, 2019 ).

3.5.5 Administration and digital data management

The digital transformation of schools involves organizational improvements at the level of internal workflows, communication between the different stakeholders, and potential for collaboration. Vuorikari et al. ( 2020 ) presented evidence that digital technologies supported the automation of administrative practices in schools and reduced the administration’s workload. There is evidence that digital data affects the production of knowledge about schools and has the power to transform how schooling takes place. Specifically, Sellar ( 2015 ) reported that data infrastructure in education is developing due to the demand for “ information about student outcomes, teacher quality, school performance, and adult skills, associated with policy efforts to increase human capital and productivity practices ” (p. 771). In this regard, practices, such as datafication which refers to the “ translation of information about all kinds of things and processes into quantified formats” have become essential for decision-making based on accountability reports about the school’s quality. The data could be turned into deep insights about education or training incorporating ICTs. For example, measuring students’ online engagement with the learning material and drawing meaningful conclusions can allow teachers to improve their educational interventions (Vuorikari et al., 2020 ).

3.5.6 Students’ socioeconomic background and family support

Research show that the active engagement of parents in the school and their support for the school’s work can make a difference to their children’s attitudes towards learning and, as a result, their achievement (Hattie, 2008 ). In recent years, digital technologies have been used for more effective communication between school and family (Escueta et al., 2017 ). The European Commission ( 2020 ) presented data from a Eurostat survey regarding the use of computers by students during the pandemic. The data showed that younger pupils needed additional support and guidance from parents and the challenges were greater for families in which parents had lower levels of education and little to no digital skills.

In this regard, the socio-economic background of the learners and their socio-cultural environment also affect educational achievements (Punie et al., 2006 ). Trucano documented that the use of computers at home positively influenced students’ confidence and resulted in more frequent use at school, compared to students who had no home access (Trucano, 2005 ). In this sense, the socio-economic background affects the access to computers at home (OECD, 2015 ) which in turn influences the experience of ICT, an important factor for school achievement (Punie et al., 2006 ; Underwood, 2009 ). Furthermore, parents from different socio-economic backgrounds may have different abilities and availability to support their children in their learning process (Di Pietro et al., 2020 ).

3.5.7 Schools’ socioeconomic context and emergency situations

The socio-economic context of the school is closely related to a school’s digital transformation. For example, schools in disadvantaged, rural, or deprived areas are likely to lack the digital capacity and infrastructure required to adapt to the use of digital technologies during emergency periods, such as the COVID-19 pandemic (Di Pietro et al., 2020 ). Data collected from school principals confirmed that in several countries, there is a rural/urban divide in connectivity (OECD, 2015 ).

Emergency periods also affect the digitalization of schools. The COVID-19 pandemic led to the closure of schools and forced them to seek appropriate and connective ways to keep working on the curriculum (Di Pietro et al., 2020 ). The sudden large-scale shift to distance and online teaching and learning also presented challenges around quality and equity in education, such as the risk of increased inequalities in learning, digital, and social, as well as teachers facing difficulties coping with this demanding situation (European Commission, 2020 ).

Looking at the findings of the above studies, we can conclude that the impact of digital technologies on education is influenced by various actors and touches many aspects of the school ecosystem. Figure  1 summarizes the factors affecting the digital technologies’ impact on school stakeholders based on the findings from the literature review.

figure 1

Factors that affect the impact of ICTs on education

4 Discussion

The findings revealed that the use of digital technologies in education affects a variety of actors within a school’s ecosystem. First, we observed that as technologies evolve, so does the interest of the research community to apply them to school settings. Figure  2 summarizes the trends identified in current research around the impact of digital technologies on schools’ digital capacity and transformation as found in the present study. Starting as early as 2005, when computers, simulations, and interactive boards were the most commonly applied tools in school interventions (e.g., Eng, 2005 ; Liao et al., 2007 ; Moran et al., 2008 ; Tamim et al., 2011 ), moving towards the use of learning platforms (Jewitt et al., 2011 ), then to the use of mobile devices and digital games (e.g., Tamim et al., 2015 ; Sung et al., 2016 ; Talan et al., 2020 ), as well as e-books (e.g., Savva et al., 2022 ), to the more recent advanced technologies, such as AR and VR applications (e.g., Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ), or robotics and AI (e.g., Su & Yang, 2022 ; Su et al., 2022 ). As this evolution shows, digital technologies are a concept in flux with different affordances and characteristics. Additionally, from an instructional perspective, there has been a growing interest in different modes and models of content delivery such as online, blended, and hybrid modes (e.g., Cheok & Wong, 2015 ; Kazu & Yalçin, 2022 ; Ulum, 2022 ). This is an indication that the value of technologies to support teaching and learning as well as other school-related practices is increasingly recognized by the research and school community. The impact results from the literature review indicate that ICT integration on students’ learning outcomes has effects that are small (Coban et al., 2022 ; Eng, 2005 ; Higgins et al., 2012 ; Schmid et al., 2014 ; Tamim et al., 2015 ; Zheng et al., 2016 ) to moderate (Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Liao et al., 2007 ; Sung et al., 2016 ; Talan et al., 2020 ; Wen & Walters, 2022 ). That said, a number of recent studies have reported high effect sizes (e.g., Kazu & Yalçin, 2022 ).

figure 2

Current work and trends in the study of the impact of digital technologies on schools’ digital capacity

Based on these findings, several authors have suggested that the impact of technology on education depends on several variables and not on the technology per se (Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Lei et al., 2022a ). While the impact of ICTs on student achievement has been thoroughly investigated by researchers, other aspects related to school life that are also affected by ICTs, such as equality, inclusion, and social integration have received less attention. Further analysis of the literature review has revealed a greater investment in ICT interventions to support learning and teaching in the core subjects of literacy and STEM disciplines, especially mathematics, and science. These were the most common subjects studied in the reviewed papers often drawing on national testing results, while studies that investigated other subject areas, such as social studies, were limited (Chauhan, 2017 ; Condie & Munro, 2007 ). As such, research is still lacking impact studies that focus on the effects of ICTs on a range of curriculum subjects.

The qualitative research provided additional information about the impact of digital technologies on education, documenting positive effects and giving more details about implications, recommendations, and future research directions. Specifically, the findings regarding the role of ICTs in supporting learning highlight the importance of teachers’ instructional practice and the learning context in the use of technologies and consequently their impact on instruction (Çelik, 2022 ; Schmid et al., 2014 ; Tamim et al., 2015 ). The review also provided useful insights regarding the various factors that affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the transformation process. Specifically, these factors include a) digital competencies; b) teachers’ personal characteristics and professional development; c) school leadership and management; d) connectivity, infrastructure, and government support; e) administration and data management practices; f) students’ socio-economic background and family support and g) the socioeconomic context of the school and emergency situations. It is worth noting that we observed factors that affect the integration of ICTs in education but may also be affected by it. For example, the frequent use of ICTs and the use of laptops by students for instructional purposes positively affect the development of digital competencies (Zheng et al., 2016 ) and at the same time, the digital competencies affect the use of ICTs (Fu, 2013 ; Higgins et al., 2012 ). As a result, the impact of digital technologies should be explored more as an enabler of desirable and new practices and not merely as a catalyst that improves the output of the education process i.e. namely student attainment.

5 Conclusions

Digital technologies offer immense potential for fundamental improvement in schools. However, investment in ICT infrastructure and professional development to improve school education are yet to provide fruitful results. Digital transformation is a complex process that requires large-scale transformative changes that presuppose digital capacity and preparedness. To achieve such changes, all actors within the school’s ecosystem need to share a common vision regarding the integration of ICTs in education and work towards achieving this goal. Our literature review, which synthesized quantitative and qualitative data from a list of meta-analyses and review studies, provided useful insights into the impact of ICTs on different school stakeholders and showed that the impact of digital technologies touches upon many different aspects of school life, which are often overlooked when the focus is on student achievement as the final output of education. Furthermore, the concept of digital technologies is a concept in flux as technologies are not only different among them calling for different uses in the educational practice but they also change through time. Additionally, we opened a forum for discussion regarding the factors that affect a school’s digital capacity and transformation. We hope that our study will inform policy, practice, and research and result in a paradigm shift towards more holistic approaches in impact and assessment studies.

6 Study limitations and future directions

We presented a review of the study of digital technologies' impact on education and factors influencing schools’ digital capacity and transformation. The study results were based on a non-systematic literature review grounded on the acquisition of documentation in specific databases. Future studies should investigate more databases to corroborate and enhance our results. Moreover, search queries could be enhanced with key terms that could provide additional insights about the integration of ICTs in education, such as “policies and strategies for ICT integration in education”. Also, the study drew information from meta-analyses and literature reviews to acquire evidence about the effects of ICT integration in schools. Such evidence was mostly based on the general conclusions of the studies. It is worth mentioning that, we located individual studies which showed different, such as negative or neutral results. Thus, further insights are needed about the impact of ICTs on education and the factors influencing the impact. Furthermore, the nature of the studies included in meta-analyses and reviews is different as they are based on different research methodologies and data gathering processes. For instance, in a meta-analysis, the impact among the studies investigated is measured in a particular way, depending on policy or research targets (e.g., results from national examinations, pre-/post-tests). Meanwhile, in literature reviews, qualitative studies offer additional insights and detail based on self-reports and research opinions on several different aspects and stakeholders who could affect and be affected by ICT integration. As a result, it was challenging to draw causal relationships between so many interrelating variables.

Despite the challenges mentioned above, this study envisaged examining school units as ecosystems that consist of several actors by bringing together several variables from different research epistemologies to provide an understanding of the integration of ICTs. However, the use of other tools and methodologies and models for evaluation of the impact of digital technologies on education could give more detailed data and more accurate results. For instance, self-reflection tools, like SELFIE—developed on the DigCompOrg framework- (Kampylis et al., 2015 ; Bocconi & Lightfoot, 2021 ) can help capture a school’s digital capacity and better assess the impact of ICTs on education. Furthermore, the development of a theory of change could be a good approach for documenting the impact of digital technologies on education. Specifically, theories of change are models used for the evaluation of interventions and their impact; they are developed to describe how interventions will work and give the desired outcomes (Mayne, 2015 ). Theory of change as a methodological approach has also been used by researchers to develop models for evaluation in the field of education (e.g., Aromatario et al., 2019 ; Chapman & Sammons, 2013 ; De Silva et al., 2014 ).

We also propose that future studies aim at similar investigations by applying more holistic approaches for impact assessment that can provide in-depth data about the impact of digital technologies on education. For instance, future studies could focus on different research questions about the technologies that are used during the interventions or the way the implementation takes place (e.g., What methodologies are used for documenting impact? How are experimental studies implemented? How can teachers be taken into account and trained on the technology and its functions? What are the elements of an appropriate and successful implementation? How is the whole intervention designed? On which learning theories is the technology implementation based?).

Future research could also focus on assessing the impact of digital technologies on various other subjects since there is a scarcity of research related to particular subjects, such as geography, history, arts, music, and design and technology. More research should also be done about the impact of ICTs on skills, emotions, and attitudes, and on equality, inclusion, social interaction, and special needs education. There is also a need for more research about the impact of ICTs on administration, management, digitalization, and home-school relationships. Additionally, although new forms of teaching and learning with the use of ICTs (e.g., blended, hybrid, and online learning) have initiated several investigations in mainstream classrooms, only a few studies have measured their impact on students’ learning. Additionally, our review did not document any study about the impact of flipped classrooms on K-12 education. Regarding teaching and learning approaches, it is worth noting that studies referred to STEM or STEAM did not investigate the impact of STEM/STEAM as an interdisciplinary approach to learning but only investigated the impact of ICTs on learning in each domain as a separate subject (science, technology, engineering, arts, mathematics). Hence, we propose future research to also investigate the impact of the STEM/STEAM approach on education. The impact of emerging technologies on education, such as AR, VR, robotics, and AI has also been investigated recently, but more work needs to be done.

Finally, we propose that future studies could focus on the way in which specific factors, e.g., infrastructure and government support, school leadership and management, students’ and teachers’ digital competencies, approaches teachers utilize in the teaching and learning (e.g., blended, online and hybrid learning, flipped classrooms, STEM/STEAM approach, project-based learning, inquiry-based learning), affect the impact of digital technologies on education. We hope that future studies will give detailed insights into the concept of schools’ digital transformation through further investigation of impacts and factors which influence digital capacity and transformation based on the results and the recommendations of the present study.

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Archer, K., Savage, R., Sanghera-Sidhu, S., Wood, E., Gottardo, A., & Chen, V. (2014). Examining the effectiveness of technology use in classrooms: A tertiary meta-analysis. Computers & Education, 78 , 140–149. https://doi.org/10.1016/j.compedu.2014.06.001

Article   Google Scholar  

Aromatario, O., Van Hoye, A., Vuillemin, A., Foucaut, A. M., Pommier, J., & Cambon, L. (2019). Using theory of change to develop an intervention theory for designing and evaluating behavior change SDApps for healthy eating and physical exercise: The OCAPREV theory. BMC Public Health, 19 (1), 1–12. https://doi.org/10.1186/s12889-019-7828-4

Arztmann, M., Hornstra, L., Jeuring, J., & Kester, L. (2022). Effects of games in STEM education: A meta-analysis on the moderating role of student background characteristics. Studies in Science Education , 1-37. https://doi.org/10.1080/03057267.2022.2057732

Bado, N. (2022). Game-based learning pedagogy: A review of the literature. Interactive Learning Environments, 30 (5), 936–948. https://doi.org/10.1080/10494820.2019.1683587

Balanskat, A. (2009). Study of the impact of technology in primary schools – Synthesis Report. Empirica and European Schoolnet. Retrieved 30 June 2022 from: https://erte.dge.mec.pt/sites/default/files/Recursos/Estudos/synthesis_report_steps_en.pdf

Balanskat, A. (2006). The ICT Impact Report: A review of studies of ICT impact on schools in Europe, European Schoolnet. Retrieved 30 June 2022 from:  https://en.unesco.org/icted/content/ict-impact-report-review-studies-ict-impact-schools-europe

Balanskat, A., Blamire, R., & Kefala, S. (2006). The ICT impact report.  European Schoolnet . Retrieved from: http://colccti.colfinder.org/sites/default/files/ict_impact_report_0.pdf

Balyer, A., & Öz, Ö. (2018). Academicians’ views on digital transformation in education. International Online Journal of Education and Teaching (IOJET), 5 (4), 809–830. Retrieved 30 June 2022 from  http://iojet.org/index.php/IOJET/article/view/441/295

Baragash, R. S., Al-Samarraie, H., Moody, L., & Zaqout, F. (2022). Augmented reality and functional skills acquisition among individuals with special needs: A meta-analysis of group design studies. Journal of Special Education Technology, 37 (1), 74–81. https://doi.org/10.1177/0162643420910413

Bates, A. W. (2015). Teaching in a digital age: Guidelines for designing teaching and learning . Open Educational Resources Collection . 6. Retrieved 30 June 2022 from: https://irl.umsl.edu/oer/6

Bingimlas, K. A. (2009). Barriers to the successful integration of ICT in teaching and learning environments: A review of the literature. Eurasia Journal of Mathematics, Science and Technology Education, 5 (3), 235–245. https://doi.org/10.12973/ejmste/75275

Blaskó, Z., Costa, P. D., & Schnepf, S. V. (2022). Learning losses and educational inequalities in Europe: Mapping the potential consequences of the COVID-19 crisis. Journal of European Social Policy, 32 (4), 361–375. https://doi.org/10.1177/09589287221091687

Bocconi, S., & Lightfoot, M. (2021). Scaling up and integrating the selfie tool for schools’ digital capacity in education and training systems: Methodology and lessons learnt. European Training Foundation . https://doi.org/10.2816/907029,JRC123936 . Accessed 30 June 2022.

Brooks, D. C., & McCormack, M. (2020). Driving Digital Transformation in Higher Education . Retrieved 30 June 2022 from: https://library.educause.edu/-/media/files/library/2020/6/dx2020.pdf?la=en&hash=28FB8C377B59AFB1855C225BBA8E3CFBB0A271DA

Cachia, R., Chaudron, S., Di Gioia, R., Velicu, A., & Vuorikari, R. (2021). Emergency remote schooling during COVID-19, a closer look at European families. Retrieved 30 June 2022 from  https://publications.jrc.ec.europa.eu/repository/handle/JRC125787

Çelik, B. (2022). The effects of computer simulations on students’ science process skills: Literature review. Canadian Journal of Educational and Social Studies, 2 (1), 16–28. https://doi.org/10.53103/cjess.v2i1.17

Chapman, C., & Sammons, P. (2013). School Self-Evaluation for School Improvement: What Works and Why? . CfBT Education Trust. 60 Queens Road, Reading, RG1 4BS, England.

Chauhan, S. (2017). A meta-analysis of the impact of technology on learning effectiveness of elementary students. Computers & Education, 105 , 14–30. https://doi.org/10.1016/j.compedu.2016.11.005

Chen, Q., Chan, K. L., Guo, S., Chen, M., Lo, C. K. M., & Ip, P. (2022a). Effectiveness of digital health interventions in reducing bullying and cyberbullying: a meta-analysis. Trauma, Violence, & Abuse , 15248380221082090. https://doi.org/10.1177/15248380221082090

Chen, B., Wang, Y., & Wang, L. (2022b). The effects of virtual reality-assisted language learning: A meta-analysis. Sustainability, 14 (6), 3147. https://doi.org/10.3390/su14063147

Cheok, M. L., & Wong, S. L. (2015). Predictors of e-learning satisfaction in teaching and learning for school teachers: A literature review. International Journal of Instruction, 8 (1), 75–90.

Cheung, A. C., & Slavin, R. E. (2011). The Effectiveness of Education Technology for Enhancing Reading Achievement: A Meta-Analysis. Center for Research and reform in Education .

Coban, M., Bolat, Y. I., & Goksu, I. (2022). The potential of immersive virtual reality to enhance learning: A meta-analysis. Educational Research Review , 100452. https://doi.org/10.1016/j.edurev.2022.100452

Condie, R., & Munro, R. K. (2007). The impact of ICT in schools-a landscape review. Retrieved 30 June 2022 from: https://oei.org.ar/ibertic/evaluacion/sites/default/files/biblioteca/33_impact_ict_in_schools.pdf

Conrads, J., Rasmussen, M., Winters, N., Geniet, A., Langer, L., (2017). Digital Education Policies in Europe and Beyond: Key Design Principles for More Effective Policies. Redecker, C., P. Kampylis, M. Bacigalupo, Y. Punie (ed.), EUR 29000 EN, Publications Office of the European Union, Luxembourg, https://doi.org/10.2760/462941

Costa, P., Castaño-Muñoz, J., & Kampylis, P. (2021). Capturing schools’ digital capacity: Psychometric analyses of the SELFIE self-reflection tool. Computers & Education, 162 , 104080. https://doi.org/10.1016/j.compedu.2020.104080

Cussó-Calabuig, R., Farran, X. C., & Bosch-Capblanch, X. (2018). Effects of intensive use of computers in secondary school on gender differences in attitudes towards ICT: A systematic review. Education and Information Technologies, 23 (5), 2111–2139. https://doi.org/10.1007/s10639-018-9706-6

Daniel, S. J. (2020). Education and the COVID-19 pandemic. Prospects, 49 (1), 91–96.

Delcker, J., & Ifenthaler, D. (2021). Teachers’ perspective on school development at German vocational schools during the Covid-19 pandemic. Technology, Pedagogy and Education, 30 (1), 125–139. https://doi.org/10.1080/1475939X.2020.1857826 . Accessed 30 June 2022.

Delgado, A., Wardlow, L., O’Malley, K., & McKnight, K. (2015). Educational technology: A review of the integration, resources, and effectiveness of technology in K-12 classrooms. Journal of Information Technology Education Research , 14, 397. Retrieved 30 June 2022 from  http://www.jite.org/documents/Vol14/JITEv14ResearchP397-416Delgado1829.pdf

De Silva, M. J., Breuer, E., Lee, L., Asher, L., Chowdhary, N., Lund, C., & Patel, V. (2014). Theory of change: A theory-driven approach to enhance the Medical Research Council’s framework for complex interventions. Trials, 15 (1), 1–13. https://doi.org/10.1186/1745-6215-15-267

Di Pietro, G., Biagi, F., Costa, P., Karpiński, Z., & Mazza, J. (2020). The likely impact of COVID-19 on education: Reflections based on the existing literature and recent international datasets (Vol. 30275). Publications Office of the European Union.

Google Scholar  

Elkordy, A., & Lovinelli, J. (2020). Competencies, Culture, and Change: A Model for Digital Transformation in K12 Educational Contexts. In D. Ifenthaler, S. Hofhues, M. Egloffstein, & C. Helbig (Eds.), Digital Transformation of Learning Organizations (pp. 203–219). Springer.

Eng, T. S. (2005). The impact of ICT on learning: A review of research. International Education Journal, 6 (5), 635–650.

European Commission. (2020). Digital Education Action Plan 2021 – 2027. Resetting education and training for the digital age. Retrieved 30 June 2022 from  https://ec.europa.eu/education/sites/default/files/document-library-docs/deap-communication-sept2020_en.pdf

European Commission. (2019). 2 nd survey of schools: ICT in education. Objective 1: Benchmark progress in ICT in schools . Retrieved 30 June 2022 from: https://data.europa.eu/euodp/data/storage/f/2019-03-19T084831/FinalreportObjective1-BenchmarkprogressinICTinschools.pdf

Eurydice. (2019). Digital Education at School in Europe , Luxembourg: Publications Office of the European Union. Retrieved 30 June 2022 from: https://eacea.ec.europa.eu/national-policies/eurydice/content/digital-education-school-europe_en

Escueta, M., Quan, V., Nickow, A. J., & Oreopoulos, P. (2017). Education technology: An evidence-based review. Retrieved 30 June 2022 from  https://ssrn.com/abstract=3031695

Fadda, D., Pellegrini, M., Vivanet, G., & Zandonella Callegher, C. (2022). Effects of digital games on student motivation in mathematics: A meta-analysis in K-12. Journal of Computer Assisted Learning, 38 (1), 304–325. https://doi.org/10.1111/jcal.12618

Fernández-Gutiérrez, M., Gimenez, G., & Calero, J. (2020). Is the use of ICT in education leading to higher student outcomes? Analysis from the Spanish Autonomous Communities. Computers & Education, 157 , 103969. https://doi.org/10.1016/j.compedu.2020.103969 . Accessed 30 June 2022.

Ferrari, A., Cachia, R., & Punie, Y. (2011). Educational change through technology: A challenge for obligatory schooling in Europe. Lecture Notes in Computer Science , 6964 , 97–110. Retrieved 30 June 2022  https://link.springer.com/content/pdf/10.1007/978-3-642-23985-4.pdf

Fielding, K., & Murcia, K. (2022). Research linking digital technologies to young children’s creativity: An interpretive framework and systematic review. Issues in Educational Research , 32 (1), 105–125. Retrieved 30 June 2022 from  http://www.iier.org.au/iier32/fielding-abs.html

Friedel, H., Bos, B., Lee, K., & Smith, S. (2013). The impact of mobile handheld digital devices on student learning: A literature review with meta-analysis. In Society for Information Technology & Teacher Education International Conference (pp. 3708–3717). Association for the Advancement of Computing in Education (AACE).

Fu, J. S. (2013). ICT in education: A critical literature review and its implications. International Journal of Education and Development Using Information and Communication Technology (IJEDICT), 9 (1), 112–125.

Gaol, F. L., & Prasolova-Førland, E. (2022). Special section editorial: The frontiers of augmented and mixed reality in all levels of education. Education and Information Technologies, 27 (1), 611–623.

Garzón, J., & Acevedo, J. (2019). Meta-analysis of the impact of Augmented Reality on students’ learning gains. Educational Research Review, 27 , 244–260. https://doi.org/10.1016/j.edurev.2019.04.001

Garzón, J., Baldiris, S., Gutiérrez, J., & Pavón, J. (2020). How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educational Research Review , 100334. https://doi.org/10.1016/j.edurev.2020.100334

Grgurović, M., Chapelle, C. A., & Shelley, M. C. (2013). A meta-analysis of effectiveness studies on computer technology-supported language learning. ReCALL, 25 (2), 165–198. https://doi.org/10.1017/S0958344013000013

Haßler, B., Major, L., & Hennessy, S. (2016). Tablet use in schools: A critical review of the evidence for learning outcomes. Journal of Computer Assisted Learning, 32 (2), 139–156. https://doi.org/10.1111/jcal.12123

Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the role of digital technologies in education: A review. Sustainable Operations and Computers, 3 , 275–285.

Hardman, J. (2019). Towards a pedagogical model of teaching with ICTs for mathematics attainment in primary school: A review of studies 2008–2018. Heliyon, 5 (5), e01726. https://doi.org/10.1016/j.heliyon.2019.e01726

Hattie, J., Rogers, H. J., & Swaminathan, H. (2014). The role of meta-analysis in educational research. In A. D. Reid, P. Hart, & M. A. Peters (Eds.), A companion to research in education (pp. 197–207). Springer.

Chapter   Google Scholar  

Hattie, J. (2008). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge . https://doi.org/10.4324/9780203887332

Higgins, S., Xiao, Z., & Katsipataki, M. (2012). The impact of digital technology on learning: A summary for the education endowment foundation . Education Endowment Foundation and Durham University.

Higgins, K., Huscroft-D’Angelo, J., & Crawford, L. (2019). Effects of technology in mathematics on achievement, motivation, and attitude: A meta-analysis. Journal of Educational Computing Research , 57(2), 283-319.

Hillmayr, D., Ziernwald, L., Reinhold, F., Hofer, S. I., & Reiss, K. M. (2020). The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education, 153 (1038), 97. https://doi.org/10.1016/j.compedu.2020.103897

Istenic Starcic, A., & Bagon, S. (2014). ICT-supported learning for inclusion of people with special needs: Review of seven educational technology journals, 1970–2011. British Journal of Educational Technology, 45 (2), 202–230. https://doi.org/10.1111/bjet.12086 . Accessed 30 June 2022.

Jewitt, C., Clark, W., & Hadjithoma-Garstka, C. (2011). The use of learning platforms to organise learning in English primary and secondary schools. Learning, Media and Technology, 36 (4), 335–348. https://doi.org/10.1080/17439884.2011.621955

JISC. (2020). What is digital transformation?.  Retrieved 30 June 2022 from: https://www.jisc.ac.uk/guides/digital-strategy-framework-for-university-leaders/what-is-digital-transformation

Kalati, A. T., & Kim, M. S. (2022). What is the effect of touchscreen technology on young children’s learning?: A systematic review. Education and Information Technologies , 1-19. https://doi.org/10.1007/s10639-021-10816-5

Kalemkuş, J., & Kalemkuş, F. (2022). Effect of the use of augmented reality applications on academic achievement of student in science education: Meta-analysis review. Interactive Learning Environments , 1-18. https://doi.org/10.1080/10494820.2022.2027458

Kao, C.-W. (2014). The effects of digital game-based learning task in English as a foreign language contexts: A meta-analysis. Education Journal, 42 (2), 113–141.

Kampylis, P., Punie, Y., & Devine, J. (2015). Promoting effective digital-age learning - a European framework for digitally competent educational organisations. JRC Technical Reports . https://doi.org/10.2791/54070

Kazu, I. Y., & Yalçin, C. K. (2022). Investigation of the effectiveness of hybrid learning on academic achievement: A meta-analysis study. International Journal of Progressive Education, 18 (1), 249–265. https://doi.org/10.29329/ijpe.2022.426.14

Koh, C. (2022). A qualitative meta-analysis on the use of serious games to support learners with intellectual and developmental disabilities: What we know, what we need to know and what we can do. International Journal of Disability, Development and Education, 69 (3), 919–950.

König, J., Jäger-Biela, D. J., & Glutsch, N. (2020). Adapting to online teaching during COVID-19 school closure: Teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education, 43 (4), 608–622. https://doi.org/10.1080/02619768.2020.1809650

Lawrence, J. E., & Tar, U. A. (2018). Factors that influence teachers’ adoption and integration of ICT in teaching/learning process. Educational Media International, 55 (1), 79–105. https://doi.org/10.1080/09523987.2018.1439712

Lee, S., Kuo, L. J., Xu, Z., & Hu, X. (2020). The effects of technology-integrated classroom instruction on K-12 English language learners’ literacy development: A meta-analysis. Computer Assisted Language Learning , 1-32. https://doi.org/10.1080/09588221.2020.1774612

Lei, H., Chiu, M. M., Wang, D., Wang, C., & Xie, T. (2022a). Effects of game-based learning on students’ achievement in science: a meta-analysis. Journal of Educational Computing Research . https://doi.org/10.1177/07356331211064543

Lei, H., Wang, C., Chiu, M. M., & Chen, S. (2022b). Do educational games affect students’ achievement emotions? Evidence from a meta-analysis. Journal of Computer Assisted Learning., 38 (4), 946–959. https://doi.org/10.1111/jcal.12664

Liao, Y. K. C., Chang, H. W., & Chen, Y. W. (2007). Effects of computer application on elementary school student’s achievement: A meta-analysis of students in Taiwan. Computers in the Schools, 24 (3–4), 43–64. https://doi.org/10.1300/J025v24n03_04

Li, Q., & Ma, X. (2010). A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational Psychology Review, 22 (3), 215–243.

Liu, M., Pang, W., Guo, J., & Zhang, Y. (2022). A meta-analysis of the effect of multimedia technology on creative performance. Education and Information Technologies , 1-28. https://doi.org/10.1007/s10639-022-10981-1

Lu, Z., Chiu, M. M., Cui, Y., Mao, W., & Lei, H. (2022). Effects of game-based learning on students’ computational thinking: A meta-analysis. Journal of Educational Computing Research . https://doi.org/10.1177/07356331221100740

Martinez, L., Gimenes, M., & Lambert, E. (2022). Entertainment video games for academic learning: A systematic review. Journal of Educational Computing Research . https://doi.org/10.1177/07356331211053848

Mayne, J. (2015). Useful theory of change models. Canadian Journal of Program Evaluation, 30 (2), 119–142. https://doi.org/10.3138/cjpe.230

Moran, J., Ferdig, R. E., Pearson, P. D., Wardrop, J., & Blomeyer, R. L., Jr. (2008). Technology and reading performance in the middle-school grades: A meta-analysis with recommendations for policy and practice. Journal of Literacy Research, 40 (1), 6–58. https://doi.org/10.1080/10862960802070483

OECD. (2015). Students, Computers and Learning: Making the Connection . PISA, OECD Publishing, Paris. Retrieved from: https://doi.org/10.1787/9789264239555-en

OECD. (2021). OECD Digital Education Outlook 2021: Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots. Retrieved from: https://www.oecd-ilibrary.org/education/oecd-digital-education-outlook-2021_589b283f-en

Pan, Y., Ke, F., & Xu, X. (2022). A systematic review of the role of learning games in fostering mathematics education in K-12 settings. Educational Research Review, 36 , 100448. https://doi.org/10.1016/j.edurev.2022.100448

Pettersson, F. (2021). Understanding digitalization and educational change in school by means of activity theory and the levels of learning concept. Education and Information Technologies, 26 (1), 187–204.

Pihir, I., Tomičić-Pupek, K., & Furjan, M. T. (2018). Digital transformation insights and trends. In Central European Conference on Information and Intelligent Systems (pp. 141–149). Faculty of Organization and Informatics Varazdin. Retrieved 30 June 2022 from https://www.proquest.com/conference-papers-proceedings/digital-transformation-insights-trends/docview/2125639934/se-2

Punie, Y., Zinnbauer, D., & Cabrera, M. (2006). A review of the impact of ICT on learning. Working Paper prepared for DG EAC. Retrieved 30 June 2022 from: http://www.eurosfaire.prd.fr/7pc/doc/1224678677_jrc47246n.pdf

Quah, C. Y., & Ng, K. H. (2022). A systematic literature review on digital storytelling authoring tool in education: January 2010 to January 2020. International Journal of Human-Computer Interaction, 38 (9), 851–867. https://doi.org/10.1080/10447318.2021.1972608

Ran, H., Kim, N. J., & Secada, W. G. (2022). A meta-analysis on the effects of technology’s functions and roles on students’ mathematics achievement in K-12 classrooms. Journal of computer assisted learning, 38 (1), 258–284. https://doi.org/10.1111/jcal.12611

Ređep, N. B. (2021). Comparative overview of the digital preparedness of education systems in selected CEE countries. Center for Policy Studies. CEU Democracy Institute .

Rott, B., & Marouane, C. (2018). Digitalization in schools–organization, collaboration and communication. In Digital Marketplaces Unleashed (pp. 113–124). Springer, Berlin, Heidelberg.

Savva, M., Higgins, S., & Beckmann, N. (2022). Meta-analysis examining the effects of electronic storybooks on language and literacy outcomes for children in grades Pre-K to grade 2. Journal of Computer Assisted Learning, 38 (2), 526–564. https://doi.org/10.1111/jcal.12623

Schmid, R. F., Bernard, R. M., Borokhovski, E., Tamim, R. M., Abrami, P. C., Surkes, M. A., Wade, C. A., & Woods, J. (2014). The effects of technology use in postsecondary education: A meta-analysis of classroom applications. Computers & Education, 72 , 271–291. https://doi.org/10.1016/j.compedu.2013.11.002

Schuele, C. M., & Justice, L. M. (2006). The importance of effect sizes in the interpretation of research: Primer on research: Part 3. The ASHA Leader, 11 (10), 14–27. https://doi.org/10.1044/leader.FTR4.11102006.14

Schwabe, A., Lind, F., Kosch, L., & Boomgaarden, H. G. (2022). No negative effects of reading on screen on comprehension of narrative texts compared to print: A meta-analysis. Media Psychology , 1-18. https://doi.org/10.1080/15213269.2022.2070216

Sellar, S. (2015). Data infrastructure: a review of expanding accountability systems and large-scale assessments in education. Discourse: Studies in the Cultural Politics of Education, 36 (5), 765–777. https://doi.org/10.1080/01596306.2014.931117

Stock, W. A. (1994). Systematic coding for research synthesis. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis, 236 (pp. 125–138). Russel Sage.

Su, J., Zhong, Y., & Ng, D. T. K. (2022). A meta-review of literature on educational approaches for teaching AI at the K-12 levels in the Asia-Pacific region. Computers and Education: Artificial Intelligence , 100065. https://doi.org/10.1016/j.caeai.2022.100065

Su, J., & Yang, W. (2022). Artificial intelligence in early childhood education: A scoping review. Computers and Education: Artificial Intelligence, 3 , 100049. https://doi.org/10.1016/j.caeai.2022.100049

Sung, Y. T., Chang, K. E., & Liu, T. C. (2016). The effects of integrating mobile devices with teaching and learning on students’ learning performance: A meta-analysis and research synthesis. Computers & Education, 94 , 252–275. https://doi.org/10.1016/j.compedu.2015.11.008

Talan, T., Doğan, Y., & Batdı, V. (2020). Efficiency of digital and non-digital educational games: A comparative meta-analysis and a meta-thematic analysis. Journal of Research on Technology in Education, 52 (4), 474–514. https://doi.org/10.1080/15391523.2020.1743798

Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. Review of Educational research, 81 (1), 4–28. Retrieved 30 June 2022 from  https://doi.org/10.3102/0034654310393361

Tamim, R. M., Borokhovski, E., Pickup, D., Bernard, R. M., & El Saadi, L. (2015). Tablets for teaching and learning: A systematic review and meta-analysis. Commonwealth of Learning. Retrieved from: http://oasis.col.org/bitstream/handle/11599/1012/2015_Tamim-et-al_Tablets-for-Teaching-and-Learning.pdf

Tang, C., Mao, S., Xing, Z., & Naumann, S. (2022). Improving student creativity through digital technology products: A literature review. Thinking Skills and Creativity, 44 , 101032. https://doi.org/10.1016/j.tsc.2022.101032

Tolani-Brown, N., McCormac, M., & Zimmermann, R. (2011). An analysis of the research and impact of ICT in education in developing country contexts. In ICTs and sustainable solutions for the digital divide: Theory and perspectives (pp. 218–242). IGI Global.

Trucano, M. (2005). Knowledge Maps: ICTs in Education. Washington, DC: info Dev / World Bank. Retrieved 30 June 2022 from  https://files.eric.ed.gov/fulltext/ED496513.pdf

Ulum, H. (2022). The effects of online education on academic success: A meta-analysis study. Education and Information Technologies, 27 (1), 429–450.

Underwood, J. D. (2009). The impact of digital technology: A review of the evidence of the impact of digital technologies on formal education. Retrieved 30 June 2022 from: http://dera.ioe.ac.uk/id/eprint/10491

Verschaffel, L., Depaepe, F., & Mevarech, Z. (2019). Learning Mathematics in metacognitively oriented ICT-Based learning environments: A systematic review of the literature. Education Research International , 2019 . https://doi.org/10.1155/2019/3402035

Villena-Taranilla, R., Tirado-Olivares, S., Cózar-Gutiérrez, R., & González-Calero, J. A. (2022). Effects of virtual reality on learning outcomes in K-6 education: A meta-analysis. Educational Research Review, 35 , 100434. https://doi.org/10.1016/j.edurev.2022.100434

Voogt, J., Knezek, G., Cox, M., Knezek, D., & ten Brummelhuis, A. (2013). Under which conditions does ICT have a positive effect on teaching and learning? A call to action. Journal of Computer Assisted Learning, 29 (1), 4–14. https://doi.org/10.1111/j.1365-2729.2011.00453.x

Vuorikari, R., Punie, Y., & Cabrera, M. (2020). Emerging technologies and the teaching profession: Ethical and pedagogical considerations based on near-future scenarios  (No. JRC120183). Joint Research Centre. Retrieved 30 June 2022 from: https://publications.jrc.ec.europa.eu/repository/handle/JRC120183

Wang, L. H., Chen, B., Hwang, G. J., Guan, J. Q., & Wang, Y. Q. (2022). Effects of digital game-based STEM education on students’ learning achievement: A meta-analysis. International Journal of STEM Education, 9 (1), 1–13. https://doi.org/10.1186/s40594-022-00344-0

Wen, X., & Walters, S. M. (2022). The impact of technology on students’ writing performances in elementary classrooms: A meta-analysis. Computers and Education Open, 3 , 100082. https://doi.org/10.1016/j.caeo.2022.100082

Zheng, B., Warschauer, M., Lin, C. H., & Chang, C. (2016). Learning in one-to-one laptop environments: A meta-analysis and research synthesis. Review of Educational Research, 86 (4), 1052–1084. https://doi.org/10.3102/0034654316628645

Download references

Acknowledgements

This project has received funding under Grant Agreement No Ref Ares (2021) 339036 7483039 as well as funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No 739578 and the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy. The UVa co-authors would like also to acknowledge funding from the European Regional Development Fund and the National Research Agency of the Spanish Ministry of Science and Innovation, under project grant PID2020-112584RB-C32.

Author information

Authors and affiliations.

CYENS Center of Excellence & Cyprus University of Technology (Cyprus Interaction Lab), Cyprus, CYENS Center of Excellence & Cyprus University of Technology, Nicosia-Limassol, Cyprus

Stella Timotheou, Ourania Miliou & Andri Ioannou

Universidad de Valladolid (UVA), Spain, Valladolid, Spain

Yiannis Dimitriadis, Sara Villagrá Sobrino, Nikoleta Giannoutsou & Alejandra Martínez Monés

JRC - Joint Research Centre of the European Commission, Seville, Spain

Romina Cachia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Andri Ioannou .

Ethics declarations

Conflict of interest, additional information, publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Timotheou, S., Miliou, O., Dimitriadis, Y. et al. Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: A literature review. Educ Inf Technol 28 , 6695–6726 (2023). https://doi.org/10.1007/s10639-022-11431-8

Download citation

Received : 04 May 2022

Accepted : 27 October 2022

Published : 21 November 2022

Issue Date : June 2023

DOI : https://doi.org/10.1007/s10639-022-11431-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Digital technologies
  • Digital capacity
  • Digital transformation
  • Find a journal
  • Publish with us
  • Track your research

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

  • The Impact of Digital Tools on Student Writing and How Writing is Taught in Schools

Table of Contents

  • Part I: Introduction
  • Part II: How Much, and What, do Today’s Middle and High School Students Write?
  • Part III: Teachers See Digital Tools Affecting Student Writing in Myriad Ways
  • Part IV: Teachers Assess Students on Specific Writing Skills
  • Part V: Teaching Writing in the Digital Age

A survey of 2,462 Advanced Placement (AP) and National Writing Project (NWP) teachers finds that digital technologies are shaping student writing in myriad ways and have also become helpful tools for teaching writing to middle and high school students.  These teachers see the internet and digital technologies such as social networking sites, cell phones and texting, generally facilitating teens’ personal expression and creativity, broadening the audience for their written material, and encouraging teens to write more often in more formats than may have been the case in prior generations.  At the same time, they describe the unique challenges of teaching writing in the digital age, including the “creep” of informal style into formal writing assignments and the need to better educate students about issues such as plagiarism and fair use.

The AP and NWP teachers surveyed see today’s digital tools having tangible, beneficial impacts on student writing

Overall, these AP and NWP teachers see digital technologies benefitting student writing in several ways:

  • 96% agree (including 52% who strongly agree) that digital technologies “allow students to share their work with a wider and more varied audience”
  • 79% agree (23% strongly agree) that these tools “encourage greater collaboration among students”
  • 78% agree (26% strongly agree) that digital technologies “encourage student creativity and personal expression”

The combined effect of these impacts, according to this group of AP and NWP teachers, is a greater investment among students in what they write and greater engagement in the writing process.

At the same time, they worry that students’ use of digital tools is having some undesirable effects on their writing, including the “creep” of informal language and style into formal writing

In focus groups, these AP and NWP teachers shared some concerns and challenges they face teaching writing in today’s digital environment.  Among them are:

  • an increasingly ambiguous line between “formal” and “informal” writing and the tendency of some students to use informal language and style in formal writing assignments
  • the increasing need to educate students about writing for different audiences using different “voices” and “registers”
  • the general cultural emphasis on truncated forms of expression, which some feel are hindering students willingness and ability to write longer texts and to think critically about complicated topics
  • disparate access to and skill with digital tools among their students
  • challenging the “digital tool as toy” approach many students develop in their introduction to digital tools as young children

Survey results reflect many of these concerns, though teachers are sometimes divided on the role digital tools play in these trends.  Specifically:

  • 68% say that digital tools make students more likely—as opposed to less likely or having no impact—to take shortcuts and not put effort into their writing
  • 46% say these tools make students more likely to “write too fast and be careless”
  • Yet, while 40% say today’s digital technologies make students more likely to “use poor spelling and grammar” another 38% say they make students LESS likely to do this

Overall, these AP and NWP teachers give their students’ writing skills modest marks, and see areas that need attention

Asked to assess their students’ performance on nine specific writing skills, AP and NWP tended to rate their students “good” or “fair” as opposed to “excellent” or “very good.”  Students were given the best ratings on their ability to “effectively organize and structure writing assignments” with 24% of teachers describing their students as “excellent” or “very good” in this area. Students received similar ratings on their ability to “understand and consider multiple viewpoints on a particular topic or issue.”  But ratings were less positive for synthesizing material into a cohesive piece of work, using appropriate tone and style, and constructing a strong argument.

These AP and NWP teachers gave students the lowest ratings when it comes to “navigating issues of fair use and copyright in composition” and “reading and digesting long or complicated texts.”  On both measures, more than two-thirds of these teachers rated students “fair” or “poor.”

Figure 1

Majorities of these teachers incorporate lessons about fair use, copyright, plagiarism, and citation in their teaching to address students’ deficiencies in these areas

In addition to giving students low ratings on their understanding of fair use and copyright, a majority of AP and NWP teachers also say students are not performing well when it comes to “appropriately citing and/or referencing content” in their work.  This is fairly common concern among the teachers in the study, who note how easy it is for students today to copy and paste others’ work into their own and how difficult it often is to determine the actual source of much of the content they find online.  Reflecting how critical these teachers view these skills:

  • 88% (across all subjects) spend class time “discussing with students the concepts of citation and plagiarism”
  • 75% (across all subjects) spend class time “discussing with students the concepts of fair use and copyright”

A plurality of AP and NWP teachers across all subjects say digital tools make teaching writing easier

Despite some challenges, 50% of these teachers (across all subjects) say the internet and digital tools make it easier for them to teach writing, while just 18% say digital technologies make teaching writing more difficult.  The remaining 31% see no real impact.

Figure 2

Positive perceptions of the potential for digital tools to aid educators in teaching writing are reflected in practice:

  • 52% of AP and NWP teachers say they or their students use interactive whiteboards in their classes
  • 40% have students share their work on wikis, websites or blogs
  • 36% have students edit or revise their own work and 29% have students edit others’ work using collaborative web-based tools such as GoogleDocs

In focus groups, teachers gave a multitude of examples of the value of these collaborative tools, not only in teaching more technical aspects of writing but also in being able to “see their students thinking” and work alongside students in the writing process.  Moreover, 56% say digital tools make their students more likely to write well because they can revise their work easily.

These middle and high school teachers continue to place tremendous value on “formal writing”

While they see writing forms and styles expanding in the digital world, AP and NWP teachers continue to place tremendous value on “formal writing” and try to use digital tools to impart fundamental writing skills they feel students need.  Nine in ten (92%) describe formal writing assignments as an ��essential” part of the learning process, and 91% say that “writing effectively” is an “essential” skill students need for future success.

More than half (58%) have students write short essays or responses on a weekly basis, and 77% assigned at least one research paper during the 2011-2012 academic year.  In addition, 41% of AP and NWP teachers have students write weekly journal entries, and 78% had their students create a multimedia or mixed media piece in the academic year prior to the survey.

Almost all AP and NWP teachers surveyed (94%) encourage students to do some of their writing by hand

Alongside the use of digital tools to promote better writing, almost all AP and NWP teachers surveyed say they encourage their students to do at least some writing by hand.  Their reasons are varied, but many teachers noted that because students are required to write by hand on standardized tests, it is a critical skill for them to have.  This is particularly true for AP teachers, who must prepare students to take AP exams with pencil and paper.  Other teachers say they feel students do more active thinking, synthesizing, and editing when writing by hand, and writing by hand discourages any temptation to copy and paste others’ work.

About this Study

The basics of the survey.

These are among the main findings of an online survey of a non-probability sample of 2,462 middle and high school teachers currently teaching in the U.S., Puerto Rico and the U.S. Virgin Islands, conducted between March 7 and April 23, 2012.  Some 1,750 of the teachers are drawn from a sample of advanced placement (AP) high school teachers, while the remaining 712 are from a sample of National Writing Project teachers.  Survey findings are complemented by insights from a series of online and in-person focus groups with middle and high school teachers and students in grades 9-12, conducted between November, 2011 and February, 2012.

This particular sample is quite diverse geographically, by subject matter taught, and by school size and community characteristics.  But it skews towards educators who teach some of the most academically successful students in the country. Thus, the findings reported here reflect the realities of their special place in American education, and are not necessarily representative of all teachers in all schools. At the same time, these findings are especially powerful given that these teachers’ observations and judgments emerge from some of the nation’s most advanced classrooms.

In addition to the survey, Pew Internet conducted a series of online and offline focus groups with middle and high school teachers and some of their students and their voices are included in this report.

The study was designed to explore teachers’ views of the ways today’s digital environment is shaping the research and writing habits of middle and high school students, as well as teachers’ own technology use and their efforts to incorporate new digital tools into their classrooms.

About the data collection

Data collection was conducted in two phases.  In phase one, Pew Internet conducted two online and one in-person focus group with middle and high school teachers; focus group participants included Advanced Placement (AP) teachers, teachers who had participated in the National Writing Project’s Summer Institute (NWP), as well as teachers at a College Board school in the Northeast U.S.  Two in-person focus groups were also conducted with students in grades 9-12 from the same College Board school.   The goal of these discussions was to hear teachers and students talk about, in their own words, the different ways they feel digital technologies such as the internet, search engines, social media, and cell phones are shaping students’ research and writing habits and skills.  Teachers were asked to speak in depth about teaching research and writing to middle and high school students today, the challenges they encounter, and how they incorporate digital technologies into their classrooms and assignments.

Focus group discussions were instrumental in developing a 30-minute online survey, which was administered in phase two of the research to a national sample of middle and high school teachers.  The survey results reported here are based on a non-probability sample of 2,462 middle and high school teachers currently teaching in the U.S., Puerto Rico, and the U.S. Virgin Islands.  Of these 2,462 teachers, 2,067 completed the entire survey; all percentages reported are based on those answering each question.  The sample is not a probability sample of all teachers because it was not practical to assemble a sampling frame of this population. Instead, two large lists of teachers were assembled: one included 42,879 AP teachers who had agreed to allow the College Board to contact them (about one-third of all AP teachers), while the other was a list of 5,869 teachers who participated in the National Writing Project’s Summer Institute during 2007-2011 and who were not already part of the AP sample. A stratified random sample of 16,721 AP teachers was drawn from the AP teacher list, based on subject taught, state, and grade level, while all members of the NWP list were included in the final sample.

The online survey was conducted from March 7–April 23, 2012.  More details on how the survey and focus groups were conducted are included in the Methodology section at the end of this report, along with focus group discussion guides and the survey instrument.

There are several important ways the teachers who participated in the survey are unique, which should be considered when interpreting the results reported here.  First, 95% of the teachers who participated in the survey teach in public schools, thus the findings reported here reflect that environment almost exclusively.  In addition, almost one-third of the sample (NWP Summer Institute teachers) has received extensive training in how to effectively teach writing in today’s digital environment.  The National Writing Project’s mission is to provide professional development, resources and support to teachers to improve the teaching of writing in today’s schools.   The NWP teachers included here are what the organization terms “teacher-consultants” who have attended the Summer Institute and provide local leadership to other teachers.  Research has shown significant gains in the writing performance of students who are taught by these teachers. 1

Moreover, the majority of teachers participating in the survey (56%) currently teach AP, honors, and/or accelerated courses, thus the population of middle and high school students they work with skews heavily toward the highest achievers.  These teachers and their students may have resources and support available to them—particularly in terms of specialized training and access to digital tools—that are not available in all educational settings.  Thus, the population of teachers participating in this research might best be considered “leading edge teachers” who are actively involved with the College Board and/or the National Writing Project and are therefore beneficiaries of resources and training not common to all teachers.  It is likely that teachers in this study are developing some of the more innovative pedagogical approaches to teaching research and writing in today’s digital environment, and are incorporating classroom technology in ways that are not typical of the entire population of middle and high school teachers in the U.S.  Survey findings represent the attitudes and behaviors of this particular group of teachers only, and are not representative of the entire population of U.S. middle and high school teachers.

Every effort was made to administer the survey to as broad a group of educators as possible from the sample files being used.  As a group, the 2,462 teachers participating in the survey comprise a wide range of subject areas, experience levels, geographic regions, school type and socioeconomic level, and community type (detailed sample characteristics are available in the Methods section of this report).  The sample includes teachers from all 50 states, Puerto Rico, and the U.S. Virgin Islands.  All teachers who participated in the survey teach in physical schools and classrooms, as opposed to teaching online or virtual courses.

English/language arts teachers make up a significant portion of the sample (36%), reflecting the intentional design of the study, but history, social science, math, science, foreign language, art, and music teachers are also represented.  About one in ten teachers participating in the survey are middle school teachers, while 91% currently teach grades 9-12.  There is wide distribution across school size and students’ socioeconomic status, though half of the teachers participating in the survey report teaching in a small city or suburb.  There is also a wide distribution in the age and experience levels of participating teachers.  The survey sample is 71% female.

About the Pew Research Center’s Internet & American Life Project

The Pew Research Center’s Internet & American Life Project is one of seven projects that make up the Pew Research Center, a nonpartisan, nonprofit “fact tank” that provides information on the issues, attitudes and trends shaping America and the world. The Project produces reports exploring the impact of the internet on families, communities, work and home, daily life, education, health care, and civic and political life. The Pew Internet Project takes no positions on policy issues related to the internet or other communications technologies. It does not endorse technologies, industry sectors, companies, nonprofit organizations, or individuals. While we thank our research partners for their helpful guidance, the Pew Internet Project had full control over the design, implementation, analysis and writing of this survey and report.

About the National Writing Project

The National Writing Project (NWP) is a nationwide network of educators working together to improve the teaching of writing in the nation’s schools and in other settings. NWP provides high-quality professional development programs to teachers in a variety of disciplines and at all levels, from early childhood through university. Through its nearly 200 university-based sites serving all 50 states, the District of Columbia, Puerto Rico and the U.S. Virgin Islands, NWP develops the leadership, programs and research needed for teachers to help students become successful writers and learners. For more information, visit www.nwp.org .

  • More specific information on this population of teachers, the training they receive, and the outcomes of their students are available at the National Writing Project website at www.nwp.org . ↩

Sign up for our weekly newsletter

Fresh data delivery Saturday mornings

Sign up for The Briefing

Weekly updates on the world of news & information

  • Age & Generations
  • Digital Divide
  • Education & Learning Online
  • Online Search
  • Platforms & Services
  • Teens & Tech
  • Teens & Youth

Teens and Video Games Today

As biden and trump seek reelection, who are the oldest – and youngest – current world leaders, how teens and parents approach screen time, who are you the art and science of measuring identity, u.s. centenarian population is projected to quadruple over the next 30 years, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

© 2024 Pew Research Center

Stanford University

Along with Stanford news and stories, show me:

  • Student information
  • Faculty/Staff information

We want to provide announcements, events, leadership messages and resources that are relevant to you. Your selection is stored in a browser cookie which you can remove at any time using “Clear all personalization” below.

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of Stanford Graduate School of Education (GSE), who is also a professor of educational technology at the GSE and faculty director of the Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately worried that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or coach students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the AI + Education initiative at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of CRAFT (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the Digital Learning initiative at the Stanford Accelerator for Learning, which runs a program exploring the use of virtual field trips to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”

Gamification

Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

  • Review article
  • Open access
  • Published: 14 December 2022

The use of technology in higher education teaching by academics during the COVID-19 emergency remote teaching period: a systematic review

  • McQueen Sum   ORCID: orcid.org/0000-0002-7763-1105 1 &
  • Alis Oancea 1  

International Journal of Educational Technology in Higher Education volume  19 , Article number:  59 ( 2022 ) Cite this article

12k Accesses

16 Citations

6 Altmetric

Metrics details

This paper presents a systematic review of scholarly efforts that uniquely emerged at the onset of the COVID-19 pandemic and focused primarily on higher education teachers’ perspectives on technology use and on associated changes in the relationship between teachers and students amidst the transition to emergency remote teaching worldwide. Our narrative synthesis of 32 studies, the majority of which come from lower-and middle-income countries/regions, suggests that numerous factors interact to shape academics’ technology use in emergency remote teaching across higher education contexts. We report strong findings of teachers’ resilience and resourcefulness in their self-exploration of various technologies and teaching strategies in response to the continued severity of the pandemic. Ultimately, this review suggests directions for further research on engaging educational leaders and faculty in reimagining teaching as not only a core academic function of higher education, but also, and importantly, a humanising experience shaped by an ethics of care.

Review of literature and research questions

Since the continued devastating spread of COVID-19 across continents from early 2020, the coronavirus pandemic has led to massive numbers of hospitalisations and deaths around the world, abruptly upending public health and many other domains of life. As the disaster has unfolded, a multitude of sweeping challenges have continued to reshape the global higher education (‘HE’) landscape. With HE institutions (‘HEIs’) worldwide closing their campuses in Spring 2020, teachers were forced to make a hasty transition from typically in-person teaching configured in physically proximate space to alternative teaching approaches in response to the COVID-19 emergency (Crawford et al., 2020 ).

The term ‘emergency remote teaching’ (‘ERT’) is used by Hodges et al. ( 2020 ) and subsequent literature to denote the rapid and putatively ephemeral shift to remote teaching to continue teaching and learning during emergencies. Although ‘ERT’ and ‘online teaching’ may be two domains with considerable overlaps, ‘online teaching’ is importantly distinguished from ‘ERT’ as it includes teaching and learning arising from a prolonged collective effort in curriculum planning and instructional design from a wide range of stakeholders pre-launching (Hodges et al., 2020 ).

Despite the growing literature on ERT, few efforts had been made to review this body of research systematically at the time of conducting this review (see Table 1 for a few exceptions). Since there have been abundant discussions on the perspectives of students at the HE level during COVID-19 [see, for example, Chakraborty et al. ( 2021 ) on Indian students’ opinions on various aspects of ERT; Mok et al. ( 2021 ) on Hong Kong students’ evaluation of their learning experiences during ERT; Resch et al. ( 2022 ) on social and academic integration of Austrian students; and Salas-Pilco et al. ( 2022 ) for a systematic review focusing on student engagement in Latin American HE], our review focuses systematically on synthesising the body of worldwide literature on teachers’ perspectives on technology use during the period of ERT. Moreover, much attention has been devoted to medical education (Rajab et al., 2020 ; see also Table 1 ) and STEM education since the coronavirus outbreak (Amunga, 2021 ; Bond et al., 2021 ; Gaur et al., 2020 ; Singh-Pillay & Naidoo, 2020 ). Our review focuses on the less explored perspectives of humanities, arts, and social sciences (HASS) teachers—whose perceived difficulties of using digital technologies in teaching were reportedly distinct from those of their counterparts in other disciplines, both before (Mercader & Gairín, 2020 ) and during the COVID-19 outbreak (Wu et al., 2020 ).

Prior to COVID-19, a respectable amount of scholarly work was devoted to the development and adaptation of theoretical models to identify, explain, and even predict factors that influenced technology use in educational contexts (Granić & Marangunić, 2019 ). But Lee and Jung ( 2021 ) argue that ‘in higher education contexts, crisis-driven changes may happen differently from pre-planned, voluntary change, and that factors influencing crisis-driven changes are different from those influencing voluntary changes; as reported in previous studies based on technology acceptance theories and models’ (p. 16). Given the novelty of COVID-19, few studies have been conducted to explicate the factors shaping HE teachers’ decisions about, and experiences of, technology use in the unique context of the global pandemic [see Mittal et al. ( 2021 ) for an exception that studies faculty members in Northern India and Lee and Jung ( 2021 ) for another study on South Korean university educators]. Therefore, the first question that this review aims to answer is: How have different potential factors, as identified by teachers in the included studies, shaped teachers’ technology use across various higher education contexts during the COVID-19 emergency remote teaching period?

Existing scholarly efforts that aim to provide an overview of the literature focus predominantly on a bifurcated discussion of the opportunities and challenges, or advantages and disadvantages pertinent to using technologies in teaching during the COVID-19 crisis (Adedoyin & Soykan, 2020 ; Dhawan, 2020 ; Pokhrel & Chhetri, 2021 ; Stewart, 2021 ). We therefore frame the second research question in a way that circumvents a binary pros-and-cons discussion of the implications of technology use in times of the COVID pandemic, as already well-documented in the literature. Hence, our second question is: What are the implications of technology use in COVID-19 emergency remote teaching from the perspectives of higher education teachers?

The broader term ‘technology’ (in the singular form) used in the review questions includes the socio-cultural contexts of the educational settings in which technology use is situated. The discussion of ‘context’ is of particular importance (Selwyn, 2022 ). Although pre-COVID studies (such as Broadbent & Poon, 2015 ; Liu et al., 2020 ) offered valuable insights into technology use in HE teaching, the pandemic brought about starkly and often perilously different contexts for research as well as for teaching and learning (Stewart, 2021 ; Williamson et al., 2020 ).

We use the term ‘technologies’ in its plural form throughout this review, in a narrower sense, meaning specifically the wide range of digital tools and systems and other technical resources that are used for pedagogical purposes. These can include but are not limited to electronic hardware devices, software systems, online services, and social media. We note, however, that the meanings attached to the term ‘technologies’ may be substantively different across contexts. Some of the studies included in this review, as we will show below, extend it to other-than-digital forms of technologies, leading to results beyond our initial scope of research. As a result, the use of (digital) technologies is understood in this review as an often necessary but not sufficient condition for ERT—a novel concept to many teachers who had been using various ‘technologies’ in other ways in facilitating their teaching for years before the COVID-19 outbreak.

Methodology

Characterised by the principles of replicability and transparency, a systematic review aims to ‘review ... existing research using explicit, accountable rigorous research methods’ (Gough et al., 2017 , p. 4). This methodology is used because it helps elucidate the current understanding and available evidence of the above research questions, clarify any replication of existing research findings, and inform future research and policy directions in HE teaching in a systematic and trustworthy manner. Below is a detailed, transparent report of the processes involved in conducting this systematic review.

Inclusion/exclusion criteria

Our review is restricted to peer-reviewed journal articles that report original empirical studies written in English and/or simplified Chinese. Papers written in these two languages account for a high volume of worldwide literature published at the onset of the COVID-19 outbreak. Also, Chinese studies are particularly valuable for this review, for mainland China was the first region affected by COVID-19 and its HE system was amongst the first to respond to the challenges ensuing from the spread of coronavirus.

Since the review seeks to capture a ‘snapshot’ of perspectives on technology use by teachers during the immediate COVID-19 outbreak, only articles published in 2020 (including those published online ahead of print that year) were eligible for review. Included publications may cover any country/region worldwide but should systematically gather data from teachers other than the authors themselves and focus primarily on the perspectives of HASS teachers on matters pertaining to technology use in ERT in HE settings. Opinion pieces, editorials, reflection articles on one’s own practice, conference papers, and books are not within the purview of this review (see Appendix 1  for detailed inclusion/exclusion criteria).

Search strategy

Prior to conducting the database search, we piloted and modified the search strings several times. Our final search strategy is a combination of Boolean operators and variations of four key terms: ‘higher education’, ‘technology’, ‘teaching’, and ‘COVID-19’ (see Appendix 2  for detailed search terms).

Screening and selection

On 13 January 2021, a targeted search returned 4204 records indexed in fourteen databases including Scopus, Web of Science, and three Chinese databases (see Appendix 3  for PRISMA flow diagram and the complete list of databases). From these, we extracted 20 different papers at random to screen by title and abstract independently by applying the inclusion/exclusion criteria, and with the intention to repeat the process until unanimous agreement was reached. Having achieved full inter-reviewer agreement in our first attempt and after a further calibration session, we then proceeded to de-duplication and title-and-abstract screening, after which only 129 papers remained for full-text retrieval and further screening. Meanwhile, 16 relevant publications from various other sources were also identified and passed the initial screening. We then examined the full text of the resulting total of 145 articles and excluded any that did not fulfil the inclusion criteria, leading to a set of 40 studies to be considered for review.

Quality and relevance assessment and content extraction

To assess the 40 papers’ quality and relevance to this review, we adapted the assessment rubric from Oancea et al. ( 2021 ) (see Appendix 4 ). In parallel with the quality assessment, we developed a grid for content extraction by piloting on three papers, after which multiple revisions of the extraction grid were made. Then both authors used the updated extraction grid (see Appendix 5 ) and extracted content from two full papers independently to check for inter-reviewer agreement. In subsequent communications, discrepancies of our extraction were reconciled and the final quality thresholds for inclusion were agreed upon. As of May 2021, after excluding 8 papers of low quality, the final corpus for review comprised 32 articles.

Analysis and synthesis

We developed an initial coding scheme with broad theme boundaries based on the research questions, and resolved any conflicting views. We coded line-by-line the extracted data both deductively and inductively: we first applied the pre-configured coding scheme to the full set of data, and then updated and re-applied the coding scheme to include further themes identified through inductive coding. For example, we realised that the category of ‘ethical use of technology’ spanned the themes of ‘pedagogical implications’ and ‘work-related implications’. As a result we categorised it under a separate theme titled ‘cross-cutting implications’. After multiple rounds of scheme refinement and iterative coding which started in June 2021, the process of synthesis concluded in late December 2021.

The research synthesis is presented narratively; note that we integrated quantitative findings (for example, from surveys) descriptively into the narrative analysis, as in most cases the samples were not representative, the analysis was largely descriptive and findings from qualitative answers to open questions were presented in detail.

Limitations

Our review did not include insights from reflection pieces (such as Czerniewicz et al., 2020 ; Jandrić et al., 2020 ; Joseph & Trinick, 2021 ) and reports not published in peer-reviewed journals (such as Ferdig et al., 2020 ); these exclusions are not a judgment on either the quality or the level of insight of such pieces, nor on the modes of research and scholarship that they embody. This decision, as well as the focus on studies published in English and Chinese, limit the extent to which this review covers the experiences of ERT technology use by teacher populations across the world.

Due to our international remit, another limitation is the integration of findings grounded in different local contexts and HE environments. We overcome this partially by extracting from each paper the context in which teachers’ technology use is situated and taking such information into account when narratively integrating data across studies and presenting our review findings (see Appendix 5 ). However, the inconsistent terminology used to allude to the notions of ‘technology’ and ‘emergency remote teaching’ in the reviewed articles poses a major challenge to our cross-context comparison [see discussion on the jingle-jangle fallacy in Sum and Oancea ( 2021 )]. Another review conducted by Bond et al. ( 2021 ) also found at least ten different terms used for ‘online teaching’ (including ‘emergency remote teaching’) in their selected papers.

Although uniformly agreed-upon definitions of these terms are absent (Singh & Thurman, 2019 ), the nuances of concepts underlying them have not been given due consideration in the majority of the studies reviewed (see “ Description of included articles ” section). Further terminological complexity arises from the imperfect overlap between Chinese and English vocabularies. Whilst we tried to overcome this by extracting information on each study’s conceptualisation of ‘technology’ and ‘ERT’ (see Appendix 5 ) and accompanying translations with original Chinese terms (for example, the phrase ‘线上教学’ in Chinese can be sometimes translated into ‘online teaching and learning’), we acknowledge that terminological and translation gaps remain in our cross-context synthesis of the selected literature.

Description of included articles

Included in our final synthesis are 32 empirical research studies covering 71 countries and reporting perspectives from 4725 HE teachers altogether. Of these, the largest proportion focuses on the HE context in Asia (n = 15), followed by Europe (n = 7) and Africa (n = 6) (see Table 2 ). Given our inclusion of articles indexed in Chinese databases, Mainland China alone is the focal context of n = 5 studies. A wide range of subject areas in HASS disciplines are covered (see Table 3 ). Studies using qualitative data are most common (n = 14) (see Table 4 ), and a sample size of fewer than 50 teachers is often reported (n = 21) (see Table 5 ). Appendix 6 presents a summary of the characteristics of included studies.

Exactly half of the studies (n = 16) have a local remit (see Table 6 ), amongst which many recruited fellow academics from the authors’ institutions (n = 14). As noted by several researchers in their papers, the public health emergency and its concomitant restrictions had in various ways altered the methods for research and data collection, including shifting to a local focus whilst access to other settings was limited.

Authors of three quarters of the reviewed studies (n = 24) obtained data from participants remotely, either by phone or online. Much empirical data were collected in a space that was relatively new and unfamiliar to the researcher and the researched during a time when both individuals were coping with not only the expected expeditious embrace of various technologies for ERT but also, amongst other things, the physical and psychological burden posed by the coronavirus pandemic. Hence, this review integrates, in a systematic and holistic fashion, data from the discrete, often inevitably limited, yet valiant research initiatives undertaken in different countries during the periods of drastic increases in infections and deaths at the incipient phase of the COVID-19 outbreak.

In terms of substantive focus, whilst most of the included studies describe ‘what’ and/or ‘how’ technologies were being used by teachers during ERT (n = 14) and offer a dichotomous pros-or-cons narrative of technology use for ERT (n = 21), often vis-à-vis in-person teaching prior to COVID-19, some (n = 7) also examine the wider implications for teachers and HE at large.

Due partly to the novelty of COVID-19 and the haste with which research was conducted, the conceptualisation of technology and its relation with remote teaching in times of COVID-19 is either weak or largely absent in the majority of the reviewed studies. Technologically deterministic views seem prevalent in the literature reviewed. Many studies place ‘technology’ as the centre of inquiry and underscore the palpable ‘impact’ that various technical objects impose on teaching. For example, the attribution of recent pedagogical innovations and educational developments to technological advancements features prominently in the introductory paragraphs of numerous papers. Some assert that the emergence of social networking sites has begun to direct all walks of life including the ways in which teaching has been carried out since before the pandemic. Additionally, the discussion of ‘technology-enabled’ and ‘technology-enhanced’ teaching used in some articles implies that ‘technology’ plays an almost indispensable role in teaching and that teaching would be seriously disrupted without it. In contrast, there was little awareness in many of these papers of the extent to which technologies may carry political or commercial agendas or may be underpinned by complex ideologies and social structures (Selwyn et al., 2020 ). This echoes the conclusions of pre-COVID research by An and Oliver ( 2021 ) and Costa et al. ( 2019 ) that theoretical understanding of ‘technology’ in educational research is under-developed.

A brief narrative of ERT experiences from teachers’ perspectives

An eclectic range of technological artefacts and their uses during ERT across HE settings is reported in the studies. Cases of initial technology use range widely from straightforward approaches such as uploading teaching materials online to (mis)uses such as creating excessive recorded lectures and assignments. What is common, however, across reports in most studies is the acutely negative sentiments of intimidation, angst, confusion, and even despair of ERT amongst teachers at the outset of the transitioning period. It gave teachers great shock and pain to make a forced, often slapdash migration to ERT—a terrain that many of them were unfamiliar with and uncertain of—whilst juggling with their home and other work responsibilities during the distressing period. In addition to the psychological burden, teachers were worried about the well-being of their students, particularly those from underprivileged backgrounds and in vulnerable environments. Across HE settings worldwide, teachers had on average less than a week’s preparation time, leaving them feeling woefully unprepared. Hence, it is unsurprising that the majority of teachers in the studies reviewed found the immediate phase of migration to ERT burdensome and emotionally exhausting. Yet, some sought a silver lining and considered ERT as a creative challenge and an opportunity for a long-needed meaningful reflection and overhaul of HE teaching practices.

We mapped each included article’s findings about teachers’ overall attitudes towards ERT using the World Bank’s classification of country development (2020) (see Table 7 ). For studies not examining teachers’ attitudes directly, we inferred negative attitudes from teachers’ reports of dissatisfaction and frustrations over the challenges in ERT, and any indication of concern and anxiety; positive attitudes were inferred from teachers’ expressions of satisfaction and awareness of benefits brought by ERT, and any indication of optimism and hope.

Reports by teachers from higher-income countries/regions were more positive whilst those from lower-and middle-income countries/regions tended to be more negative, though with a few exceptions (for example, teachers in mainland China had relatively positive emotional responses and teachers of hearing-impaired students in high-income Saudi Arabia reported overwhelmingly negative emotional responses during the ERT period). In propitious circumstances, teachers’ emotional responses could change substantially over time from apprehension, frustration, and pessimism to relief, affirmation, and an eventual sense of achievement. Sometimes, as teachers gradually became conversant with various technological artefacts and encountered a suitable way of teaching, either serendipitously or after multiple experimentation, they eventually saw ERT as a humbling and rewarding experience. Some teachers evaluated the pedagogical revisions they made during ERT positively and even expressed the intention to keep part of their teaching online or expected to continue to use the technologies employed for ERT in the future.

Factors shaping technology use by teachers in ERT across HE contexts

The 32 papers reviewed include results on qualitative and quantitative factors identified by teacher participants that potentially shape teachers’ technology use in ERT. Note that these are not always empirically validated, nor explicitly identified as ‘factors’ in the included articles (particularly in qualitative accounts they may be described as reasons, drivers, challenges, barriers, and conditions). Thus, we adopted an open and inclusive definition of factors based on the implied or explicit direction of influence on ERT, and we grouped them thematically. Summary accounts of these thematic groupings based on the data presented in the review corpus are discussed below in descending order of the respective strength of evidence in the reviewed studies (see full references in Table 8 ).

Social-technological factors

Whilst Tartavulea et al. ( 2020 ) note that the transition to ERT can be facilitated by having online platforms and facilities, they also found that access to electronic devices and internet connection can be a luxury. Frequently reported technical concerns by teachers include the unreliability of network conditions, lack of devices and equipment, and limitations of digital infrastructure. These issues are not only powerful barriers to technology use in emergency teaching but they also disproportionately affect teachers and students in lower-income countries/regions. Note, however, that even in the context of an affluent country like the United States, teachers and students may report inequitable access to the necessities of ERT from home (Cutri et al., 2020 ; Sales et al., 2020 ).

Beneath the surface of these technical difficulties are the imbalanced allocation of resources and entrenched socio-economic problems which most commonly beset lower-and middle-income countries and regions (Tanga et al., 2020 ). Whilst the issues teachers face are highly contextualised, a considerable number of students come from underprivileged backgrounds. Even before the pandemic hit, these students had been confronting different challenges such as, particularly in lower-income countries, frequent commute of several miles from rural areas to the city for internet connection. Even if internet access were provided at home, these students would still need to overcome problems of intermittent or no power supply in their localities. In addition, during lockdowns they may shoulder more home-care responsibilities, sometimes in overcrowded or even abusive home environments.

Some teachers were also amongst vulnerable groups and had limited access to the internet at home, for example due to the sharing of cellular data with household members, and therefore exposed themselves to greater health risks by visiting commercial establishments such as cafés with free internet provision in order to teach remotely. Compounding this predicament is that HE teachers reported that they often had little information about students’ backgrounds, which hindered their efforts to address students’ educational and psychological needs and any equity issues pertinent to their studies (Cutri et al., 2020 ). These technical complications are situated in specific social contexts and have been a major hindrance to technology use in ERT.

Institutional factors

In most of the studies reviewed, the migration to ERT was described as mandatory, and teachers’ use of certain applications was often resultant from policies imposed by their institutions—whose regulations on teaching could be heavily influenced by government decisions, for example in universities in Mainland China (Tang et al., 2020 ). To ensure continuity and safety of teaching and learning in times of upheaval and uncertainty, some HEIs exercised greater control over the ways in which technologies were used in teaching, such as mandating the use of certain Learning Management Systems (LMS) in teaching (Khoza & Mpungose, 2020 ) or prohibiting asynchronous methods of teaching (Cutri et al., 2020 ). Whilst some teachers felt that their creative freedoms to use different technologies in their teaching were constrained by institutional policies , others sought detailed guidance and perceived the lack of clear institutional protocols as a significant barrier to technology use in this emergency (Sobaih et al., 2020 ).

Aside from policy, different forms of institutional support (such as the provision of digital infrastructure and training for both teachers and students) could also be of value to teachers in ERT, although the level of support felt by teachers could vary by discipline (Watermeyer et al., 2021 ). However, the value of technical assistance might be undermined when technology specialists were just as confused as teachers about teaching remotely in emergency times (Gyampoh et al., 2020 ; Tanga et al., 2020 ). Another gap in institutional support pointed out by some studies is the lack of recognising teachers’ hardship and efforts in teaching in the form of pecuniary (such as support for procurement of equipment) and non-pecuniary rewards (such as teaching awards) (Joshi et al., 2020 ).

Individual factors

Sometimes teachers resisted institutional policies and employed instead other technologies of their own preference. Individual factors therefore play an important role in shaping teachers’ technology use. Despite the challenges posed by the pandemic, some teachers were tolerant of uncertainties, valiantly departing from their previous pedagogical praxis and forging ahead with ‘pedagogical agility’ (Kidd & Murray, 2020 )—the flexibility of adapting to the new teaching conditions in rapid yet meaningful ways. Resilient and adaptive, these teachers ‘rolled up their sleeves’ and worked around the clock to seek teaching solutions and countermeasures through constant, active self-exploration (Sales et al., 2020 ). Some music teachers, for instance, would make immediate remedies for the connection disruptions to synchronous lessons by providing students with recordings of their playing as examples (Akyürek, 2020 ). In an Israeli college, teacher educators incorporated topics like ‘distance learning’ into the teacher training curriculum to reflect the new circumstances of teaching (Hadar et al., 2021 ). One teacher educator even painted a wall at home with special paint to make it into a ‘blackboard’ where his writings were presented and screened to students (Hadar et al., 2021 ). These are just a few of the many manifestations of teachers’ agentic creativity and ongoing inventiveness in innovating their own use of technologies and resources despite the presence of severe constraints in ERT times.

In terms of readiness, despite receiving considerable institutional support in some cases, teachers often felt ill-prepared for ERT and doubtful of their abilities in using various technologies to teach (Scherer et al., 2021 ), and only a minority felt rather ready for ERT (Alqabbani et al., 2020 ). The studies reviewed discussed the variation in teachers’ readiness for ERT in relation to gender, academic discipline, and country context (Scherer et al., 2021 ). For example, in predominantly high-income economies teachers moved from a customary integration of technologies in pre-COVID teaching to fully-online ERT (Mideros, 2020 ; Sales et al., 2020 ). But not all teachers and students had had the opportunities to familiarise themselves with various technologies (including otherwise widely used applications like Word processing) prior to COVID-19 (Gyampoh et al., 2020 ). Whilst experienced online teachers felt more prepared and expected themselves to employ more frequently a wide array of technologies in teaching, across HE contexts many teachers had seriously limited prior experience in ‘online teaching’ and were apprehensive about using technologies for teaching purposes (Bailey & Lee, 2020 ). Besides, being experienced in ‘online teaching’ does not necessarily translate to successful handling of ERT, given the limited time frame and the stressful and even traumatising circumstances at the outset of the crisis.

Pedagogical factors

Across HE settings, teachers considered how to connect and engage dislocated groups of students through technologies, how to empower students to explore beyond the curriculum as students gained more control over what and how they study in the shifting context of teaching and learning (Mideros, 2020 ), and how to reconfigure spaces in ways that provide students with a nourishing, inter-connected intellectual environment despite being physically apart during the ERT period (Kidd & Murray, 2020 ). In Australia, teachers were especially concerned about first-year students, as the southern hemisphere’s Autumn 2020 was their very first term at the university. In addition to providing students with considered feedback, these teachers employed strategies such as the online polls and hand-raising functions on various EdTech platforms (Zeng, 2020 ), or made students the host of Blackboard Collaborate in order for teaching to be more engaging (Marshalsey & Sclater, 2020 ).

As coronavirus infections spread, teachers also attended to students’ emotional and educational well-being. Some teacher educators in the United Kingdom offered one-on-one tutorials online to establish personal connections with student teachers and monitor their progress (Kidd & Murray, 2020 ). A teacher in Pakistan went the extra mile to care for the students living in far-flung areas without internet access by sending them CD recordings of their lectures (Said et al., 2021 ). In Saudi Arabia, teachers of hard-of-hearing students used a special configuration of multiple spaces to enable the inclusion of synchronous sign-language translation in their online lectures (Alsadoon & Turkestani, 2020 ). In cases where the discrepancy between technology use by teachers and students was significant, teachers would often bridge the gap by adapting and adopting technologies (such as social media) that they were not always conversant with, but which were most used and preferred by students. As a teacher participant put it, teachers have ‘to go where [students] are, and not wait for [students] to come to where [they] are’ (Sales et al., 2020 , p. 13).

Often teachers would consider the compatibility of certain technologies with their teaching philosophies and practices within their disciplines. Teacher educators in Israel, for example, might feel additional pressure from the expectation that their pedagogical use of technologies has to set examples for their student teachers (Hadar et al., 2021 ). As another example, teaching translation/interpretation in Mainland China was especially challenging during the ERT period since teachers have to demonstrate to students the operation of simultaneous interpretation equipment and the use of dual-track recording function—which is not commonly found in existing online applications (Ren, 2020 ).

Peer factors

Teachers reported that they saw their colleagues as not only sources of inspiration for technology use, but also remedies for stress and uncertainty during the ERT period (Ren, 2020 ). Unlike in prior ‘online teaching’ where they could still meet in person to discuss technology use, many teachers struggled with technological learning-by-doing in relative isolation during the COVID-19 lockdown period (Cutri et al., 2020 ). In view of the absence of physical spaces for colleagues to informally exchange professional practices and channel their emotionality and empathy for one another (Cutri et al., 2020 ; Scherer et al., 2021 ), some teachers put in deliberate effort into organising new networking spaces to bring the academic community together online. In an attempt to alleviate the uncertainties brought by ERT and their adverse impact on psychological well-being, teachers worked together remotely as a team to explore solutions and share useful insights about technology use in teaching. They felt empowered by the constant encouragement and motivational texts from their peers (Ren, 2020 ). Teachers thrived on establishing connections with technology-proficient colleagues whose technical expertise and guidance were relied upon (Bailey & Lee, 2020 ; Mouchantaf, 2020 ) and whose ingenious engagement with technologies inspired and were even assimilated into their own teaching practices. As a mitigation strategy to ease teachers’ hasty migration into ERT, mutual empowerment through facilitated discussions amongst colleagues meaningfully shaped the ways technologies were used by teachers in ERT.

Interplay of factors

Whilst we have delineated potential factors shaping technology use in ERT in a linear, point-by-point fashion, this list of non-exhaustive items should not be conceived as separate, stand-alone factors since they interact in a complex and nuanced way across various contexts. For instance, having little institutional support and no access to LMS or students’ information, some teachers in public HEIs in Egypt resorted to reaching students through popular social media. Teachers then explored on their own the ways in which they could continue teaching activities via these platforms which were new to them (Sobaih et al., 2020 ). As for teachers in an Israeli college, upon realising some Arabic female students refused to appear online due to their cultural values, they made allowance for students’ decisions to keep their cameras off (Hadar et al., 2021 ). But the inability to read students’ expressions during class added to the teaching challenges during ERT and demanded additional flexibility and pedagogical adjustments from teachers. Therefore, technology use is influenced by the combined factors of students’ socio-cultural backgrounds and teachers’ resources and adaptability to changes. In addition to the complex interplay of these factors, these examples demonstrate that teachers’ technology use in ERT is heavily contextualised across HE settings and should therefore be understood in its wider cultural embedding and socio-economic contexts.

Implications of technology use in ERT for teachers

As for our second research question, the studies reviewed indicate that the implications of technology use in ERT for teachers are manifold. These findings are categorised into pedagogical, work-related, and cross-cutting implications, discussed below (see Table 9 for a summary table).

Pedagogical implications

With the paradoxical amalgam of being ‘together but (physically) apart’ (Marshalsey & Sclater, 2020 ) in the new COVID-19 context of teaching, the notions of space and time, as well as the dynamics of the classroom and teacher-student relationship, have undergone less palpable yet important changes.

Spatiality-wise, teachers realised the loss of important physical spaces and the erosion of values traditionally attached to these spaces during the transition to ERT. Marshalsey and Sclater ( 2020 ), for example, reason how a physical art and design studio embodies a distinctive set of values, resources, and the signature experiential hands-on pedagogical practice of their discipline. But when artworks are presented online, their materiality, colours, and texture may be diminished.

Temporality-wise, some teachers felt a strongly contorted notion of time which rendered futile any discussion on the ordinary longitudinal perception of ‘being ready for teaching’ (Cutri et al., 2020 ). Not only was the migration to ERT perceived as rushed and disorganised but teachers also felt time as short, discrete intervals when many changes could occur. Some even found it difficult to find ‘a point of reference for their sense of self as experienced professionals’ (Cutri et al., 2020 , p. 533). This new sense of temporality is perhaps most concisely summarised by a comment made by a teacher during ERT: ‘I always plan a month ahead. Now I live from one day to the next’ (Hadar et al., 2021 , p. 454).

Within this new spatial–temporal context, teachers often felt that student engagement in remote teaching and learning activities was superficial and unequally distributed (Joshi et al., 2020 ; Kidd & Murray, 2020 ). Deprived of in-person interaction, teachers can neither hear the voices nor see the expressions of all students, and find the classroom discourse to be dominated by students who are generally more confident in sharing their ideas in front of the whole class (Hadar et al., 2021 ; Marshalsey & Sclater, 2020 ). With the loss of informal physical spaces where students used to ask questions and interact further with teachers before and after class (Cutri et al., 2020 ), some teachers commented that both teachers and students were more likely to stay in their ‘echo chambers’ during the pandemic (Eringfeld, 2021 ).

Teachers adopted different strategies to navigate being outside the comfort zone of the physical classroom. Some attempted to retain or increase control over interactions in the remote ‘classroom’ (Mideros, 2020 ) such as by only letting students speak when allowed (Gyampoh et al., 2020 ) and shifting to a predominantly teacher-centric, didactic approach of lecturing because of the perceived difficulty of implementing hands-on training in an exclusively remote teaching environment (Cutri et al., 2020 ). The students, too, adopted their own strategies, often distinct from their teachers’ (Callo & Yazon, 2020 ; Sobaih et al., 2020 ). As some students generally adapted to ERT with relative ease (Mideros, 2020 ; Ren, 2020 ), sometimes they even used technology as a defensive wall to exclude teachers (who were in some cases less tech-savvy than their students) from being involved in their studies during the pandemic (Sales et al., 2020 ). Many teachers in the studies reviewed reported that the mandated use of various technologies in ERT puts a strain on pedagogy, the major implications of which may include an elevated feeling of detachment from the class, a heightened distance from students (Kidd & Murray, 2020 ), and a more pronounced gap in teacher-student interactions (Callo & Yazon, 2020 ; Sales et al., 2020 ).

Moreover, ERT is thought to have precipitated the collapse of ‘yishigan’ (仪式感)—a Chinese expression which, when applied to this context, refers to the sense that teaching is a special, ritualised occasion (Lu, 2020 ; Ren, 2020 ). As ‘yishigan’ abates in the context of ERT, so does the sense of formality and immediacy felt by teachers and students, both of whom may no longer view teaching and learning as a serious, formalised routine of life in the same way as before; some of the studies reviewed note that motivation and classroom engagement are lowered as a result of this change in perception (see examples in Joshi et al., 2020 ; Lu, 2020 ; Marshalsey & Sclater, 2020 ).

In contrast with the sense of limitation, hierarchy, and loss illustrated by the accounts summarised above, other teachers reported a sense of the ‘intimacy of distance’ and a less visible teacher-student hierarchy as a combined result of emergency technology use during the pandemic. Such teachers valued the creation of spaces for more student-oriented and student-empowering pedagogy. In Mainland China, for example, the classroom atmosphere was livened up as students were encouraged by teachers to engage in class via alternative forms of interaction online such as sending emojis, raising ‘hands’, and taking polls (Gao & Zhang, 2020 ; Zeng, 2020 ). In other contexts, teachers felt an idiosyncratic sense of closeness as they shared a screen and read the same text with students on their devices (Eringfeld, 2021 ). They also reported a better understanding of students’ personal circumstances, home environment, and even household responsibilities as students turned on their cameras in class (Hadar et al., 2021 ; Kidd & Murray, 2020 ). In many ways, teachers observed their students being more relaxed in class, which enabled teachers to build personal relationships with their students in ways that they had never envisioned before (Marshalsey & Sclater, 2020 ).

Because of the collapse of ‘yishigan’ and the resultant casual and more relaxed classroom dynamics in the new spatiality, some teachers adapt to the ‘online etiquette’ by using emojis and GIFs when communicating with students (Marshalsey & Sclater, 2020 ). Also, the fact that students may be more technology-competent than teachers meaningfully shifts the dynamic of the teacher-student relationship in the ERT classroom (Kidd & Murray, 2020 ), for teachers often solicited help from students on questions regarding technology use, and during this process teachers increasingly saw students as their partners in teaching rather than subordinates to themselves (Cutri et al., 2020 ). As Cutri et al. ( 2020 ) remark, ‘the negative connotations of risk-taking and making mistakes while learning to teach online seem to have been mitigated by a combination of affective factors such as humility, empathy, and even optimism’ (p. 523). As an experience of vulnerability, ERT has grounded and humbled teachers, allowing them to develop both more appreciation for self-care (Eringfeld, 2021 ), and more empathy for students (Khoza & Mpungose, 2020 ; Kidd & Murray, 2020 ).

Teachers realised the salience of exercising care for students and themselves and considering the emotionality of students, especially those in vulnerable states (Alqabbani et al., 2020 ; Sales et al., 2020 ). Pastoral care took priority during particularly distressing periods when students were most in need of emotional support (Sobaih et al., 2020 ; Tejedor et al., 2020 ). All these examples suggest that under the new spatial–temporal reorientation an intricate web of human relations has evolved and, to varying degrees, been revitalised.

Work-related implications

The task of transitioning teaching to an alternative mode is only one of the many challenges teachers face in the larger contexts of academia during the pandemic period (Cutri et al., 2020 ). Although the extra time seemingly freed up by, say, the lack of commutes is highly valued for student support, self-care or family care (Eringfeld, 2021 ; Kidd & Murray, 2020 ; Tejedor et al., 2020 ), there has also been an excessive intensification of workload in preparation for ERT (Khan et al., 2020 ; Lu, 2020 ; Mouchantaf, 2020 ; Said et al., 2021 ), and this is expected to last for a few years into the post-ERT era (Watermeyer et al., 2021 ). When working from home, teachers received as many as hundreds of students’ inquiries throughout the day via various applications (Alsadoon & Turkestani, 2020 ; Sobaih et al., 2020 ). Coupled with the pressure to prove that work has been conducted remotely (Kidd & Murray, 2020 ; Marshalsey & Sclater, 2020 ), some teachers report feeling compelled to be present online around the clock. The ‘timelessness’ of working remotely in a home setting has been succinctly summarised by a teacher: ‘it is too easy to “just send one more email”’ (Watermeyer et al., 2021 ). The praxis and boundaries of academic work were shifted and reconstructed in ways many perceived as intrusive into the personal life sphere and deteriorative to work-life balance and also teachers’ well-being and occupational welfare (Watermeyer et al., 2021 ).

In addition, with looming financial challenges to the HE sector, casualised and untenured staff reported an elevated feeling of job precarity because their extra commitment to teaching cuts into time for other academic work, such as publishing research—which they perceived as often prioritised over teaching efforts in HE career progression (Cutri et al., 2020 ). Some reported that these teachers’ vulnerability was compounded by the management’s misperception that teaching remotely during emergency lightens teachers’ workload, and by their misinterpretation that low scores given by students on evaluations of ERT are a marker of ‘teacher quality’ rather than a way for students to express disinclination towards ERT in general (Watermeyer et al., 2021 ).

Technology use in ERT was further complicated by the need for swift re-coordination of private routines and domestic spaces to make room for professional work. A teacher, for example, asked all household members to disconnect from the Wi-Fi when teaching (Kidd & Murray, 2020 ). Having a separate, free-of-disturbance workspace at home is a luxury that not many teachers could afford (Gyampoh et al., 2020 ; Joshi et al., 2020 ) especially in contexts like Pakistan where joint families may live together in a crowded household (Said et al., 2021 ). Due to the non-separation of home/workspaces, customary parameters between the private and public domains were being reconstituted, and the boundaries between teachers’ personal and professional identities became blurry (Khoza & Mpungose, 2020 ). Consequently, female academics with caring responsibilities were disproportionately affected, and increasingly teachers found themselves struggling to perform either role well (Watermeyer et al., 2021 ).

In the larger context of HE, teachers were also worried about the ‘placelessness’ of HE during lockdowns and that the role of HE as an embodied, communal space for teaching and learning, self-formation, and socialisation was being undermined (Eringfeld, 2021 ). In two studies based in the UK (Eringfeld, 2021 ; Watermeyer et al., 2021 ), the accounts of their teacher participants add up to a strong ‘dystopian’ rhetoric, reflecting their fears that the ERT migration epitomises the beginning of a prolonged contraction of HE as an on-campus experience and monetisation of part of the HE experience driven largely by massification but not quality, thereby undermining the core academic values and humanising aims of HE.

Not all studies reviewed painted a consistently gloomy picture of the work-related implications of ERT and technology use. Some studies note that the compulsory, emergency move to remote teaching may have offered multiple opportunities. For example, in some propitious circumstances, teachers were able to constitute their networking spaces online to channel mutual support and facilitate exchanges on technology use. There are also reports that more trust was placed on technology specialists, technicians, and younger faculty who were often seen as more technologically adept and relied upon during ERT (Watermeyer et al., 2021 ). Moreover, the infrastructural divisions that used to separate departments on a physical campus are largely dismantled with the migration to ERT, enabling possibilities of various forms of inter-departmental communication and cross-disciplinary collaboration (Tejedor et al., 2020 ) and thereby making HE a flatter-structured and less hierarchically-organised workplace for teachers (Eringfeld, 2021 ).

Cross-cutting implications

Some of the teachers in the studies reviewed commented on the potential of ERT to undermine the ethos of the academic profession and imperil the work of academics. They noted that ERT could be pedagogically regressive, as teachers’ role may be reduced to merely technical functions, such as uploading materials online. This challenged their beliefs about what good teaching entails and compromised their often long-established pedagogical practices (Watermeyer et al., 2021 ). Other teachers struggled with balancing depth in their teaching with what they saw as their students’ preference for over-simplified yet visually appealing inputs such as bite-sized explanations shared on TikTok and other social media (Sales et al., 2020 ). Some anticipate worrying trends of ‘dumbing down’ of HE if teaching continues to be impersonal, disembodied and mediated predominantly by digital technologies in the post-ERT era (Watermeyer et al., 2021 ).

We have discussed so far the changes to HE teaching due to the relocation to newly formed spaces, as reported in the studies reviewed. Yet, some principles and values that teachers apply to guide their teaching practices remained unchanged amidst the ongoing crisis. These include the upholding of integrity, academic transparency, privacy, and other ethical principles in teaching (Mouchantaf, 2020 ). For example, teachers were concerned about the potential collection of students’ data for third-party use without prior informed consent (Diningrat et al., 2020 ; Joshi et al., 2020 ). Others also recognise the importance for students of using technology responsibly (Gyampoh et al., 2020 ) and being equipped with critical and reflective thinking capacity to evaluate the accuracy and relevance of information online (Sales et al., 2020 ; Tejedor et al., 2020 ), including resisting the temptation to reuse others’ ideas as their own work (Dampson et al., 2020 ) and refraining from using improper language on social media (Ghounane, 2020 ; Sobaih et al., 2020 ). This was especially relevant during the absence of teacher’s in-person monitoring, when the responsibility to access and study educational materials was partially shifted to students (Gyampoh et al., 2020 ), many of whom were inclined to explore topics of interest on their own (Marshalsey & Sclater, 2020 ; Mideros, 2020 ; Sales et al., 2020 ).

For teachers themselves, their practical wisdom and professional deliberation to ‘consider when, why, and how to use technology properly’ (Diningrat et al., 2020 , p. 706) were put to the test during the emergency contexts of teaching. A teacher participant in the study by Cutri et al. ( 2020 ) shared his belated reflection on an inadvertent, frivolous ridicule he had made about a student’s slow internet speed in front of the entire class online. This anecdote alludes to two problems looming in the wider context of HE teaching: (1) the largely absent code of conduct that delineates appropriate practices and roles of teachers and students in the new spatiality (and this can be due partly to the short time horizon in ERT); and (2) the difficulty for teachers to create supportive yet private spaces to address equity issues and attend to students’ emotionality in strict confidence when being online (Cutri et al., 2020 ).

Teachers participating in the studies reviewed in this paper indicated a multiplicity of factors that interacted to shape their technology use during the ERT period. In line with Liu et al. ( 2020 )’s pre-pandemic work, we find strong evidence that technology use in teaching is a context-sensitive, socially-embedded topic of study and hence should be understood in the socio-political, cultural and material context in which academics and students are situated (Selwyn et al., 2020 ). For example, the label ‘technical issues’ could encompass a wide range of contextualised problems, from power outages to long commutes for Internet access, from material shortages to widespread hunger, from trenchant poverty to deep-seated structured inequalities, which afflict disproportionately relatively poor, underserved communities and the most disadvantaged segments of populations (Chan et al., 2022 ) but are also palpable within higher-income countries/regions [see, for example, Cullinan et al. ( 2021 ) for a study on broadband access disparities in Ireland].

The narrative account we constructed is indicative of the resourcefulness and resilience of teachers to continue teaching during the crisis, even those in marginalised communities where resources are limited. This view is also shared by Padilla Rodríguez et al. ( 2021 ) who study the changes teachers in rural Mexico have made to their teaching practice in response to the suspension of in-person classes without receiving much external support during the pandemic. Around the world, teachers forayed into ERT during times of uncertainty by seeking to empower themselves and exploring various technological artefacts in teaching on their own, on the one hand; and by endorsing mutual empowerment and drawing inspiration from amongst their peers, on the other. Their collective efforts in supporting one another in the wake of crisis created what Matthewman and Uekusa ( 2021 ) call ‘disaster communitas’, which temporarily served to support teachers when adapting to the hasty conversion to ERT. We concur with Hickling et al. ( 2021 ) that the creation of a supportive space and environment for HE teachers to commiserate, discuss experiences, and share insights and resources with colleagues helps advance teaching practices with technology.

In answering the second research question, we have discussed at length the implications of a more encompassing use of technology in ERT and how evolving notions of space and time combined to reconstitute teacher-student relationships and the nature of academics’ work (Williamson et al., 2020 ). The studies reviewed indicate that the rushed transition to ERT has affected the sense of professional identity of academics as HE teachers (Littlejohn et al., 2021 ) in ways that are as yet only partly explored. Echoing the findings of Ramlo ( 2021 ), we believe that teachers’ negotiation of the blurring home-workspace boundaries (Blumsztajn et al., 2022 ; Littlejohn et al., 2021 ) and attempts to rebalance their professional work and personal life have important implications for future HE teaching and merit further investigation (Gourlay et al., 2021 ).

As COVID-19 continues to take a toll on people’s lives, we draw on the studies reviewed to emphasise the importance of re-prioritising the value of social and emotional connections in HE teaching, as well as the overall well-being of both teachers and students (Baker et al., 2022 ; Yeung & Yau, 2021 ). ‘Networks of care’ between teachers and students as well as amongst teachers themselves may be constructed to ameliorate uncertainties brought by the pandemic (Czerniewicz et al., 2020 ; Joseph & Trinick, 2021 ). Elements of care can be developed by simple acts of kindness (Murray et al., 2020 ) and gestures to communicate approachability (Glantz et al., 2021 ), all of which contribute to constructing more supportive and less hierarchical teacher-student relationships in the digital context. We note, however, that evidence scattered across the studies reviewed indicates that academic recognition and reward systems have not accounted well for the creative efforts that academics (including casualised and untenured staff) have put into teaching and maintaining relationships with their colleagues and students in response to the ongoing challenges ensuing from the coronavirus crisis. This is another priority for HEIs and leadership teams. On a final note, future research may explore further, innovative ways in which HE teaching can be reconstituted in the presence and context of technology without undermining teachers’ professional identity or compromising the revitalisation of teaching as an embodied, communal, and humanising experience as campuses around the world re-open, in full or in part, for in-person activities in post-pandemic times.

Appendix 1. A detailed version of inclusion/exclusion criteria

 

Inclusion

Exclusion

Publication types

Peer-reviewed original empirical research journal articles

Books, reviews, opinion and reflection pieces, conference proceedings, and non-peer-reviewed articles

Publication date

Published in 2020 (including those published ahead of print in 2020)

Not published in 2020

Languages

Written in English and/or in Chinese

Written in other languages than in English or Chinese

Focus of study

Focus on technology use in emergency remote teachingT from teachers’ perspectives

Focus on technology use in non-teaching domains or emphasise other stakeholders’ perspectives

Settings

Data collected during and/or after the COVID-19 outbreak in higher education settings, i.e., Levels 6 to 8 of the International Standard Classification of Education 2011 (UNESCO Institute for Statistics, )

Data collected before the COVID-19 outbreak and/or in non-higher education settings

Disciplinary areas

At least 50% of higher education teacher participants are from humanities, arts, and social sciences (HASS) disciplines, which can be readily mapped against the Common Aggregation Hierarchy disciplinary groupings 14 to 23 in (Higher Education Statistical Agency, n.d.)

Over 50% of higher education teacher participants are from science, technology, engineering, maths, medicine (STEMM), and other non-HASS disciplines

Appendix 2. Search terms in English and Chinese (note that the search strategy varied slightly across databases due to the different limits they set on the length of search input)

Key terms

Higher education

 

Technology-related

 

Teaching

 

COVID

Version 1 (Dimensions.ai, EBSCO, SAGE, ProQuest, Scopus, Web of Science)

("higher education" OR tertiary OR universit* OR college* OR post-secondary OR "post secondary" OR postsecondary OR faculty OR professor* OR lecturer*)

AND

(online OR on-line OR e-learn* OR elearn* OR remote* OR virtual* OR "virtual reality" OR "augmented reality" OR “mixed reality” OR distance educat* OR distance teach* OR distance learn* OR digital* OR learning platform* OR technolog* OR ICT OR instruction* technolog* OR education* technolog* OR edtech OR learning platform* OR learning technolog* OR technology-enhanced OR telecommunicat* OR tele-communicat* OR tele-conferenc* OR teleconferenc* OR multimedia OR "multi media" OR multi-media OR web* OR learning site* OR cyberlearning OR video* OR Zoom OR mobile app* OR "mobile learning" OR m-learn* OR mlearn* OR mobile technolog* OR LMS* OR Learning Management System* OR "social media" OR social network* OR SNS* OR facebook OR twitter OR instagram OR youtube OR whatsapp OR MOOC* OR massive open online course* OR OER OR Open Educational Resource* OR synchronous OR asynchronous OR flexible learn* OR blended learn* OR hybrid learn* OR flipped class* OR game* OR gamif* OR collaborat* platform* OR forum* OR e-forum* OR online forum* OR blog* OR portfolio* OR Google OR "artificial intelligence" OR AI)

AND

(teach* OR educat* OR instruct* OR pedagog*)

AND

(COVID OR COVID-19 OR coronavirus OR CoV OR CV-19 OR SARS-CoV-2 OR 2019-nCoV OR pandemic*)

Version 2 (ACM, PsychINFO, WHO)

Same as above

AND

(online OR on-line OR e-learn* OR remote* OR virtual* OR distanc* OR digital* OR digiti* OR technolog* OR edtech OR media OR web* OR synchronous OR hybrid OR blended)

AND

Same as above

AND

Same as above

Version 3 (IEEE Xplore, Google Scholar)

(“Higher Education” OR University OR Faculty)

AND

(Online OR Education* Technolog* OR Digital* OR Virtual* OR E-learning)

AND

same as above

AND

(COVID-19 OR coronavirus OR pandemic)

Chinese databases (CNKI, CQVIP, Wanfang)

(大学 + 高等教育 + 学院 + 高等学校 + 高校 + 院校 + 本科 + 研究生)

AND

(线上 + 在线 + 网 + 远程 + 远距离 + 遥距 + 云端 + 视频 + 科技 + 平台 + 电子 + 百度 + 微博 + 抖音 + 慕课 + 直播 + 雨课堂 + 钉钉 + 微信 + QQ + 腾讯 + "Zoom" + 超星)

AND

(课堂 + 教师 + 教室 + 課程 + 教育 + 老师 + 讲师 + 教授 + 学生 + 学习 + 学堂 + 教学)

AND

(COVID + COVID-19 + coronavirus + corona + 新型冠状 + 新冠 + 病毒 + 肺炎 + 疫情 + 停课)

Appendix 3. PRISMA 2020 flow diagram for systematic review (Page et al., 2021 )

figure a

Appendix 4. Quality and relevance assessment rubric and the average scores of the 32 included studies (adapted from Oancea et al., 2021 )

Assessment criteria

Strength of conceptualisation or theory

Rigour in argument and empirical study

Appropriateness of approach

Well-grounded conclusions and recommendations

Thoughtful discussion and interpretation

Relevance to this systematic review

Explanation

• Critical engagement with the concepts

• Critical use of terminology

• Detailed, critical presentation of the warrant for the research

• Strong, error-free design

• Awareness of limitations

• Methods and analysis fit RQ(s) and study objective(s)

• Consistency of focus

• Alignment of analytic techniques and data collection

• Conclusions and recommendations clearly arising from evidence and argument presented

• Appropriate and warranted generalisations

• Richness of insight, including (potentially unique) understanding of the field

• Appropriate depth, reflection, and criticality

• Coverage and foci of study overlap extensively with those of this review

Average score of studies included (out of 4.0)

2.38

3.0

2.91

2.81

2.91

2.97

  • a Score description: 4—criterion fully met; 3—criterion mostly met, though with some weaknesses; 2—criterion only partly met, with several or serious weaknesses; 1—criterion largely not met

Appendix 5. Data extraction grid

No

Items to extract

Description

Reviewers’ column

1

Reference

• Include the reference of paper using the APA in-text citation style

 

2

Authors’ affiliation(s)

• If more than one author, state the first author's affiliation first

 

3

Funder

• State all source(s) of funding

 

4

Focus of study

• State all major research foci, topics, and objectives

 

5

RQ(s) or hypotheses

• State all RQ(s), problem statement(s) and/or hypothes(es)

 

6

Target population

• State the target population of the study

• Include details of the HE institutions under study

• Name the countries/regions that the institution(s) under study are in

 

7

Theoretical underpinnings

• State all theories or models used to support research formulation and analysis

 

8

Conceptualization of technology

• Discuss how the concept of ‘technology’ and terms alluding to it are defined, used, and conceptualized throughout the paper

 

9

Conceptualization of ‘emergency remote teaching’

• Discuss how the concept of ‘emergency remote teaching’ and terms alluding to it are understood (often in relation to regular ‘online teaching’) throughout the paper

 

10

Methodology

• State the details of research approach, methods used, and rationale (if any) for such methodology

 

11

Sampling

• Include details such as population size, sampling strategies, sampling frame, and sample size

 

12

Data collection and recruitment

• Include participant recruitment strategies, response rates, and other information (including pilot studies) about collecting data from participants

 

13

Context of study

• Include details such as the duration of data collection, the country/region’s COVID-19 infection rates and government reactions, HE management policies and arrangements during the period of study

 

14

Teacher participants’ characteristics

• Include details e.g. age, gender, educational attainment, years of experience, academic rank, employment status, disciplines, and any other demographic and descriptive information about HE teacher participants

 

15

Data analysis

• Include the analytical approaches and methods used by researcher(s) to analyse their data collected from participants

 

16

Findings

• Highlight all major findings, implications, results, and conclusions of the study

 

17

Limitations

• Include the study limitations (if any) and measures to overcome these limitations (if any)

 

18

Suggestions

• Include the suggestions for future research and/or practice

 

19

Other

• Include other details e.g. research ethics and researchers’ positionality

• Discuss anything else of interest yet uncaptured by the above categories

 

Appendix 6. Summary of characteristics of 32 reviewed studies

References

Country

Remit

Discipline

Participants (at HE level)

Teacher sample

Approaches

Main focus (in relation to HE teachers in the context of COVID-19 ERT)

Akyürek ( )

Turkey

National

Music

Teachers

46

Mixed (interview)

Teachers’ preparation, planning for ERT and problems faced

Alqabbani et al. ( )

Saudi Arabia

Local

Multi-discipline

Teachers

401

Quantitative (survey)

Teachers’ readiness, perceived effectiveness and attitudes towards ERT

Alsadoon and Turkestani ( )

Saudi Arabia

Local

Multi-discipline

Teachers

11

Qualitative (interview)

Obstacles teachers of hearing-impaired students faced during ERT

Bailey and Lee ( )

South Korea

National

Language

Teachers

43

Quantitative (survey)

Expected benefits and challenges of implementing ERT for teachers of different online teaching experiences

Callo and Yazon ( )

The Philippines

Local

Multi-discipline

Students and teachers

348

Quantitative (survey)

Factors influencing teachers’ readiness for ERT

Cutri et al. ( )

United States

Local

Education

Teachers

30

Mixed (survey and interview)

Teachers’ readiness for ERT, especially the affective and cultural dimensions

Dampson et al. ( )

Ghana

Local

Education

Students and teachers

20

Mixed (survey and interview)

Teachers’ perceived SWOT of using their university’s Learning Management System

Diningrat et al. ( )

Indonesia

National

Education

Teachers

73

Quantitative (survey)

Teachers’ perceived barriers to ERT and general pedagogical competencies

Eringfeld ( )

United Kingdom

Local

Education

Students and teachers

4

Qualitative (interview and podcasting for sound elicitation)

Teachers’ utopian hopes and dystopian imaginaries for higher education during and after the pandemic

Gao and Zhang ( )

China

Local

Language

Teachers

3

Qualitative (interview and written reflections)

Teachers’ cognitions about ERT and acquisition of ICT literacy at the initial outbreak of COVID-19

Ghounane ( )

Algeria

Local

Language

Students and teachers

8

Mixed (survey and interview)

Teachers’ motivations and views of using Moodle and social media in ERT

Gyampoh et al. ( )

Ghana

Provincial

Education

Teachers

24

Qualitative (interview)

Teachers’ perceived personal and institutional readiness for ERT

Hadar et al. ( )

Israel

Local

Education

Teachers

33

Qualitative (survey and interview)

Adaptation of teaching methods in the clinical component of teacher education preservice curriculum and the shift to social emotional learning during ERT

Joshi et al. ( )

India

Provincial

Multi-discipline

Teachers

19

Qualitative (interview)

Barriers faced by teachers when conducting ERT in different home settings

Khan et al. ( )

Bangladesh

National

Language

Teachers

22

Qualitative (interview)

Challenges faced by teachers in ERT and teachers’ suggestions for overcoming them

Khoza and Mpungose ( )

South Africa

Local

Education

Teachers

20

Qualitative (survey and interview)

Teachers’ transformation experiences and values that facilitated the embracing of the ‘digitalised curriculum’ during ERT

Kidd and Murray ( )

United Kingdom

Provincial

Education

Teachers

14

Qualitative (survey and interview)

Teachers’ experiences and challenges in the ERT period of moving the preservice teacher education practicum to new online spaces

Lu ( )

China

Local

Interpretation

Students and teachers

10

Mixed (survey and interview)

Comparison between students and teachers’ experiences, perceived effectiveness, benefits, and shortcomings of ERT

Marshalsey and Sclater ( )

Australia

Local

Art & design

Students and teachers

9

Qualitative (survey and secondary data)

Teachers’ involvement with online tools and platforms and their lived experiences during ERT

Mideros ( )

Trinidad and Tobago

Local

Language

Students and teachers

8

Qualitative (survey and interview)

Teachers’ attempts to promote out-of-class learning of Spanish during the period of ERT

Mouchantaf ( )

Lebanon

National

Language

Teachers and administrators

50

Quantitative (survey)

Factors affecting the smooth transition to ERT and teachers’ perceived advantages and disadvantages of ERT

Ren ( )

China

Local

Interpretation

Students and teachers

31

Mixed (survey and social media analysis)

Teachers’ experiences, communications with colleagues, and changes in attitudes and competencies during ERT

Said et al. ( )

Pakistan

Local

Business

Teachers

7

Qualitative (interview)

Teachers’ lived experiences, attitudes, and challenges during ERT

Sales et al. ( )

Spain

National

Multi-discipline

Teachers

20

Qualitative (interview)

Teachers’ attitudes towards ERT and perceptions of students and their own levels of ‘information and digital competence’

Scherer et al. ( )

58 countries worldwide

Global

Multi-discipline

Teachers

739

Quantitative (survey)

Factors associated with the profiles of different teachers’ readiness for ERT

Sobaih et al. ( )

Egypt

National

Tourism and hospitality

Students and faculty

304

Mixed (survey and interview)

Comparison of students and teachers’ uses of social media and challenges faced by them

Tang et al. ( )

China

Local

Multi-discipline

Teachers

331

Quantitative (survey)

Teachers’ attitudes towards ERT and their prior experiences in online teaching

Tanga et al. ( )

South Africa

Provincial

Social work

Students and teachers

12

Qualitative (interview)

Teachers and students’ experiences, attitudes, and challenges when implementing ERT

Tartavulea et al. ( )

13 European countries

Regional (Europe)

Economics and business

Students and teachers

114

Quantitative (survey)

Teachers’ use of technologies in ERT compared to before, factors influencing the ERT process, the impact and effectiveness of ERT

Tejedor et al. ( )

Spain, Italy, Ecuador

Multi-national

Multi-discipline

Students and teachers

196

Quantitative (survey)

Teachers’ attitudes and their perceived positive and negative aspects of ERT

Watermeyer et al. ( )

United Kingdom

National

Multi-discipline

Teachers

1,148

Mixed (survey)

Teachers’ feelings and experiences with ERT, and the impact of it on teachers’ role, their work, and the higher education sector

Zeng ( )

China

Provincial

Multi-discipline

Students and teachers

627

Quantitative (survey)

Teachers’ pre-COVID experience in online teaching and the impact of ERT on teachers’ work

  • a The references of four articles show the publication year of 2021. These four articles were published online ahead of print in 2020 and hence are included in this study

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Adedoyin, O. B., & Soykan, E. (2020). Covid-19 pandemic and online learning: The challenges and opportunities. Interactive Learning Environments . https://doi.org/10.1080/10494820.2020.1813180

Article   Google Scholar  

Akyürek, R. (2020). The views of lecturers about distance music education process in the pandemic period. International Journal of Education Technology and Scientific Researches, 5 (13), 1790–1833. https://doi.org/10.35826/ijetsar.262

Alqabbani, S., Almuwais, A., Benajiba, N., & Almoayad, F. (2020). Readiness towards emergency shifting to remote learning during COVID-19 pandemic among university instructors. E-Learning and Digital Media, 18 (5), 460–479. https://doi.org/10.1177/2042753020981651

Alsadoon, E., & Turkestani, M. (2020). Virtual classrooms for hearing-impaired students during the COVID-19 pandemic. Romanian Journal for Multidimensional Education, 12 (1, Sup. 2), 1–8. https://doi.org/10.18662/rrem/12.1sup2/240

Amunga, J. (2021). Leveraging technology to enhance STEM education amidst the Covid-19 pandemic: An overview of pertinent concerns. Technium Social Sciences Journal, 18 (1), 40–55. https://doi.org/10.47577/tssj.v18i1.3044

An, T., & Oliver, M. (2021). What in the world is educational technology? Rethinking the field from the perspective of the philosophy of technology. Learning, Media and Technology, 46 (1), 6–19. https://doi.org/10.1080/17439884.2020.1810066

Bailey, D. R., & Lee, A. R. (2020). Learning from experience in the midst of covid-19: Benefits, challenges, and strategies in online teaching. Computer-Assisted Language Learning Electronic Journal, 21 (2), 176–196.

Google Scholar  

Baker, S., Anderson, J., Burke, R., De Fazio, T., Due, C., Hartley, L., Molla, T., Morison, C., Mude, W., Naidoo, L., & Sidhu, R. (2022). Equitable teaching for cultural and linguistic diversity: Exploring the possibilities for engaged pedagogy in post-COVID-19 higher education. Educational Review . https://doi.org/10.1080/00131911.2021.2015293

Blumsztajn, A., Koopal, W., Rojahn, P., Schildermans, H., Thoilliez, B., Vlieghe, J., & Wortmann, K. (2022). Offline memos for online teaching: A collective response to The manifesto for teaching online (Bayne et al. 2020). Postdigital Science and Education . https://doi.org/10.1007/s42438-022-00286-4

Bond, M., Bedenlier, S., Marín, V. I., & Händel, M. (2021). Emergency remote teaching in higher education: Mapping the first global online semester. International Journal of Educational Technology in Higher Education, 18 , 50. https://doi.org/10.1186/s41239-021-00282-x

Broadbent, J., & Poon, W. L. (2015). Self-regulated learning strategies & academic achievement in online higher education learning environments: A systematic review. The Internet and Higher Education, 27 , 1–13. https://doi.org/10.1016/j.iheduc.2015.04.007

Callo, E. C., & Yazon, A. D. (2020). Exploring the factors influencing the readiness of faculty and students on online teaching and learning as an alternative delivery mode for the new normal. Universal Journal of Educational Research, 8 (8), 3509–3518. https://doi.org/10.13189/ujer.2020.080826

Chakraborty, P., Mittal, P., Gupta, M. S., Yadav, S., & Arora, A. (2021). Opinion of students on online education during the COVID-19 pandemic. Human Behavior and Emerging Technologies, 3 (3), 357–365. https://doi.org/10.1002/hbe2.240

Chan, R. Y., Bista, K., & Allen, R. M. (Eds.). (2022). Online teaching and learning in higher education during COVID-19: International perspectives and experiences . Routledge.

Costa, C., Hammond, M., & Younie, S. (2019). Theorising technology in education: An introduction. Technology, Pedagogy and Education, 28 (4), 395–399. https://doi.org/10.1080/1475939X.2019.1660089

Crawford, J., Butler-Henderson, K., Rudolph, J., Malkawi, B., Glowatz, M., Burton, R., Magni, P. A., & Lam, S. (2020). COVID-19: 20 countries’ higher education intra-period digital pedagogy responses. Journal of Applied Learning & Teaching, 3 (1), 9–28. https://doi.org/10.37074/jalt.2020.3.1.7

Cullinan, J., Flannery, D., Harold, J., Lyons, S., & Palcic, D. (2021). The disconnected: COVID-19 and disparities in access to quality broadband for higher education students. International Journal of Educational Technology in Higher Education, 18 , 26. https://doi.org/10.1186/s41239-021-00262-1

Cutri, R. M., Mena, J., & Whiting, E. F. (2020). Faculty readiness for online crisis teaching: Transitioning to online teaching during the COVID-19 pandemic. European Journal of Teacher Education, 43 (4), 523–541. https://doi.org/10.1080/02619768.2020.1815702

Czerniewicz, L., Agherdien, N., Badenhorst, J., Belluigi, D., Chambers, T., Chili, M., de Villiers, M., Felix, A., Gachago, D., Gokhale, C., Ivala, E., Kramm, N., Madiba, M., Mistri, G., Mgqwashu, E., Pallitt, N., Prinsloo, P., Solomon, K., Strydom, S., … Wissing, G. (2020). A wake-up call: Equity, inequality and Covid-19 emergency remote teaching and learning. Postdigital Science and Education, 2 (3), 946–967. https://doi.org/10.1007/s42438-020-00187-4

Dampson, D. G., Addai-Mununkum, R., Apau, S. K., & Bentil, J. (2020). COVID-19 and online learning: A SWOT analysis of users’ perspectives on learning management system of University of Education, Winneba, Ghana. International Journal of Learning, Teaching and Educational Research, 19 (9), 382–401. https://doi.org/10.26803/ijlter.19.9.20

Dedeilia, A., Sotiropoulos, M. G., Hanrahan, J. G., Janga, D., Dedeilias, P., & Sideris, M. (2020). Medical and surgical education challenges and innovations in the COVID-19 era: A systematic review. In Vivo, 34 (3 suppl), 1603–1611. https://doi.org/10.21873/invivo.11950

Dhawan, S. (2020). Online learning: A panacea in the time of COVID-19 crisis. Journal of Educational Technology Systems, 49 (1), 5–22. https://doi.org/10.1177/0047239520934018

Diningrat, S., Nindya, M., & Salwa, S. (2020). Emergency online teaching: Early childhood education lecturers’ perception of barrier and pedagogical competency. Jurnal Cakrawala Pendidikan, 39 (3), 705–719. https://doi.org/10.21831/cp.v39i3.32304

Eringfeld, S. (2021). Higher education and its post-coronial future: Utopian hopes and dystopian fears at Cambridge University during Covid-19. Studies in Higher Education, 46 (1), 146–157. https://doi.org/10.1080/03075079.2020.1859681

Ferdig, R. E., Baumgartner, E., Hartshorne, R., Kaplan-Rakowski, R., & Mouza, C. (Eds.). (2020). Teaching, technology, and teacher education during the COVID-19 pandemic: Stories from the field . Association for the Advancement of Computing in Education.

Gao, L. X., & Zhang, L. J. (2020). Teacher learning in difficult times: Examining foreign language teachers’ cognitions about online teaching to tide over COVID-19. Frontiers in Psychology, 11 , 549653. https://doi.org/10.3389/fpsyg.2020.549653

Gaur, U., Majumder, M. A. A., Sa, B., Sarkar, S., Williams, A., & Singh, K. (2020). Challenges and opportunities of preclinical medical education: COVID-19 crisis and beyond. SN Comprehensive Clinical Medicine, 2 (11), 1992–1997. https://doi.org/10.1007/s42399-020-00528-1

Ghounane, N. (2020). Moodle or social networks: What alternative refuge is appropriate to Algerian EFL students to learn during COVID-19 pandemic. Arab World English Journal, 11 (3), 21–41. https://doi.org/10.24093/awej/vol11no3.2

Glantz, E., Gamrat, C., Lenze, L., & Bardzell, J. (2021). Improved student engagement in higher education’s next normal. EDUCAUSE Review . https://er.educause.edu/articles/2021/3/improved-student-engagement-in-higher-educations-next-normal

Gordon, M., Patricio, M., Horne, L., Muston, A., Alston, S. R., Pammi, M., Thammasitboon, S., Park, S., Pawlikowska, T., Rees, E. L., Doyle, A. J., & Daniel, M. (2020). Developments in medical education in response to the COVID-19 pandemic: A rapid BEME systematic review: BEME Guide No. 63. Medical Teacher, 42 (11), 1202–1215. https://doi.org/10.1080/0142159X.2020.1807484

Gough, D., Oliver, S., & Thomas, J. (2017). Introducing systematic reviews. In D. Gough, S. Oliver, & J. Thomas (Eds.), An introduction to systematic reviews (2nd ed., pp. 1–18). Sage.

Gourlay, L., Littlejohn, A., Oliver, M., & Potter, J. (2021). Lockdown literacies and semiotic assemblages: Academic boundary work in the Covid-19 crisis. Learning, Media and Technology, 46 (4), 377–389. https://doi.org/10.1080/17439884.2021.1900242

Granić, A., & Marangunić, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology, 50 (5), 2572–2593. https://doi.org/10.1111/bjet.12864

Gyampoh, A. O., Ayitey, H. K., Fosu-Ayarkwah, C., Ntow, S. A., Akossah, J., Gavor, M., & Vlachopoulos, D. (2020). Tutor perception on personal and institutional preparedness for online teaching-learning during the COVID-19 crisis: The case of Ghanaian Colleges of Education. African Educational Research Journal, 8 (3), 511–518. https://doi.org/10.30918/AERJ.83.20.088

Hadar, L. L., Alpert, B., & Ariav, T. (2021). The response of clinical practice curriculum in teacher education to the Covid-19 breakout: A case study from Israel. Prospects, 51 , 449–462. https://doi.org/10.1007/s11125-020-09516-8

Hickling, S., Bhatti, A., Arena, G., Kite, J., Denny, J., Spencer, N. L., & Bowles, D. C. (2021). Adapting to teaching during a pandemic: Pedagogical adjustments for the next semester of teaching during COVID-19 and future online learning. Pedagogy in Health Promotion, 7 (2), 95–102. https://doi.org/10.1177/2373379920987264

Higher Education Statistical Agency. (n.d.). The higher education classification of subjects (HECoS) . Retrieved from https://www.hesa.ac.uk/support/documentation/hecos

Hodges, C. B., Moore, S., Lockee, B. B., Trust, T., & Bond, M. A. (2020). The difference between emergency remote teaching and online learning. EDUCAUSE Review . https://er.educause.edu/articles/2020/3/the-difference-between-emergency-remote-teaching-and-online-learning

Jandrić, P., Hayes, D., Truelove, I., Levinson, P., Mayo, P., Ryberg, T., Monzó, L. D., Allen, Q., Stewart, P. A., Carr, P. R., Jackson, L., Bridges, B., Escaño, C., Grauslund, D., Mañero, J., Lukoko, H. O., Bryant, P., Fuentes-Martinez, A., Gibbons, A., & Hayes, S. (2020). Teaching in the age of Covid-19—1 year later. Postdigital Science and Education, 3 (3), 1073–1223. https://doi.org/10.1007/s42438-021-00243-7

Joseph, D., & Trinick, R. (2021). ‘Staying apart yet keeping together’: Challenges and opportunities of teaching during COVID-19 across the Tasman. New Zealand Journal of Educational Studies, 56 (2), 209–226. https://doi.org/10.1007/s40841-021-00211-6

Joshi, A., Vinay, M., & Bhaskar, P. (2020). Impact of coronavirus pandemic on the Indian education sector: Perspectives of teachers on online teaching and assessments. Interactive Technology and Smart Education, 18 (2), 205–226. https://doi.org/10.1108/ITSE-06-2020-0087

Khan, R., Bashir, A., Basu, B. L., & Uddin, M. E. (2020). Emergency online instruction at higher education in Bangladesh during COVID-19: Challenges and suggestions. The Journal of Asia TEFL, 17 (4), 1497–1506. https://doi.org/10.18823/asiatefl.2020.17.4.26.1497

Khoza, S. B., & Mpungose, C. B. (2020). Digitalised curriculum to the rescue of a higher education institution. African Identities . https://doi.org/10.1080/14725843.2020.1815517

Kidd, W., & Murray, J. (2020). The Covid-19 pandemic and its effects on teacher education in England: How teacher educators moved practicum learning online. European Journal of Teacher Education, 43 (4), 542–558. https://doi.org/10.1080/02619768.2020.1820480

Lee, J., & Jung, I. (2021). Instructional changes instigated by university faculty during the COVID-19 pandemic: The effect of individual, course and institutional factors. International Journal of Educational Technology in Higher Education, 18 , 52. https://doi.org/10.1186/s41239-021-00286-7

Littlejohn, A., Gourlay, L., Kennedy, E., Logan, K., Neumann, T., Oliver, M., Potter, J., & Rode, J. A. (2021). Moving teaching online: Cultural barriers experienced by university teachers during Covid-19. Journal of Interactive Media in Education, 1 (7), 1–15. https://doi.org/10.5334/jime.631

Liu, Q., Geertshuis, S., & Grainger, R. (2020). Understanding academics’ adoption of learning technologies: A systematic review. Computers & Education, 151 , 103857. https://doi.org/10.1016/j.compedu.2020.103857

Lu, X. C. (2020). Jiyu shiping huiyi pingtai de yuancheng tongbu kouyi jiaoxue: Yi beiwai gaofan tongsheng chuanyi kecheng wei li [Distance teaching of interpreting: Delivering simultaneous interpreting courses via video conferencing at Graduate School of Translation and Interpretation, Beijing Foreign Studies University]. Zhongguo Fanyi, 42 (4), 76–84.

Marshalsey, L., & Sclater, M. (2020). Together but apart: Creating and supporting online learning communities in an era of distributed studio education. International Journal of Art & Design, 39 (4), 826–840. https://doi.org/10.1111/jade.12331

Matthewman, S., & Uekusa, S. (2021). Theorizing disaster communitas. Theory and Society, 50 (6), 965–984. https://doi.org/10.1007/s11186-021-09442-4

Mercader, C., & Gairín, J. (2020). University teachers’ perception of barriers to the use of digital technologies: The importance of the academic discipline. International Journal of Educational Technology in Higher Education, 17 , 4. https://doi.org/10.1186/s41239-020-0182-x

Mideros, D. (2020). Out-of-class learning of Spanish during COVID-19: A case study in Trinidad and Tobago. Studies in Self-Access Learning Journal, 11 (3), 119–219. https://doi.org/10.37237/110308

Mittal, A., Mantri, A., Tandon, U., & Dwivedi, Y. K. (2021). A unified perspective on the adoption of online teaching in higher education during the COVID-19 pandemic. Information Discovery and Delivery . https://doi.org/10.1108/IDD-09-2020-0114

Mok, K. H., Xiong, W., & Bin Aedy Rahman, H. N. (2021). COVID-19 pandemic’s disruption on university teaching and learning and competence cultivation: Student evaluation of online learning experiences in Hong Kong. International Journal of Chinese Education . https://doi.org/10.1177/22125868211007011

Mouchantaf, M. (2020). The COVID-19 pandemic: Challenges faced and lessons learned regarding distance learning in Lebanese higher education institutions. Theory and Practice in Language Studies, 10 (10), 1259–1266. https://doi.org/10.17507/tpls.1010.11

Murray, C., Heinz, M., Munday, I., Keane, E., Flynn, N., Connolly, C., Hall, T., & MacRuairc, G. (2020). Reconceptualising relatedness in education in ‘distanced’ times. European Journal of Teacher Education, 43 (4), 488–502. https://doi.org/10.1080/02619768.2020.1806820

Na, S., & Jung, H. (2021). Exploring university instructors’ challenges in online teaching and design opportunities during the COVID-19 pandemic: A systematic review. International Journal of Learning, Teaching and Educational Research, 20 (9), 308–327. https://doi.org/10.26803/ijlter.20.9.18

Oancea, A., McDermott, T., Robson, J., Scutt, C., Xu, X., Mun, O., Nuseibeh, N. & Voss, M. (2021). The landscape of educational research in the UK. Report to the Royal Society and British Academy joint enquiry on educational research. London: Royal Society and British Academy.

Padilla Rodríguez, B. C., Armellini, A., & Traxler, J. (2021). The forgotten ones: How rural teachers in Mexico are facing the COVID-19 pandemic. Online Learning, 25 (1), 253–268. https://doi.org/10.24059/olj.v25i1.2453

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372 (71), n71. https://doi.org/10.1136/bmj.n71

Pokhrel, S., & Chhetri, R. (2021). A literature review on impact of COVID-19 pandemic on teaching and learning. Higher Education for the Future, 8 (1), 133–141. https://doi.org/10.1177/2347631120983481

Rajab, M. H., Gazal, A. M., & Alkattan, K. (2020). Challenges to online medical education during the COVID-19 pandemic. Cureus, 12 (7), e8966. https://doi.org/10.7759/cureus.8966

Ramlo, S. (2021). The coronavirus and higher education: Faculty viewpoints about universities moving online during a worldwide pandemic. Innovative Higher Education, 46 (3), 241–259. https://doi.org/10.1007/s10755-020-09532-8

Ren, W. (2020). Yiqing he hou yiqing shidai de kouyi jiaoxue: Jiyu jiaoshi shijiao de anli fenxi yu fansi [Interpretation studies in the pandemic and post-pandemic times: A case analysis and reflections based on teachers’ perspectives]. Zhongguo Fanyi, 42 (6), 69–74.

Resch, K., Alnahdi, G., & Schwab, S. (2022). Exploring the effects of the COVID-19 emergency remote education on students’ social and academic integration in higher education in Austria. Higher Education Research & Development . https://doi.org/10.1080/07294360.2022.2040446

Said, F., Ali, I., & Javed, T. (2021). An interpretative phenomenological analysis of challenges faced by the university teachers in Pakistan amid Covid-19. International Journal of Educational Research and Innovation, 15 , 260–272. https://doi.org/10.46661/ijeri.5256

Salas‐Pilco, S. Z., Yang, Y., Zhang, Z. (2022). Student engagement in online learning in Latin American higher education during the COVID‐19 pandemic: A systematic review. British Journal of Educational Technology, 53 (3), 593–619.

Sales, D., Cuevas-Cerveró, A., & Gómez-Hernández, J. A. (2020). Perspectives on the information and digital competence of social sciences students and faculty before and during lockdown due to Covid-19. Profesional De La Información, 29 (4), e290423. https://doi.org/10.3145/epi.2020.jul.23

Scherer, R., Howard, S. K., Tondeur, J., & Siddiq, F. (2021). Profiling teachers’ readiness for online teaching and learning in higher education: Who’s ready? Computers in Human Behavior, 118 , 106675. https://doi.org/10.1016/j.chb.2020.106675

Selwyn, N. (2022). Education and technology: Key issues and debates . Bloomsbury Publishing.

Book   Google Scholar  

Selwyn, N., Hillman, T., Eynon, R., Ferreira, G., Knox, J., Macgilchrist, F., & Sancho-Gil, J. M. (2020). What’s next for Ed-Tech? Critical hopes and concerns for the 2020s. Learning, Media and Technology, 45 (1), 1–6. https://doi.org/10.1080/17439884.2020.1694945

Singh, V., & Thurman, A. (2019). How many ways can we define online learning? A systematic literature review of definitions of online learning (1988–2018). American Journal of Distance Education, 33 (4), 289–306. https://doi.org/10.1080/08923647.2019.1663082

Singh-Pillay, A., & Naidoo, J. (2020). Context matters: Science, technology and mathematics education lecturers’ reflections on online teaching and learning during the COVID-19 pandemic. Journal of Baltic Science Education, 19 (6A), 1125–1136. https://doi.org/10.33225/jbse/20.19.1125

Sobaih, A. E. E., Hasanein, A. M., & Abu Elnasr, A. E. (2020). Responses to COVID-19 in higher education: Social media usage for sustaining formal academic communication in developing countries. Sustainability, 12 (16), 6520. https://doi.org/10.3390/su12166520

Stewart, W. H. (2021). A global crash-course in teaching and learning online: A thematic review of empirical emergency remote teaching (ERT) studies in higher education during year 1 of COVID-19. Open Praxis, 13 (1), 89–102.

Sum, M., & Oancea, A. (2021). Higher education teachers’ perspectives on technology use in emergency remote teaching during the global pandemic: A systematic literature review. In Proceedings of the Yidan Prize Doctoral Conference (pp. 103-124). Department of Education, University of Oxford. https://yidanprize.org/files/Proceedings-of-the-2021-Yidan-Prize-Doctoral-Conference.pdf .

Talib, M. A., Bettayeb, A. M., & Omer, R. I. (2021). Analytical study on the impact of technology in higher education during the age of COVID-19: Systematic literature review. Education and Information Technologies, 26 , 6719–6746. https://doi.org/10.1007/s10639-021-10507-1

Tang, C., Zhou, X. Y., & Qian, X. H. (2020). Yiqing fangkong qijian difang gaoxiao zaixian jiaoxue de shijian yu sikao – yi Chengdu shifan xueyuan ‘1-3-5-4’ fang’an weili [The path and practice of promoting online teaching in local undergraduate universities during the epidemic prevention and control period—Taking Chengdu Normal University ‘1-3-5-4’ scheme as an example]. Xiandai Jiaoyu Jishu, 27 (8), 120–126.

Tanga, P., Ndhlovu, G. N., & Tanga, M. (2020). Emergency remote teaching and learning during Covid-19: A recipe for disaster for social work education in the Eastern Cape of South Africa? African Journal of Social Work, 10 (3), 17–24.

Tartavulea, C. V., Albu, C. N., Albu, N., Dieaconescu, R. I., & Petre, S. (2020). Online teaching practices and the effectiveness of the educational process in the wake of the COVID-19 pandemic. Amfiteatru Economic, 22 (55), 920–936. https://doi.org/10.24818/EA/2020/55/920

Tejedor, S., Cervi, L., Tusa, F., & Parola, A. (2020). Education in times of pandemic: Reflections of students and teachers on virtual university education in Spain, Italy, and Ecuador. Latin Journal of Social Communication, 78 , 19–40. https://doi.org/10.4185/RLCS-2020-1466

UNESCO Institute for Statistics. (2012). International standard classification of education: ISCE, 2011. UNESCO Institute for Statistics. Retrieved from http://uis.unesco.org/sites/default/files/documents/international-standard-classification-of-education-isced-2011-en.pdf

Watermeyer, R., Crick, T., Knight, C., & Goodall, J. (2021). COVID-19 and digital disruption in UK universities: Afflictions and affordances of emergency online migration. Higher Education, 81 (3), 623–641. https://doi.org/10.1007/s10734-020-00561-y

Williamson, B., Eynon, R., & Potter, J. (2020). Pandemic politics, pedagogies and practices: Digital technologies and distance education during the coronavirus emergency. Learning, Media and Technology, 45 (2), 107–114. https://doi.org/10.1080/17439884.2020.1761641

World Bank. (June 2020). List of economies (with classification of country development) [Database]. https://databank.worldbank.org/data/download/site-content/CLASS.xls

Wu, W., Yao, R., & Xie, Z. (2020). Gaoxiao jiaoshi zaixian jiaoxue jingli dui ziwo jiaoxue pingjia de yingxiang - jiyu quanguo 334 suo gaoxiao zaixian jiaoxue de diaocha fenxi [The influence of university teachers’ online teaching experience on their self-evaluation of teaching: A survey in 334 universities]. Gaodeng Jiaoyu Yanjiu, 41 (8), 63–72.

Yeung, M. W., & Yau, A. H. (2021). A thematic analysis of higher education students’ perceptions of online learning in Hong Kong under COVID-19: Challenges, strategies and support. Education and Information Technologies . https://doi.org/10.1007/s10639-021-10656-3

Zeng, L. W. (2020). Yiqing fangkong beijing xia xianshang jiaoxue shishi xiaoguo ji yingxiang yinsu fenxi – jiyu Guangdong sheng gaoxiao de diaocha [Analysis of the effectiveness and influencing factors of online teaching in the context of pandemic prevention and control—A survey based on universities in Guangdong province]. Gaoxiao Tansuo, 27 (7), 85–91.

Download references

Acknowledgements

The corresponding author gave a presentation on the preliminary findings of this systematic review at the 1st International Yidan Prize Doctoral Conference (online) organized by the University of Oxford on 27 May 2021. The insightful questions raised by the audience are gratefully acknowledged. We would like to thank Dr. Victoria Elliott, Ms. Renyu Jiang, Ms. Abbey Palmer, and Ms. Catherine Scutt who have directly and indirectly provided their support for this research project.

Additional information

The corresponding author is a doctoral candidate reading Education. This paper is an original work, conducted by the corresponding author in parallel to the preparation for submission of a thesis for a Doctor of Philosophy (DPhil) degree under the supervision of the second author. Preliminary findings of this systematic review have been published in the Proceedings of the Yidan Prize Doctoral Conference under the terms of a Creative Commons Attribution License (CC-BY) (see Sum & Oancea, 2021 ).

This work was generously supported by a scholarship jointly awarded by the Clarendon Fund and New College of the University of Oxford (2020–2023).

Author information

Authors and affiliations.

Department of Education, University of Oxford, 15 Norham Gardens, Oxford, OX2 6PY, UK

McQueen Sum & Alis Oancea

You can also search for this author in PubMed   Google Scholar

Contributions

Under the guidance and supervision of AO, MS performed all stages of the systematic review, from conceptualising the review project to writing the manuscript. Both authors worked collaboratively from late 2020 to mid 2022 on this project. MS and AO independently coded and analysed a selection of data excerpts at various stages to check for inter-rater reliability as mentioned in ‘ Methodology ’ section. The rubric for quality assessment was based on past work by AO. Communications between the authors were maintained throughout the research process. MS worked on drafting this paper, which was subsequently revised by the AO. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to McQueen Sum .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Sum, M., Oancea, A. The use of technology in higher education teaching by academics during the COVID-19 emergency remote teaching period: a systematic review. Int J Educ Technol High Educ 19 , 59 (2022). https://doi.org/10.1186/s41239-022-00364-4

Download citation

Received : 27 June 2022

Accepted : 04 September 2022

Published : 14 December 2022

DOI : https://doi.org/10.1186/s41239-022-00364-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Systematic review
  • Higher education
  • Technology use
  • Emergency remote teaching

article writing on use of technology in education

New global data reveal education technology’s impact on learning

The promise of technology in the classroom is great: enabling personalized, mastery-based learning; saving teacher time; and equipping students with the digital skills they will need  for 21st-century careers. Indeed, controlled pilot studies have shown meaningful improvements in student outcomes through personalized blended learning. 1 John F. Pane et al., “How does personalized learning affect student achievement?,” RAND Corporation, 2017, rand.org. During this time of school shutdowns and remote learning , education technology has become a lifeline for the continuation of learning.

As school systems begin to prepare for a return to the classroom , many are asking whether education technology should play a greater role in student learning beyond the immediate crisis and what that might look like. To help inform the answer to that question, this article analyzes one important data set: the 2018 Programme for International Student Assessment (PISA), published in December 2019 by the Organisation for Economic Co-operation and Development (OECD).

Every three years, the OECD uses PISA to test 15-year-olds around the world on math, reading, and science. What makes these tests so powerful is that they go beyond the numbers, asking students, principals, teachers, and parents a series of questions about their attitudes, behaviors, and resources. An optional student survey on information and communications technology (ICT) asks specifically about technology use—in the classroom, for homework, and more broadly.

In 2018, more than 340,000 students in 51 countries took the ICT survey, providing a rich data set for analyzing key questions about technology use in schools. How much is technology being used in schools? Which technologies are having a positive impact on student outcomes? What is the optimal amount of time to spend using devices in the classroom and for homework? How does this vary across different countries and regions?

From other studies we know that how education technology is used, and how it is embedded in the learning experience, is critical to its effectiveness. This data is focused on extent and intensity of use, not the pedagogical context of each classroom. It cannot therefore answer questions on the eventual potential of education technology—but it can powerfully tell us the extent to which that potential is being realized today in classrooms around the world.

Five key findings from the latest results help answer these questions and suggest potential links between technology and student outcomes:

  • The type of device matters—some are associated with worse student outcomes.
  • Geography matters—technology is associated with higher student outcomes in the United States than in other regions.
  • Who is using the technology matters—technology in the hands of teachers is associated with higher scores than technology in the hands of students.
  • Intensity matters—students who use technology intensely or not at all perform better than those with moderate use.
  • A school system’s current performance level matters—in lower-performing school systems, technology is associated with worse results.

This analysis covers only one source of data, and it should be interpreted with care alongside other relevant studies. Nonetheless, the 2018 PISA results suggest that systems aiming to improve student outcomes should take a more nuanced and cautious approach to deploying technology once students return to the classroom. It is not enough add devices to the classroom, check the box, and hope for the best.

What can we learn from the latest PISA results?

How will the use, and effectiveness, of technology change post-covid-19.

The PISA assessment was carried out in 2018 and published in December 2019. Since its publication, schools and students globally have been quite suddenly thrust into far greater reliance on technology. Use of online-learning websites and adaptive software has expanded dramatically. Khan Academy has experienced a 250 percent surge in traffic; smaller sites have seen traffic grow fivefold or more. Hundreds of thousands of teachers have been thrown into the deep end, learning to use new platforms, software, and systems. No one is arguing that the rapid cobbling together of remote learning under extreme time pressure represents best-practice use of education technology. Nonetheless, a vast experiment is underway, and innovations often emerge in times of crisis. At this point, it is unclear whether this represents the beginning of a new wave of more widespread and more effective technology use in the classroom or a temporary blip that will fade once students and teachers return to in-person instruction. It is possible that a combination of software improvements, teacher capability building, and student familiarity will fundamentally change the effectiveness of education technology in improving student outcomes. It is also possible that our findings will continue to hold true and technology in the classroom will continue to be a mixed blessing. It is therefore critical that ongoing research efforts track what is working and for whom and, just as important, what is not. These answers will inform the project of reimagining a better education for all students in the aftermath of COVID-19.

PISA data have their limitations. First, these data relate to high-school students, and findings may not be applicable in elementary schools or postsecondary institutions. Second, these are single-point observational data, not longitudinal experimental data, which means that any links between technology and results should be interpreted as correlation rather than causation. Third, the outcomes measured are math, science, and reading test results, so our analysis cannot assess important soft skills and nonacademic outcomes.

It is also worth noting that technology for learning has implications beyond direct student outcomes, both positive and negative. PISA cannot address these broader issues, and neither does this paper.

But PISA results, which we’ve broken down into five key findings, can still provide powerful insights. The assessment strives to measure the understanding and application of ideas, rather than the retention of facts derived from rote memorization, and the broad geographic coverage and sample size help elucidate the reality of what is happening on the ground.

Finding 1: The type of device matters

The evidence suggests that some devices have more impact than others on outcomes (Exhibit 1). Controlling for student socioeconomic status, school type, and location, 2 Specifically, we control for a composite indicator for economic, social, and cultural status (ESCS) derived from questions about general wealth, home possessions, parental education, and parental occupation; for school type “Is your school a public or a private school” (SC013); and for school location (SC001) where the options are a village, hamlet or rural area (fewer than 3,000 people), a small town (3,000 to about 15,000 people), a town (15,000 to about 100,000 people), a city (100,000 to about 1,000,000 people), and a large city (with more than 1,000,000 people). the use of data projectors 3 A projector is any device that projects computer output, slides, or other information onto a screen in the classroom. and internet-connected computers in the classroom is correlated with nearly a grade-level-better performance on the PISA assessment (assuming approximately 40 PISA points to every grade level). 4 Students were specifically asked (IC009), “Are any of these devices available for you to use at school?,” with the choices being “Yes, and I use it,” “Yes, but I don’t use it,” and “No.” We compared the results for students who have access to and use each device with those who do not have access. The full text for each device in our chart was as follows: Data projector, eg, for slide presentations; Internet-connected school computers; Desktop computer; Interactive whiteboard, eg, SmartBoard; Portable laptop or notebook; and Tablet computer, eg, iPad, BlackBerry PlayBook.

On the other hand, students who use laptops and tablets in the classroom have worse results than those who do not. For laptops, the impact of technology varies by subject; students who use laptops score five points lower on the PISA math assessment, but the impact on science and reading scores is not statistically significant. For tablets, the picture is clearer—in every subject, students who use tablets in the classroom perform a half-grade level worse than those who do not.

Some technologies are more neutral. At the global level, there is no statistically significant difference between students who use desktop computers and interactive whiteboards in the classroom and those who do not.

Finding 2: Geography matters

Looking more closely at the reading results, which were the focus of the 2018 assessment, 5 PISA rotates between focusing on reading, science, and math. The 2018 assessment focused on reading. This means that the total testing time was two hours for each student, of which one hour was reading focused. we can see that the relationship between technology and outcomes varies widely by country and region (Exhibit 2). For example, in all regions except the United States (representing North America), 6 The United States is the only country that took the ICT Familiarity Questionnaire survey in North America; thus, we are comparing it as a country with the other regions. students who use laptops in the classroom score between five and 12 PISA points lower than students who do not use laptops. In the United States, students who use laptops score 17 PISA points higher than those who do not. It seems that US students and teachers are doing something different with their laptops than those in other regions. Perhaps this difference is related to learning curves that develop as teachers and students learn how to get the most out of devices. A proxy to assess this learning curve could be penetration—71 percent of US students claim to be using laptops in the classroom, compared with an average of 37 percent globally. 7 The rate of use excludes nulls. The United States measures higher than any other region in laptop use by students in the classroom. US = 71 percent, Asia = 40 percent, EU = 35 percent, Latin America = 31 percent, MENA = 21 percent, Non-EU Europe = 41 percent. We observe a similar pattern with interactive whiteboards in non-EU Europe. In every other region, interactive whiteboards seem to be hurting results, but in non-EU Europe they are associated with a lift of 21 PISA points, a total that represents a half-year of learning. In this case, however, penetration is not significantly higher than in other developed regions.

Finding 3: It matters whether technology is in the hands of teachers or students

The survey asks students whether the teacher, student, or both were using technology. Globally, the best results in reading occur when only the teacher is using the device, with some benefit in science when both teacher and students use digital devices (Exhibit 3). Exclusive use of the device by students is associated with significantly lower outcomes everywhere. The pattern is similar for science and math.

Again, the regional differences are instructive. Looking again at reading, we note that US students are getting significant lift (three-quarters of a year of learning) from either just teachers or teachers and students using devices, while students alone using a device score significantly lower (half a year of learning) than students who do not use devices at all. Exclusive use of devices by the teacher is associated with better outcomes in Europe too, though the size of the effect is smaller.

Finding 4: Intensity of use matters

PISA also asked students about intensity of use—how much time they spend on devices, 8 PISA rotates between focusing on reading, science, and math. The 2018 assessment focused on reading. This means that the total testing time was two hours for each student, of which one hour was reading focused. both in the classroom and for homework. The results are stark: students who either shun technology altogether or use it intensely are doing better, with those in the middle flailing (Exhibit 4).

The regional data show a dramatic picture. In the classroom, the optimal amount of time to spend on devices is either “none at all” or “greater than 60 minutes” per subject per week in every region and every subject (this is the amount of time associated with the highest student outcomes, controlling for student socioeconomic status, school type, and location). In no region is a moderate amount of time (1–30 minutes or 31–60 minutes) associated with higher student outcomes. There are important differences across subjects and regions. In math, the optimal amount of time is “none at all” in every region. 9 The United States is the only country that took the ICT Familiarity Questionnaire survey in North America; thus, we are comparing it as a country with the other regions. In reading and science, however, the optimal amount of time is greater than 60 minutes for some regions: Asia and the United States for reading, and the United States and non-EU Europe for science.

The pattern for using devices for homework is slightly less clear cut. Students in Asia, the Middle East and North Africa (MENA), and non-EU Europe score highest when they spend “no time at all” on devices for their homework, while students spending a moderate amount of time (1–60 minutes) score best in Latin America and the European Union. Finally, students in the United States who spend greater than 60 minutes are getting the best outcomes.

One interpretation of these data is that students need to get a certain familiarity with technology before they can really start using it to learn. Think of typing an essay, for example. When students who mostly write by hand set out to type an essay, their attention will be focused on the typing rather than the essay content. A competent touch typist, however, will get significant productivity gains by typing rather than handwriting.

Would you like to learn more about our Social Sector Practice ?

Finding 5: the school systems’ overall performance level matters.

Diving deeper into the reading outcomes, which were the focus of the 2018 assessment, we can see the magnitude of the impact of device use in the classroom. In Asia, Latin America, and Europe, students who spend any time on devices in their literacy and language arts classrooms perform about a half-grade level below those who spend none at all. In MENA, they perform more than a full grade level lower. In the United States, by contrast, more than an hour of device use in the classroom is associated with a lift of 17 PISA points, almost a half-year of learning improvement (Exhibit 5).

At the country level, we see that those who are on what we would call the “poor-to-fair” stage of the school-system journey 10 Michael Barber, Chinezi Chijoke, and Mona Mourshed, “ How the world’s most improved school systems keep getting better ,” November 2010. have the worst relationships between technology use and outcomes. For every poor-to-fair system taking the survey, the amount of time on devices in the classroom associated with the highest student scores is zero minutes. Good and great systems are much more mixed. Students in some very highly performing systems (for example, Estonia and Chinese Taipei) perform highest with no device use, but students in other systems (for example, Japan, the United States, and Australia) are getting the best scores with over an hour of use per week in their literacy and language arts classrooms (Exhibit 6). These data suggest that multiple approaches are effective for good-to-great systems, but poor-to-fair systems—which are not well equipped to use devices in the classroom—may need to rethink whether technology is the best use of their resources.

What are the implications for students, teachers, and systems?

Looking across all these results, we can say that the relationship between technology and outcomes in classrooms today is mixed, with variation by device, how that device is used, and geography. Our data do not permit us to draw strong causal conclusions, but this section offers a few hypotheses, informed by existing literature and our own work with school systems, that could explain these results.

First, technology must be used correctly to be effective. Our experience in the field has taught us that it is not enough to “add technology” as if it were the missing, magic ingredient. The use of tech must start with learning goals, and software selection must be based on and integrated with the curriculum. Teachers need support to adapt lesson plans to optimize the use of technology, and teachers should be using the technology themselves or in partnership with students, rather than leaving students alone with devices. These lessons hold true regardless of geography. Another ICT survey question asked principals about schools’ capacity using digital devices. Globally, students performed better in schools where there were sufficient numbers of devices connected to fast internet service; where they had adequate software and online support platforms; and where teachers had the skills, professional development, and time to integrate digital devices in instruction. This was true even accounting for student socioeconomic status, school type, and location.

COVID-19 and student learning in the United States: The hurt could last a lifetime

COVID-19 and student learning in the United States: The hurt could last a lifetime

Second, technology must be matched to the instructional environment and context. One of the most striking findings in the latest PISA assessment is the extent to which technology has had a different impact on student outcomes in different geographies. This corroborates the findings of our 2010 report, How the world’s most improved school systems keep getting better . Those findings demonstrated that different sets of interventions were needed at different stages of the school-system reform journey, from poor-to-fair to good-to-great to excellent. In poor-to-fair systems, limited resources and teacher capabilities as well as poor infrastructure and internet bandwidth are likely to limit the benefits of student-based technology. Our previous work suggests that more prescriptive, teacher-based approaches and technologies (notably data projectors) are more likely to be effective in this context. For example, social enterprise Bridge International Academies equips teachers across several African countries with scripted lesson plans using e-readers. In general, these systems would likely be better off investing in teacher coaching than in a laptop per child. For administrators in good-to-great systems, the decision is harder, as technology has quite different impacts across different high-performing systems.

Third, technology involves a learning curve at both the system and student levels. It is no accident that the systems in which the use of education technology is more mature are getting more positive impact from tech in the classroom. The United States stands out as the country with the most mature set of education-technology products, and its scale enables companies to create software that is integrated with curricula. 11 Common Core State Standards sought to establish consistent educational standards across the United States. While these have not been adopted in all states, they cover enough states to provide continuity and consistency for software and curriculum developers. A similar effect also appears to operate at the student level; those who dabble in tech may be spending their time learning the tech rather than using the tech to learn. This learning curve needs to be built into technology-reform programs.

Taken together, these results suggest that systems that take a comprehensive, data-informed approach may achieve learning gains from thoughtful use of technology in the classroom. The best results come when significant effort is put into ensuring that devices and infrastructure are fit for purpose (fast enough internet service, for example), that software is effective and integrated with curricula, that teachers are trained and given time to rethink lesson plans integrating technology, that students have enough interaction with tech to use it effectively, and that technology strategy is cognizant of the system’s position on the school-system reform journey. Online learning and education technology are currently providing an invaluable service by enabling continued learning over the course of the pandemic; this does not mean that they should be accepted uncritically as students return to the classroom.

Jake Bryant is an associate partner in McKinsey’s Washington, DC, office; Felipe Child is a partner in the Bogotá office; Emma Dorn is the global Education Practice manager in the Silicon Valley office; and Stephen Hall is an associate partner in the Dubai office.

The authors wish to thank Fernanda Alcala, Sujatha Duraikkannan, and Samuel Huang for their contributions to this article.

Explore a career with us

Related articles.

COVID-19 and student learning in the United States: The hurt could last a lifetime

Safely back to school after coronavirus closures

How_the_worlds_most_improved_school_systems_keep_getting_better_500_Standard

How the world’s most improved school systems keep getting better

  • Share full article

Advertisement

Supported by

How Technology Is Changing the Future of Higher Education

Labs test artificial intelligence, virtual reality and other innovations that could improve learning and lower costs for Generation Z and beyond.

article writing on use of technology in education

By Jon Marcus

This article is part of our latest Learning special report . We’re focusing on Generation Z, which is facing challenges from changing curriculums and new technology to financial aid gaps and homelessness.

MANCHESTER, N.H. — Cruising to class in her driverless car, a student crams from notes projected on the inside of the windshield while she gestures with her hands to shape a 3-D holographic model of her architecture project.

It looks like science fiction, an impression reinforced by the fact that it is being demonstrated in virtual reality in an ultramodern space with overstuffed pillows for seats. But this scenario is based on technology already in development.

The setting is the Sandbox ColLABorative, the innovation arm of Southern New Hampshire University, on the fifth floor of a downtown building with panoramic views of the sprawling red brick mills that date from this city’s 19th-century industrial heyday.

It is one of a small but growing number of places where experts are testing new ideas that will shape the future of a college education, using everything from blockchain networks to computer simulations to artificial intelligence, or A.I.

Theirs is not a future of falling enrollment, financial challenges and closing campuses. It’s a brighter world in which students subscribe to rather than enroll in college, learn languages in virtual reality foreign streetscapes with avatars for conversation partners, have their questions answered day or night by A.I. teaching assistants and control their own digital transcripts that record every life achievement.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

A person seen at a white board with a marker.

Writing is a technology that restructures thought — and in an AI age, universities need to teach it more

article writing on use of technology in education

Senior Lecturer, Faculty of Education, Simon Fraser University

article writing on use of technology in education

Instructor, English, Kwantlen Polytechnic University

Disclosure statement

Joel Heng Hartse receives funding from the Social Sciences and Humanities Research Council of Canada. He is also president of the Canadian Association for the Study of Discourse and Writing/Association Canadienne de Rédactologie.

Taylor Morphett does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

Simon Fraser University provides funding as a member of The Conversation CA.

Simon Fraser University provides funding as a member of The Conversation CA-FR.

View all partners

In an age of AI-assisted writing , is it important for university students to learn how to write?

We believe it is now more than ever.

In the writing classroom, students get the time and help they need to understand writing as not only a skill, but what the language scholar Walter J. Ong called a “ technology that restructures thought .”

“Technology” is not simply iPhones or spreadsheets — it is about mediating our relationship with the world through the creation of tools , and writing itself is arguably the most important tool for thinking that university students need to master.

Perhaps not surprisingly, not everyone agrees.

Role of university writing courses

“Eliminate the Required First-Year Writing Course” was the headline of a provocative article published in Inside Higher Ed in November.

In this article, a professor of writing studies, Melissa Nicolas of Washington State University, writes that while she has seen reason to question how efficient first-year composition courses are before now, “the advent of generative artificial intelligence is the final nail in the coffin.”

In her estimation, “learning to write and writing to learn are two distinct things.” First-year writing courses are “largely about learning to write, but AI can now do this for us. Writing to learn is much more complicated and is something that can only be done by the human mind.”

A person seen writing.

We take issue with this distinction. From the perspective of human learning and development, the grammatically correct prose produced by generative AI like ChatGPT is not “good writing” — even if it is or seems factually correct — if it does not reflect intellectual engagement with its subject matter. This is not to mention serious questions about the meaning of gaining insight from digital data, issues surrounding data biases, and so on.

First-year composition and other writing courses are a crucial part of the way university students are socialized into ways of communicating that will benefit them far beyond their undergraduate years.

Canadian versus American universities

We propose another solution to the problem Nicolas raises of first-year composition courses being formulaic and outdated. Universities need to devote resources to expanding and improving writing programs, including first-year composition.

We especially need this in Canada, where, as doctoral research carried out by one of the authors of this piece (Taylor Morphett) has shown, first-year composition has traditionally been under-emphasized, and writing has only been taught in a piecemeal way.

When first-year composition courses began to develop at the end of the 19th century in the United States, in Canada the focus was on the fine-tuning of literary taste and the reading of canonical British literature .

Students seen sitting at a round table.

The philosophies of education and approaches to teaching that developed from this early time are still present today in Canada. Writing education is often seen by universities as a remedial skill, something students should already know how to do.

In reality, much more writing instruction is needed. Today’s undergraduates are plunged into a sea of texts, information and technology they have immense difficulty navigating , and ChatGPT has made it harder, not easier, for students to discern the credibility of sources.

Writing programs in Canada

In writing courses, students can begin to see the critical variety and power of one of our best technologies: the human act of writing, a system of finite resources but infinite combinations. They learn to think, synthesize, judge the credibility of sources and information and interact with an audience — none of which can be done by AI.

Thankfully, some universities have taken the lead in making writing a cornerstone of undergraduate education. For example, the University of Victoria has a robust academic writing requirement for all students, regardless of their field of study. At the University of Toronto Mississauga, first-year students take an innovative for-credit writing course that takes a “ writing-about-writing ” approach. In this program, undergraduates study writing as an academic subject itself, not just a skill. They learn about the importance, complexity and socially situated nature of academic writing.

A person seen writing with laptop open and pencil in hand.

Needed at all universities

All Canadian universities should make a beginning academic writing or communication course required for all undergraduates, along with discipline-specific upper-division writing courses focused on scholarly and professional genres in their fields.

Academic and professional writing is a second language for everyone: no one is born knowing how to properly cite sources or craft airtight business proposals.

We need dedicated writing programs to help students understand and communicate complex concepts to a specific audience for a specific purpose in rhetorically flexible ways, with an awareness of their responsibilities to a human community of readers.

Skills and knowledge to make a difference

Generative AI like ChatGPT cannot do this, because it cannot know or “understand” anything . Its raison d'être is to produce plausible strings of symbols in response to human prompts, based on data it has been trained upon.

We have knowledgeable and talented PhDs graduating in communication, applied linguistics, English, rhetoric and related fields whose expertise in these areas is sorely needed at institutions across the country.

If Canada wants to graduate domestic and international students with the skills and knowledge to make a difference in the world, we need to be training them in writing.

  • Universities
  • undergraduate education

article writing on use of technology in education

Lecturer/ Associate Lecturer (Education Specialist)

article writing on use of technology in education

PhD Scholarship

article writing on use of technology in education

Senior Lecturer, HRM or People Analytics

article writing on use of technology in education

Centre Director, Transformative Media Technologies

article writing on use of technology in education

Postdoctoral Research Fellowship

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Impacts of digital technologies on education and factors influencing schools' digital capacity and transformation: A literature review

Stella timotheou.

1 CYENS Center of Excellence & Cyprus University of Technology (Cyprus Interaction Lab), Cyprus, CYENS Center of Excellence & Cyprus University of Technology, Nicosia-Limassol, Cyprus

Ourania Miliou

Yiannis dimitriadis.

2 Universidad de Valladolid (UVA), Spain, Valladolid, Spain

Sara Villagrá Sobrino

Nikoleta giannoutsou, romina cachia.

3 JRC - Joint Research Centre of the European Commission, Seville, Spain

Alejandra Martínez Monés

Andri ioannou, associated data.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Digital technologies have brought changes to the nature and scope of education and led education systems worldwide to adopt strategies and policies for ICT integration. The latter brought about issues regarding the quality of teaching and learning with ICTs, especially concerning the understanding, adaptation, and design of the education systems in accordance with current technological trends. These issues were emphasized during the recent COVID-19 pandemic that accelerated the use of digital technologies in education, generating questions regarding digitalization in schools. Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses. Such results have engendered the need for schools to learn and build upon the experience to enhance their digital capacity and preparedness, increase their digitalization levels, and achieve a successful digital transformation. Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem, there is a need to show how these impacts are interconnected and identify the factors that can encourage an effective and efficient change in the school environments. For this purpose, we conducted a non-systematic literature review. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors that affect the schools’ digital capacity and digital transformation. The findings suggest that ICT integration in schools impacts more than just students’ performance; it affects several other school-related aspects and stakeholders, too. Furthermore, various factors affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the digital transformation process. The study results shed light on how ICTs can positively contribute to the digital transformation of schools and which factors should be considered for schools to achieve effective and efficient change.

Introduction

Digital technologies have brought changes to the nature and scope of education. Versatile and disruptive technological innovations, such as smart devices, the Internet of Things (IoT), artificial intelligence (AI), augmented reality (AR) and virtual reality (VR), blockchain, and software applications have opened up new opportunities for advancing teaching and learning (Gaol & Prasolova-Førland, 2021 ; OECD, 2021 ). Hence, in recent years, education systems worldwide have increased their investment in the integration of information and communication technology (ICT) (Fernández-Gutiérrez et al., 2020 ; Lawrence & Tar, 2018 ) and prioritized their educational agendas to adapt strategies or policies around ICT integration (European Commission, 2019 ). The latter brought about issues regarding the quality of teaching and learning with ICTs (Bates, 2015 ), especially concerning the understanding, adaptation, and design of education systems in accordance with current technological trends (Balyer & Öz, 2018 ). Studies have shown that despite the investment made in the integration of technology in schools, the results have not been promising, and the intended outcomes have not yet been achieved (Delgado et al., 2015 ; Lawrence & Tar, 2018 ). These issues were exacerbated during the COVID-19 pandemic, which forced teaching across education levels to move online (Daniel, 2020 ). Online teaching accelerated the use of digital technologies generating questions regarding the process, the nature, the extent, and the effectiveness of digitalization in schools (Cachia et al., 2021 ; König et al., 2020 ). Specifically, many schools demonstrated a lack of experience and low digital capacity, which resulted in widening gaps, inequalities, and learning losses (Blaskó et al., 2021 ; Di Pietro et al, 2020 ). Such results have engendered the need for schools to learn and build upon the experience in order to enhance their digital capacity (European Commission, 2020 ) and increase their digitalization levels (Costa et al., 2021 ). Digitalization offers possibilities for fundamental improvement in schools (OECD, 2021 ; Rott & Marouane, 2018 ) and touches many aspects of a school’s development (Delcker & Ifenthaler, 2021 ) . However, it is a complex process that requires large-scale transformative changes beyond the technical aspects of technology and infrastructure (Pettersson, 2021 ). Namely, digitalization refers to “ a series of deep and coordinated culture, workforce, and technology shifts and operating models ” (Brooks & McCormack, 2020 , p. 3) that brings cultural, organizational, and operational change through the integration of digital technologies (JISC, 2020 ). A successful digital transformation requires that schools increase their digital capacity levels, establishing the necessary “ culture, policies, infrastructure as well as digital competence of students and staff to support the effective integration of technology in teaching and learning practices ” (Costa et al, 2021 , p.163).

Given that the integration of digital technologies is a complex and continuous process that impacts different actors within the school ecosystem (Eng, 2005 ), there is a need to show how the different elements of the impact are interconnected and to identify the factors that can encourage an effective and efficient change in the school environment. To address the issues outlined above, we formulated the following research questions:

a) What is the impact of digital technologies on education?

b) Which factors might affect a school’s digital capacity and transformation?

In the present investigation, we conducted a non-systematic literature review of publications pertaining to the impact of digital technologies on education and the factors that affect a school’s digital capacity and transformation. The results of the literature review were organized thematically based on the evidence presented about the impact of digital technology on education and the factors which affect the schools’ digital capacity and digital transformation.

Methodology

The non-systematic literature review presented herein covers the main theories and research published over the past 17 years on the topic. It is based on meta-analyses and review papers found in scholarly, peer-reviewed content databases and other key studies and reports related to the concepts studied (e.g., digitalization, digital capacity) from professional and international bodies (e.g., the OECD). We searched the Scopus database, which indexes various online journals in the education sector with an international scope, to collect peer-reviewed academic papers. Furthermore, we used an all-inclusive Google Scholar search to include relevant key terms or to include studies found in the reference list of the peer-reviewed papers, and other key studies and reports related to the concepts studied by professional and international bodies. Lastly, we gathered sources from the Publications Office of the European Union ( https://op.europa.eu/en/home ); namely, documents that refer to policies related to digital transformation in education.

Regarding search terms, we first searched resources on the impact of digital technologies on education by performing the following search queries: “impact” OR “effects” AND “digital technologies” AND “education”, “impact” OR “effects” AND “ICT” AND “education”. We further refined our results by adding the terms “meta-analysis” and “review” or by adjusting the search options based on the features of each database to avoid collecting individual studies that would provide limited contributions to a particular domain. We relied on meta-analyses and review studies as these consider the findings of multiple studies to offer a more comprehensive view of the research in a given area (Schuele & Justice, 2006 ). Specifically, meta-analysis studies provided quantitative evidence based on statistically verifiable results regarding the impact of educational interventions that integrate digital technologies in school classrooms (Higgins et al., 2012 ; Tolani-Brown et al., 2011 ).

However, quantitative data does not offer explanations for the challenges or difficulties experienced during ICT integration in learning and teaching (Tolani-Brown et al., 2011 ). To fill this gap, we analyzed literature reviews and gathered in-depth qualitative evidence of the benefits and implications of technology integration in schools. In the analysis presented herein, we also included policy documents and reports from professional and international bodies and governmental reports, which offered useful explanations of the key concepts of this study and provided recent evidence on digital capacity and transformation in education along with policy recommendations. The inclusion and exclusion criteria that were considered in this study are presented in Table ​ Table1 1 .

Inclusion and exclusion criteria for the selection of resources on the impact of digital technologies on education

Inclusion criteriaExclusion criteria

• Published in 2005 or later

• Review and meta-analysis studies

• Formal education K-12

• Peer-reviewed articles

• Articles in English

• Reports from professional/international bodies

• Governmental reports

• Book chapters

• Ph.D. dissertations and theses

• Conference poster papers

• Conference papers without proceedings

• Resources on higher education

• Resources on pre-school education

• Individual studies

To ensure a reliable extraction of information from each study and assist the research synthesis we selected the study characteristics of interest (impact) and constructed coding forms. First, an overview of the synthesis was provided by the principal investigator who described the processes of coding, data entry, and data management. The coders followed the same set of instructions but worked independently. To ensure a common understanding of the process between coders, a sample of ten studies was tested. The results were compared, and the discrepancies were identified and resolved. Additionally, to ensure an efficient coding process, all coders participated in group meetings to discuss additions, deletions, and modifications (Stock, 1994 ). Due to the methodological diversity of the studied documents we began to synthesize the literature review findings based on similar study designs. Specifically, most of the meta-analysis studies were grouped in one category due to the quantitative nature of the measured impact. These studies tended to refer to student achievement (Hattie et al., 2014 ). Then, we organized the themes of the qualitative studies in several impact categories. Lastly, we synthesized both review and meta-analysis data across the categories. In order to establish a collective understanding of the concept of impact, we referred to a previous impact study by Balanskat ( 2009 ) which investigated the impact of technology in primary schools. In this context, the impact had a more specific ICT-related meaning and was described as “ a significant influence or effect of ICT on the measured or perceived quality of (parts of) education ” (Balanskat, 2009 , p. 9). In the study presented herein, the main impacts are in relation to learning and learners, teaching, and teachers, as well as other key stakeholders who are directly or indirectly connected to the school unit.

The study’s results identified multiple dimensions of the impact of digital technologies on students’ knowledge, skills, and attitudes; on equality, inclusion, and social integration; on teachers’ professional and teaching practices; and on other school-related aspects and stakeholders. The data analysis indicated various factors that might affect the schools’ digital capacity and transformation, such as digital competencies, the teachers’ personal characteristics and professional development, as well as the school’s leadership and management, administration, infrastructure, etc. The impacts and factors found in the literature review are presented below.

Impacts of digital technologies on students’ knowledge, skills, attitudes, and emotions

The impact of ICT use on students’ knowledge, skills, and attitudes has been investigated early in the literature. Eng ( 2005 ) found a small positive effect between ICT use and students' learning. Specifically, the author reported that access to computer-assisted instruction (CAI) programs in simulation or tutorial modes—used to supplement rather than substitute instruction – could enhance student learning. The author reported studies showing that teachers acknowledged the benefits of ICT on pupils with special educational needs; however, the impact of ICT on students' attainment was unclear. Balanskat et al. ( 2006 ) found a statistically significant positive association between ICT use and higher student achievement in primary and secondary education. The authors also reported improvements in the performance of low-achieving pupils. The use of ICT resulted in further positive gains for students, namely increased attention, engagement, motivation, communication and process skills, teamwork, and gains related to their behaviour towards learning. Evidence from qualitative studies showed that teachers, students, and parents recognized the positive impact of ICT on students' learning regardless of their competence level (strong/weak students). Punie et al. ( 2006 ) documented studies that showed positive results of ICT-based learning for supporting low-achieving pupils and young people with complex lives outside the education system. Liao et al. ( 2007 ) reported moderate positive effects of computer application instruction (CAI, computer simulations, and web-based learning) over traditional instruction on primary school student's achievement. Similarly, Tamim et al. ( 2011 ) reported small to moderate positive effects between the use of computer technology (CAI, ICT, simulations, computer-based instruction, digital and hypermedia) and student achievement in formal face-to-face classrooms compared to classrooms that did not use technology. Jewitt et al., ( 2011 ) found that the use of learning platforms (LPs) (virtual learning environments, management information systems, communication technologies, and information- and resource-sharing technologies) in schools allowed primary and secondary students to access a wider variety of quality learning resources, engage in independent and personalized learning, and conduct self- and peer-review; LPs also provide opportunities for teacher assessment and feedback. Similar findings were reported by Fu ( 2013 ), who documented a list of benefits and opportunities of ICT use. According to the author, the use of ICTs helps students access digital information and course content effectively and efficiently, supports student-centered and self-directed learning, as well as the development of a creative learning environment where more opportunities for critical thinking skills are offered, and promotes collaborative learning in a distance-learning environment. Higgins et al. ( 2012 ) found consistent but small positive associations between the use of technology and learning outcomes of school-age learners (5–18-year-olds) in studies linking the provision and use of technology with attainment. Additionally, Chauhan ( 2017 ) reported a medium positive effect of technology on the learning effectiveness of primary school students compared to students who followed traditional learning instruction.

The rise of mobile technologies and hardware devices instigated investigations into their impact on teaching and learning. Sung et al. ( 2016 ) reported a moderate effect on students' performance from the use of mobile devices in the classroom compared to the use of desktop computers or the non-use of mobile devices. Schmid et al. ( 2014 ) reported medium–low to low positive effects of technology integration (e.g., CAI, ICTs) in the classroom on students' achievement and attitude compared to not using technology or using technology to varying degrees. Tamim et al. ( 2015 ) found a low statistically significant effect of the use of tablets and other smart devices in educational contexts on students' achievement outcomes. The authors suggested that tablets offered additional advantages to students; namely, they reported improvements in students’ notetaking, organizational and communication skills, and creativity. Zheng et al. ( 2016 ) reported a small positive effect of one-to-one laptop programs on students’ academic achievement across subject areas. Additional reported benefits included student-centered, individualized, and project-based learning enhanced learner engagement and enthusiasm. Additionally, the authors found that students using one-to-one laptop programs tended to use technology more frequently than in non-laptop classrooms, and as a result, they developed a range of skills (e.g., information skills, media skills, technology skills, organizational skills). Haßler et al. ( 2016 ) found that most interventions that included the use of tablets across the curriculum reported positive learning outcomes. However, from 23 studies, five reported no differences, and two reported a negative effect on students' learning outcomes. Similar results were indicated by Kalati and Kim ( 2022 ) who investigated the effect of touchscreen technologies on young students’ learning. Specifically, from 53 studies, 34 advocated positive effects of touchscreen devices on children’s learning, 17 obtained mixed findings and two studies reported negative effects.

More recently, approaches that refer to the impact of gamification with the use of digital technologies on teaching and learning were also explored. A review by Pan et al. ( 2022 ) that examined the role of learning games in fostering mathematics education in K-12 settings, reported that gameplay improved students’ performance. Integration of digital games in teaching was also found as a promising pedagogical practice in STEM education that could lead to increased learning gains (Martinez et al., 2022 ; Wang et al., 2022 ). However, although Talan et al. ( 2020 ) reported a medium effect of the use of educational games (both digital and non-digital) on academic achievement, the effect of non-digital games was higher.

Over the last two years, the effects of more advanced technologies on teaching and learning were also investigated. Garzón and Acevedo ( 2019 ) found that AR applications had a medium effect on students' learning outcomes compared to traditional lectures. Similarly, Garzón et al. ( 2020 ) showed that AR had a medium impact on students' learning gains. VR applications integrated into various subjects were also found to have a moderate effect on students’ learning compared to control conditions (traditional classes, e.g., lectures, textbooks, and multimedia use, e.g., images, videos, animation, CAI) (Chen et al., 2022b ). Villena-Taranilla et al. ( 2022 ) noted the moderate effect of VR technologies on students’ learning when these were applied in STEM disciplines. In the same meta-analysis, Villena-Taranilla et al. ( 2022 ) highlighted the role of immersive VR, since its effect on students’ learning was greater (at a high level) across educational levels (K-6) compared to semi-immersive and non-immersive integrations. In another meta-analysis study, the effect size of the immersive VR was small and significantly differentiated across educational levels (Coban et al., 2022 ). The impact of AI on education was investigated by Su and Yang ( 2022 ) and Su et al. ( 2022 ), who showed that this technology significantly improved students’ understanding of AI computer science and machine learning concepts.

It is worth noting that the vast majority of studies referred to learning gains in specific subjects. Specifically, several studies examined the impact of digital technologies on students’ literacy skills and reported positive effects on language learning (Balanskat et al., 2006 ; Grgurović et al., 2013 ; Friedel et al., 2013 ; Zheng et al., 2016 ; Chen et al., 2022b ; Savva et al., 2022 ). Also, several studies documented positive effects on specific language learning areas, namely foreign language learning (Kao, 2014 ), writing (Higgins et al., 2012 ; Wen & Walters, 2022 ; Zheng et al., 2016 ), as well as reading and comprehension (Cheung & Slavin, 2011 ; Liao et al., 2007 ; Schwabe et al., 2022 ). ICTs were also found to have a positive impact on students' performance in STEM (science, technology, engineering, and mathematics) disciplines (Arztmann et al., 2022 ; Bado, 2022 ; Villena-Taranilla et al., 2022 ; Wang et al., 2022 ). Specifically, a number of studies reported positive impacts on students’ achievement in mathematics (Balanskat et al., 2006 ; Hillmayr et al., 2020 ; Li & Ma, 2010 ; Pan et al., 2022 ; Ran et al., 2022 ; Verschaffel et al., 2019 ; Zheng et al., 2016 ). Furthermore, studies documented positive effects of ICTs on science learning (Balanskat et al., 2006 ; Liao et al., 2007 ; Zheng et al., 2016 ; Hillmayr et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ; Lei et al., 2022a ). Çelik ( 2022 ) also noted that computer simulations can help students understand learning concepts related to science. Furthermore, some studies documented that the use of ICTs had a positive impact on students’ achievement in other subjects, such as geography, history, music, and arts (Chauhan, 2017 ; Condie & Munro, 2007 ), and design and technology (Balanskat et al., 2006 ).

More specific positive learning gains were reported in a number of skills, e.g., problem-solving skills and pattern exploration skills (Higgins et al., 2012 ), metacognitive learning outcomes (Verschaffel et al., 2019 ), literacy skills, computational thinking skills, emotion control skills, and collaborative inquiry skills (Lu et al., 2022 ; Su & Yang, 2022 ; Su et al., 2022 ). Additionally, several investigations have reported benefits from the use of ICT on students’ creativity (Fielding & Murcia, 2022 ; Liu et al., 2022 ; Quah & Ng, 2022 ). Lastly, digital technologies were also found to be beneficial for enhancing students’ lifelong learning skills (Haleem et al., 2022 ).

Apart from gaining knowledge and skills, studies also reported improvement in motivation and interest in mathematics (Higgins et. al., 2019 ; Fadda et al., 2022 ) and increased positive achievement emotions towards several subjects during interventions using educational games (Lei et al., 2022a ). Chen et al. ( 2022a ) also reported a small but positive effect of digital health approaches in bullying and cyberbullying interventions with K-12 students, demonstrating that technology-based approaches can help reduce bullying and related consequences by providing emotional support, empowerment, and change of attitude. In their meta-review study, Su et al. ( 2022 ) also documented that AI technologies effectively strengthened students’ attitudes towards learning. In another meta-analysis, Arztmann et al. ( 2022 ) reported positive effects of digital games on motivation and behaviour towards STEM subjects.

Impacts of digital technologies on equality, inclusion and social integration

Although most of the reviewed studies focused on the impact of ICTs on students’ knowledge, skills, and attitudes, reports were also made on other aspects in the school context, such as equality, inclusion, and social integration. Condie and Munro ( 2007 ) documented research interventions investigating how ICT can support pupils with additional or special educational needs. While those interventions were relatively small scale and mostly based on qualitative data, their findings indicated that the use of ICTs enabled the development of communication, participation, and self-esteem. A recent meta-analysis (Baragash et al., 2022 ) with 119 participants with different disabilities, reported a significant overall effect size of AR on their functional skills acquisition. Koh’s meta-analysis ( 2022 ) also revealed that students with intellectual and developmental disabilities improved their competence and performance when they used digital games in the lessons.

Istenic Starcic and Bagon ( 2014 ) found that the role of ICT in inclusion and the design of pedagogical and technological interventions was not sufficiently explored in educational interventions with people with special needs; however, some benefits of ICT use were found in students’ social integration. The issue of gender and technology use was mentioned in a small number of studies. Zheng et al. ( 2016 ) reported a statistically significant positive interaction between one-to-one laptop programs and gender. Specifically, the results showed that girls and boys alike benefitted from the laptop program, but the effect on girls’ achievement was smaller than that on boys’. Along the same lines, Arztmann et al. ( 2022 ) reported no difference in the impact of game-based learning between boys and girls, arguing that boys and girls equally benefited from game-based interventions in STEM domains. However, results from a systematic review by Cussó-Calabuig et al. ( 2018 ) found limited and low-quality evidence on the effects of intensive use of computers on gender differences in computer anxiety, self-efficacy, and self-confidence. Based on their view, intensive use of computers can reduce gender differences in some areas and not in others, depending on contextual and implementation factors.

Impacts of digital technologies on teachers’ professional and teaching practices

Various research studies have explored the impact of ICT on teachers’ instructional practices and student assessment. Friedel et al. ( 2013 ) found that the use of mobile devices by students enabled teachers to successfully deliver content (e.g., mobile serious games), provide scaffolding, and facilitate synchronous collaborative learning. The integration of digital games in teaching and learning activities also gave teachers the opportunity to study and apply various pedagogical practices (Bado, 2022 ). Specifically, Bado ( 2022 ) found that teachers who implemented instructional activities in three stages (pre-game, game, and post-game) maximized students’ learning outcomes and engagement. For instance, during the pre-game stage, teachers focused on lectures and gameplay training, at the game stage teachers provided scaffolding on content, addressed technical issues, and managed the classroom activities. During the post-game stage, teachers organized activities for debriefing to ensure that the gameplay had indeed enhanced students’ learning outcomes.

Furthermore, ICT can increase efficiency in lesson planning and preparation by offering possibilities for a more collaborative approach among teachers. The sharing of curriculum plans and the analysis of students’ data led to clearer target settings and improvements in reporting to parents (Balanskat et al., 2006 ).

Additionally, the use and application of digital technologies in teaching and learning were found to enhance teachers’ digital competence. Balanskat et al. ( 2006 ) documented studies that revealed that the use of digital technologies in education had a positive effect on teachers’ basic ICT skills. The greatest impact was found on teachers with enough experience in integrating ICTs in their teaching and/or who had recently participated in development courses for the pedagogical use of technologies in teaching. Punie et al. ( 2006 ) reported that the provision of fully equipped multimedia portable computers and the development of online teacher communities had positive impacts on teachers’ confidence and competence in the use of ICTs.

Moreover, online assessment via ICTs benefits instruction. In particular, online assessments support the digitalization of students’ work and related logistics, allow teachers to gather immediate feedback and readjust to new objectives, and support the improvement of the technical quality of tests by providing more accurate results. Additionally, the capabilities of ICTs (e.g., interactive media, simulations) create new potential methods of testing specific skills, such as problem-solving and problem-processing skills, meta-cognitive skills, creativity and communication skills, and the ability to work productively in groups (Punie et al., 2006 ).

Impacts of digital technologies on other school-related aspects and stakeholders

There is evidence that the effective use of ICTs and the data transmission offered by broadband connections help improve administration (Balanskat et al., 2006 ). Specifically, ICTs have been found to provide better management systems to schools that have data gathering procedures in place. Condie and Munro ( 2007 ) reported impacts from the use of ICTs in schools in the following areas: attendance monitoring, assessment records, reporting to parents, financial management, creation of repositories for learning resources, and sharing of information amongst staff. Such data can be used strategically for self-evaluation and monitoring purposes which in turn can result in school improvements. Additionally, they reported that online access to other people with similar roles helped to reduce headteachers’ isolation by offering them opportunities to share insights into the use of ICT in learning and teaching and how it could be used to support school improvement. Furthermore, ICTs provided more efficient and successful examination management procedures, namely less time-consuming reporting processes compared to paper-based examinations and smooth communications between schools and examination authorities through electronic data exchange (Punie et al., 2006 ).

Zheng et al. ( 2016 ) reported that the use of ICTs improved home-school relationships. Additionally, Escueta et al. ( 2017 ) reported several ICT programs that had improved the flow of information from the school to parents. Particularly, they documented that the use of ICTs (learning management systems, emails, dedicated websites, mobile phones) allowed for personalized and customized information exchange between schools and parents, such as attendance records, upcoming class assignments, school events, and students’ grades, which generated positive results on students’ learning outcomes and attainment. Such information exchange between schools and families prompted parents to encourage their children to put more effort into their schoolwork.

The above findings suggest that the impact of ICT integration in schools goes beyond students’ performance in school subjects. Specifically, it affects a number of school-related aspects, such as equality and social integration, professional and teaching practices, and diverse stakeholders. In Table ​ Table2, 2 , we summarize the different impacts of digital technologies on school stakeholders based on the literature review, while in Table ​ Table3 3 we organized the tools/platforms and practices/policies addressed in the meta-analyses, literature reviews, EU reports, and international bodies included in the manuscript.

The impact of digital technologies on schools’ stakeholders based on the literature review

ImpactsReferences
Students
  Knowledge, skills, attitudes, and emotions
    • Learning gains from the use of ICTs across the curriculumEng, ; Balanskat et al., ; Liao et al., ; Tamim et al., ; Higgins et al., ; Chauhan, ; Sung et al., ; Schmid et al., ; Tamim et al., ; Zheng et al., ; Haßler et al., ; Kalati & Kim, ; Martinez et al., ; Talan et al., ; Panet al., ; Garzón & Acevedo, ; Garzón et al., ; Villena-Taranilla, et al., ; Coban et al.,
    • Positive learning gains from the use of ICTs in specific school subjects (e.g., mathematics, literacy, language, science)Arztmann et al., ; Villena-Taranilla, et al., ; Chen et al., ; Balanskat et al., ; Grgurović, et al., ; Friedel et al., ; Zheng et al., ; Savva et al., ; Kao, ; Higgins et al., ; Wen & Walters, ; Liao et al., ; Cheung & Slavin, ; Schwabe et al., ; Li & Ma, ; Verschaffel et al., ; Ran et al., ; Liao et al., ; Hillmayr et al., ; Kalemkuş & Kalemkuş, ; Lei et al., ; Condie & Munro, ; Chauhan, ; Bado, ; Wang et al., ; Pan et al.,
    • Positive learning gains for special needs students and low-achieving studentsEng, ; Balanskat et al., ; Punie et al., ; Koh,
    • Oportunities to develop a range of skills (e.g., subject-related skills, communication skills, negotiation skills, emotion control skills, organizational skills, critical thinking skills, creativity, metacognitive skills, life, and career skills)Balanskat et al., ; Fu, ; Tamim et al., ; Zheng et al., ; Higgins et al., ; Verschaffel et al., ; Su & Yang, ; Su et al., ; Lu et al., ; Liu et al., ; Quah & Ng, ; Fielding & Murcia, ; Tang et al., ; Haleem et al.,
    • Oportunities to develop digital skills (e.g., information skills, media skills, ICT skills)Zheng et al., ; Su & Yang, ; Lu et al., ; Su et al.,
    • Positive attitudes and behaviours towards ICTs, positive emotions (e.g., increased interest, motivation, attention, engagement, confidence, reduced anxiety, positive achievement emotions, reduction in bullying and cyberbullying)Balanskat et al., ; Schmid et al., ; Zheng et al., ; Fadda et al., ; Higgins et al., ; Chen et al., ; Lei et al., ; Arztmann et al., ; Su et al.,
  Learning experience
    • Enhance access to resourcesJewitt et al., ; Fu,
    • Opportunities to experience various learning practices (e.g., active learning, learner-centred learning, independent and personalized learning, collaborative learning, self-directed learning, self- and peer-review)Jewitt et al., ; Fu,
    • Improved access to teacher assessment and feedbackJewitt et al.,
Equality, inclusion, and social integration
    • Improved communication, functional skills, participation, self-esteem, and engagement of special needs studentsCondie & Munro, ; Baragash et al., ; Koh,
    • Enhanced social interaction for students in general and for students with learning difficultiesIstenic Starcic & Bagon,
    • Benefits for both girls and boysZheng et al., ; Arztmann et al.,
Teachers
  Professional practice
    • Development of digital competenceBalanskat et al.,
    • Positive attitudes and behaviours towards ICTs (e.g., increased confidence)Punie et al., ,
    • Formalized collaborative planning between teachersBalanskat et al.,
    • Improved reporting to parentsBalanskat et al.,
Teaching practice
    • Efficiency in lesson planning and preparationBalanskat et al.,
    • Facilitate assessment through the provision of immediate feedbackPunie et al.,
    • Improvements in the technical quality of testsPunie et al.,
    • New methods of testing specific skills (e.g., problem-solving skills, meta-cognitive skills)Punie et al.,
    • Successful content delivery and lessonsFriedel et al.,
    • Application of different instructional practices (e.g., scaffolding, synchronous collaborative learning, online learning, blended learning, hybrid learning)Friedel et al., ; Bado, ; Kazu & Yalçin, ; Ulum,
Administrators
  Data-based decision-making
    • Improved data-gathering processesBalanskat et al.,
    • Support monitoring and evaluation processes (e.g., attendance monitoring, financial management, assessment records)Condie & Munro,
Organizational processes
    • Access to learning resources via the creation of repositoriesCondie & Munro,
    • Information sharing between school staffCondie & Munro,
    • Smooth communications with external authorities (e.g., examination results)Punie et al.,
    • Efficient and successful examination management proceduresPunie et al.,
  Home-school communication
    • Support reporting to parentsCondie & Munro,
    • Improved flow of communication between the school and parents (e.g., customized and personalized communications)Escueta et al.,
School leaders
  Professional practice
    • Reduced headteacher isolationCondie & Munro,
    • Improved access to insights about practices for school improvementCondie & Munro,
Parents
  Home-school relationships
    • Improved home-school relationshipsZheng et al.,
    • Increased parental involvement in children’s school lifeEscueta et al.,

Tools/platforms and practices/policies addressed in the meta-analyses, literature reviews, EU reports, and international bodies included in the manuscript

Technologies/tools/practices/policiesReferences
ICT general – various types of technologies

Eng, (review)

Moran et al., (meta-analysis)

Balanskat et al., (report)

Punie et al., (review)

Fu, (review)

Higgins et al., (report)

Chauhan, (meta-analysis)

Schmid et al., (meta-analysis)

Grgurović et al., (meta-analysis)

Higgins et al., (meta-analysis)

Wen & Walters, (meta-analysis)

Cheung & Slavin, (meta-analysis)

Li & Ma, (meta-analysis)

Hillmayr et al., (meta-analysis)

Verschaffel et al., (systematic review)

Ran et al., (meta-analysis)

Fielding & Murcia, (systematic review)

Tang et al., (review)

Haleem et al., (review)

Condie & Munro, (review)

Underwood, (review)

Istenic Starcic & Bagon, (review)

Cussó-Calabuig et al., (systematic review)

Escueta et al. ( ) (review)

Archer et al., (meta-analysis)

Lee et al., (meta-analysis)

Delgado et al., (review)

Di Pietro et al., (report)

Practices/policies on schools’ digital transformation

Bingimlas, (review)

Hardman, (review)

Hattie, (synthesis of multiple meta-analysis)

Trucano, (book-Knowledge maps)

Ređep, (policy study)

Conrads et al, (report)

European Commission, (EU report)

Elkordy & Lovinelli, (book chapter)

Eurydice, (EU report)

Vuorikari et al., (JRC paper)

Sellar, (review)

European Commission, (EU report)

OECD, (international paper)

Computer-assisted instruction, computer simulations, activeboards, and web-based learning

Liao et al., (meta-analysis)

Tamim et al., (meta-analysis)

Çelik, (review)

Moran et al., (meta-analysis)

Eng, (review)

Learning platforms (LPs) (virtual learning environments, management information systems, communication technologies and information and resource sharing technologies)Jewitt et al., (report)
Mobile devices—touch screens (smart devices, tablets, laptops)

Sung et al., (meta-analysis and research synthesis)

Tamim et al., (meta-analysis)

Tamim et al., (systematic review and meta-analysis)

Zheng et al., (meta-analysis and research synthesis)

Haßler et al., (review)

Kalati & Kim, (systematic review)

Friedel et al., (meta-analysis and review)

Chen et al., (meta-analysis)

Schwabe et al., (meta-analysis)

Punie et al., (review)

Digital games (various types e.g., adventure, serious; various domains e.g., history, science)

Wang et al., (meta-analysis)

Arztmann et al., (meta-analysis)

Martinez et al., (systematic review)

Talan et al., (meta-analysis)

Pan et al., (systematic review)

Chen et al., (meta-analysis)

Kao, (meta-analysis)

Fadda et al., (meta-analysis)

Lu et al., (meta-analysis)

Lei et al., (meta-analysis)

Koh, (meta-analysis)

Bado, (review)

Augmented reality (AR)

Garzón & Acevedo, (meta-analysis)

Garzón et al., (meta-analysis and research synthesis)

Kalemkuş & Kalemkuş, (meta-analysis)

Baragash et al., (meta-analysis)

Virtual reality (VR)

Immersive virtual reality (IVR)

Villena-Taranilla et al., (meta-analysis)

Chen et al., (meta-analysis)

Coban et al., (meta-analysis)

Artificial intelligence (AI) and robotics

Su & Yang, (review)

Su et al., (meta review)

Online learning/elearning

Ulum, (meta-analysis)

Cheok & Wong, (review)

Blended learningGrgurović et al., (meta-analysis)
Synchronous parallel participationFriedel et al., (meta-analysis and review)
Electronic books/digital storytelling

Savva et al., (meta-analysis)

Quah & Ng, (systematic review)

Multimedia technologyLiu et al., (meta-analysis)
Hybrid learningKazu & Yalçin, (meta-analysis)

Additionally, based on the results of the literature review, there are many types of digital technologies with different affordances (see, for example, studies on VR vs Immersive VR), which evolve over time (e.g. starting from CAIs in 2005 to Augmented and Virtual reality 2020). Furthermore, these technologies are linked to different pedagogies and policy initiatives, which are critical factors in the study of impact. Table ​ Table3 3 summarizes the different tools and practices that have been used to examine the impact of digital technologies on education since 2005 based on the review results.

Factors that affect the integration of digital technologies

Although the analysis of the literature review demonstrated different impacts of the use of digital technology on education, several authors highlighted the importance of various factors, besides the technology itself, that affect this impact. For example, Liao et al. ( 2007 ) suggested that future studies should carefully investigate which factors contribute to positive outcomes by clarifying the exact relationship between computer applications and learning. Additionally, Haßler et al., ( 2016 ) suggested that the neutral findings regarding the impact of tablets on students learning outcomes in some of the studies included in their review should encourage educators, school leaders, and school officials to further investigate the potential of such devices in teaching and learning. Several other researchers suggested that a number of variables play a significant role in the impact of ICTs on students’ learning that could be attributed to the school context, teaching practices and professional development, the curriculum, and learners’ characteristics (Underwood, 2009 ; Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Tang et al., 2022 ).

Digital competencies

One of the most common challenges reported in studies that utilized digital tools in the classroom was the lack of students’ skills on how to use them. Fu ( 2013 ) found that students’ lack of technical skills is a barrier to the effective use of ICT in the classroom. Tamim et al. ( 2015 ) reported that students faced challenges when using tablets and smart mobile devices, associated with the technical issues or expertise needed for their use and the distracting nature of the devices and highlighted the need for teachers’ professional development. Higgins et al. ( 2012 ) reported that skills training about the use of digital technologies is essential for learners to fully exploit the benefits of instruction.

Delgado et al. ( 2015 ), meanwhile, reported studies that showed a strong positive association between teachers’ computer skills and students’ use of computers. Teachers’ lack of ICT skills and familiarization with technologies can become a constraint to the effective use of technology in the classroom (Balanskat et al., 2006 ; Delgado et al., 2015 ).

It is worth noting that the way teachers are introduced to ICTs affects the impact of digital technologies on education. Previous studies have shown that teachers may avoid using digital technologies due to limited digital skills (Balanskat, 2006 ), or they prefer applying “safe” technologies, namely technologies that their own teachers used and with which they are familiar (Condie & Munro, 2007 ). In this regard, the provision of digital skills training and exposure to new digital tools might encourage teachers to apply various technologies in their lessons (Condie & Munro, 2007 ). Apart from digital competence, technical support in the school setting has also been shown to affect teachers’ use of technology in their classrooms (Delgado et al., 2015 ). Ferrari et al. ( 2011 ) found that while teachers’ use of ICT is high, 75% stated that they needed more institutional support and a shift in the mindset of educational actors to achieve more innovative teaching practices. The provision of support can reduce time and effort as well as cognitive constraints, which could cause limited ICT integration in the school lessons by teachers (Escueta et al., 2017 ).

Teachers’ personal characteristics, training approaches, and professional development

Teachers’ personal characteristics and professional development affect the impact of digital technologies on education. Specifically, Cheok and Wong ( 2015 ) found that teachers’ personal characteristics (e.g., anxiety, self-efficacy) are associated with their satisfaction and engagement with technology. Bingimlas ( 2009 ) reported that lack of confidence, resistance to change, and negative attitudes in using new technologies in teaching are significant determinants of teachers’ levels of engagement in ICT. The same author reported that the provision of technical support, motivation support (e.g., awards, sufficient time for planning), and training on how technologies can benefit teaching and learning can eliminate the above barriers to ICT integration. Archer et al. ( 2014 ) found that comfort levels in using technology are an important predictor of technology integration and argued that it is essential to provide teachers with appropriate training and ongoing support until they are comfortable with using ICTs in the classroom. Hillmayr et al. ( 2020 ) documented that training teachers on ICT had an important effecton students’ learning.

According to Balanskat et al. ( 2006 ), the impact of ICTs on students’ learning is highly dependent on the teachers’ capacity to efficiently exploit their application for pedagogical purposes. Results obtained from the Teaching and Learning International Survey (TALIS) (OECD, 2021 ) revealed that although schools are open to innovative practices and have the capacity to adopt them, only 39% of teachers in the European Union reported that they are well or very well prepared to use digital technologies for teaching. Li and Ma ( 2010 ) and Hardman ( 2019 ) showed that the positive effect of technology on students’ achievement depends on the pedagogical practices used by teachers. Schmid et al. ( 2014 ) reported that learning was best supported when students were engaged in active, meaningful activities with the use of technological tools that provided cognitive support. Tamim et al. ( 2015 ) compared two different pedagogical uses of tablets and found a significant moderate effect when the devices were used in a student-centered context and approach rather than within teacher-led environments. Similarly, Garzón and Acevedo ( 2019 ) and Garzón et al. ( 2020 ) reported that the positive results from the integration of AR applications could be attributed to the existence of different variables which could influence AR interventions (e.g., pedagogical approach, learning environment, and duration of the intervention). Additionally, Garzón et al. ( 2020 ) suggested that the pedagogical resources that teachers used to complement their lectures and the pedagogical approaches they applied were crucial to the effective integration of AR on students’ learning gains. Garzón and Acevedo ( 2019 ) also emphasized that the success of a technology-enhanced intervention is based on both the technology per se and its characteristics and on the pedagogical strategies teachers choose to implement. For instance, their results indicated that the collaborative learning approach had the highest impact on students’ learning gains among other approaches (e.g., inquiry-based learning, situated learning, or project-based learning). Ran et al. ( 2022 ) also found that the use of technology to design collaborative and communicative environments showed the largest moderator effects among the other approaches.

Hattie ( 2008 ) reported that the effective use of computers is associated with training teachers in using computers as a teaching and learning tool. Zheng et al. ( 2016 ) noted that in addition to the strategies teachers adopt in teaching, ongoing professional development is also vital in ensuring the success of technology implementation programs. Sung et al. ( 2016 ) found that research on the use of mobile devices to support learning tends to report that the insufficient preparation of teachers is a major obstacle in implementing effective mobile learning programs in schools. Friedel et al. ( 2013 ) found that providing training and support to teachers increased the positive impact of the interventions on students’ learning gains. Trucano ( 2005 ) argued that positive impacts occur when digital technologies are used to enhance teachers’ existing pedagogical philosophies. Higgins et al. ( 2012 ) found that the types of technologies used and how they are used could also affect students’ learning. The authors suggested that training and professional development of teachers that focuses on the effective pedagogical use of technology to support teaching and learning is an important component of successful instructional approaches (Higgins et al., 2012 ). Archer et al. ( 2014 ) found that studies that reported ICT interventions during which teachers received training and support had moderate positive effects on students’ learning outcomes, which were significantly higher than studies where little or no detail about training and support was mentioned. Fu ( 2013 ) reported that the lack of teachers’ knowledge and skills on the technical and instructional aspects of ICT use in the classroom, in-service training, pedagogy support, technical and financial support, as well as the lack of teachers’ motivation and encouragement to integrate ICT on their teaching were significant barriers to the integration of ICT in education.

School leadership and management

Management and leadership are important cornerstones in the digital transformation process (Pihir et al., 2018 ). Zheng et al. ( 2016 ) documented leadership among the factors positively affecting the successful implementation of technology integration in schools. Strong leadership, strategic planning, and systematic integration of digital technologies are prerequisites for the digital transformation of education systems (Ređep, 2021 ). Management and leadership play a significant role in formulating policies that are translated into practice and ensure that developments in ICT become embedded into the life of the school and in the experiences of staff and pupils (Condie & Munro, 2007 ). Policy support and leadership must include the provision of an overall vision for the use of digital technologies in education, guidance for students and parents, logistical support, as well as teacher training (Conrads et al., 2017 ). Unless there is a commitment throughout the school, with accountability for progress at key points, it is unlikely for ICT integration to be sustained or become part of the culture (Condie & Munro, 2007 ). To achieve this, principals need to adopt and promote a whole-institution strategy and build a strong mutual support system that enables the school’s technological maturity (European Commission, 2019 ). In this context, school culture plays an essential role in shaping the mindsets and beliefs of school actors towards successful technology integration. Condie and Munro ( 2007 ) emphasized the importance of the principal’s enthusiasm and work as a source of inspiration for the school staff and the students to cultivate a culture of innovation and establish sustainable digital change. Specifically, school leaders need to create conditions in which the school staff is empowered to experiment and take risks with technology (Elkordy & Lovinelli, 2020 ).

In order for leaders to achieve the above, it is important to develop capacities for learning and leading, advocating professional learning, and creating support systems and structures (European Commission, 2019 ). Digital technology integration in education systems can be challenging and leadership needs guidance to achieve it. Such guidance can be introduced through the adoption of new methods and techniques in strategic planning for the integration of digital technologies (Ređep, 2021 ). Even though the role of leaders is vital, the relevant training offered to them has so far been inadequate. Specifically, only a third of the education systems in Europe have put in place national strategies that explicitly refer to the training of school principals (European Commission, 2019 , p. 16).

Connectivity, infrastructure, and government and other support

The effective integration of digital technologies across levels of education presupposes the development of infrastructure, the provision of digital content, and the selection of proper resources (Voogt et al., 2013 ). Particularly, a high-quality broadband connection in the school increases the quality and quantity of educational activities. There is evidence that ICT increases and formalizes cooperative planning between teachers and cooperation with managers, which in turn has a positive impact on teaching practices (Balanskat et al., 2006 ). Additionally, ICT resources, including software and hardware, increase the likelihood of teachers integrating technology into the curriculum to enhance their teaching practices (Delgado et al., 2015 ). For example, Zheng et al. ( 2016 ) found that the use of one-on-one laptop programs resulted in positive changes in teaching and learning, which would not have been accomplished without the infrastructure and technical support provided to teachers. Delgado et al. ( 2015 ) reported that limited access to technology (insufficient computers, peripherals, and software) and lack of technical support are important barriers to ICT integration. Access to infrastructure refers not only to the availability of technology in a school but also to the provision of a proper amount and the right types of technology in locations where teachers and students can use them. Effective technical support is a central element of the whole-school strategy for ICT (Underwood, 2009 ). Bingimlas ( 2009 ) reported that lack of technical support in the classroom and whole-school resources (e.g., failing to connect to the Internet, printers not printing, malfunctioning computers, and working on old computers) are significant barriers that discourage the use of ICT by teachers. Moreover, poor quality and inadequate hardware maintenance, and unsuitable educational software may discourage teachers from using ICTs (Balanskat et al., 2006 ; Bingimlas, 2009 ).

Government support can also impact the integration of ICTs in teaching. Specifically, Balanskat et al. ( 2006 ) reported that government interventions and training programs increased teachers’ enthusiasm and positive attitudes towards ICT and led to the routine use of embedded ICT.

Lastly, another important factor affecting digital transformation is the development and quality assurance of digital learning resources. Such resources can be support textbooks and related materials or resources that focus on specific subjects or parts of the curriculum. Policies on the provision of digital learning resources are essential for schools and can be achieved through various actions. For example, some countries are financing web portals that become repositories, enabling teachers to share resources or create their own. Additionally, they may offer e-learning opportunities or other services linked to digital education. In other cases, specific agencies of projects have also been set up to develop digital resources (Eurydice, 2019 ).

Administration and digital data management

The digital transformation of schools involves organizational improvements at the level of internal workflows, communication between the different stakeholders, and potential for collaboration. Vuorikari et al. ( 2020 ) presented evidence that digital technologies supported the automation of administrative practices in schools and reduced the administration’s workload. There is evidence that digital data affects the production of knowledge about schools and has the power to transform how schooling takes place. Specifically, Sellar ( 2015 ) reported that data infrastructure in education is developing due to the demand for “ information about student outcomes, teacher quality, school performance, and adult skills, associated with policy efforts to increase human capital and productivity practices ” (p. 771). In this regard, practices, such as datafication which refers to the “ translation of information about all kinds of things and processes into quantified formats” have become essential for decision-making based on accountability reports about the school’s quality. The data could be turned into deep insights about education or training incorporating ICTs. For example, measuring students’ online engagement with the learning material and drawing meaningful conclusions can allow teachers to improve their educational interventions (Vuorikari et al., 2020 ).

Students’ socioeconomic background and family support

Research show that the active engagement of parents in the school and their support for the school’s work can make a difference to their children’s attitudes towards learning and, as a result, their achievement (Hattie, 2008 ). In recent years, digital technologies have been used for more effective communication between school and family (Escueta et al., 2017 ). The European Commission ( 2020 ) presented data from a Eurostat survey regarding the use of computers by students during the pandemic. The data showed that younger pupils needed additional support and guidance from parents and the challenges were greater for families in which parents had lower levels of education and little to no digital skills.

In this regard, the socio-economic background of the learners and their socio-cultural environment also affect educational achievements (Punie et al., 2006 ). Trucano documented that the use of computers at home positively influenced students’ confidence and resulted in more frequent use at school, compared to students who had no home access (Trucano, 2005 ). In this sense, the socio-economic background affects the access to computers at home (OECD, 2015 ) which in turn influences the experience of ICT, an important factor for school achievement (Punie et al., 2006 ; Underwood, 2009 ). Furthermore, parents from different socio-economic backgrounds may have different abilities and availability to support their children in their learning process (Di Pietro et al., 2020 ).

Schools’ socioeconomic context and emergency situations

The socio-economic context of the school is closely related to a school’s digital transformation. For example, schools in disadvantaged, rural, or deprived areas are likely to lack the digital capacity and infrastructure required to adapt to the use of digital technologies during emergency periods, such as the COVID-19 pandemic (Di Pietro et al., 2020 ). Data collected from school principals confirmed that in several countries, there is a rural/urban divide in connectivity (OECD, 2015 ).

Emergency periods also affect the digitalization of schools. The COVID-19 pandemic led to the closure of schools and forced them to seek appropriate and connective ways to keep working on the curriculum (Di Pietro et al., 2020 ). The sudden large-scale shift to distance and online teaching and learning also presented challenges around quality and equity in education, such as the risk of increased inequalities in learning, digital, and social, as well as teachers facing difficulties coping with this demanding situation (European Commission, 2020 ).

Looking at the findings of the above studies, we can conclude that the impact of digital technologies on education is influenced by various actors and touches many aspects of the school ecosystem. Figure  1 summarizes the factors affecting the digital technologies’ impact on school stakeholders based on the findings from the literature review.

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11431_Fig1_HTML.jpg

Factors that affect the impact of ICTs on education

The findings revealed that the use of digital technologies in education affects a variety of actors within a school’s ecosystem. First, we observed that as technologies evolve, so does the interest of the research community to apply them to school settings. Figure  2 summarizes the trends identified in current research around the impact of digital technologies on schools’ digital capacity and transformation as found in the present study. Starting as early as 2005, when computers, simulations, and interactive boards were the most commonly applied tools in school interventions (e.g., Eng, 2005 ; Liao et al., 2007 ; Moran et al., 2008 ; Tamim et al., 2011 ), moving towards the use of learning platforms (Jewitt et al., 2011 ), then to the use of mobile devices and digital games (e.g., Tamim et al., 2015 ; Sung et al., 2016 ; Talan et al., 2020 ), as well as e-books (e.g., Savva et al., 2022 ), to the more recent advanced technologies, such as AR and VR applications (e.g., Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Kalemkuş & Kalemkuş, 2022 ), or robotics and AI (e.g., Su & Yang, 2022 ; Su et al., 2022 ). As this evolution shows, digital technologies are a concept in flux with different affordances and characteristics. Additionally, from an instructional perspective, there has been a growing interest in different modes and models of content delivery such as online, blended, and hybrid modes (e.g., Cheok & Wong, 2015 ; Kazu & Yalçin, 2022 ; Ulum, 2022 ). This is an indication that the value of technologies to support teaching and learning as well as other school-related practices is increasingly recognized by the research and school community. The impact results from the literature review indicate that ICT integration on students’ learning outcomes has effects that are small (Coban et al., 2022 ; Eng, 2005 ; Higgins et al., 2012 ; Schmid et al., 2014 ; Tamim et al., 2015 ; Zheng et al., 2016 ) to moderate (Garzón & Acevedo, 2019 ; Garzón et al., 2020 ; Liao et al., 2007 ; Sung et al., 2016 ; Talan et al., 2020 ; Wen & Walters, 2022 ). That said, a number of recent studies have reported high effect sizes (e.g., Kazu & Yalçin, 2022 ).

An external file that holds a picture, illustration, etc.
Object name is 10639_2022_11431_Fig2_HTML.jpg

Current work and trends in the study of the impact of digital technologies on schools’ digital capacity

Based on these findings, several authors have suggested that the impact of technology on education depends on several variables and not on the technology per se (Tamim et al., 2011 ; Higgins et al., 2012 ; Archer et al., 2014 ; Sung et al., 2016 ; Haßler et al., 2016 ; Chauhan, 2017 ; Lee et al., 2020 ; Lei et al., 2022a ). While the impact of ICTs on student achievement has been thoroughly investigated by researchers, other aspects related to school life that are also affected by ICTs, such as equality, inclusion, and social integration have received less attention. Further analysis of the literature review has revealed a greater investment in ICT interventions to support learning and teaching in the core subjects of literacy and STEM disciplines, especially mathematics, and science. These were the most common subjects studied in the reviewed papers often drawing on national testing results, while studies that investigated other subject areas, such as social studies, were limited (Chauhan, 2017 ; Condie & Munro, 2007 ). As such, research is still lacking impact studies that focus on the effects of ICTs on a range of curriculum subjects.

The qualitative research provided additional information about the impact of digital technologies on education, documenting positive effects and giving more details about implications, recommendations, and future research directions. Specifically, the findings regarding the role of ICTs in supporting learning highlight the importance of teachers’ instructional practice and the learning context in the use of technologies and consequently their impact on instruction (Çelik, 2022 ; Schmid et al., 2014 ; Tamim et al., 2015 ). The review also provided useful insights regarding the various factors that affect the impact of digital technologies on education. These factors are interconnected and play a vital role in the transformation process. Specifically, these factors include a) digital competencies; b) teachers’ personal characteristics and professional development; c) school leadership and management; d) connectivity, infrastructure, and government support; e) administration and data management practices; f) students’ socio-economic background and family support and g) the socioeconomic context of the school and emergency situations. It is worth noting that we observed factors that affect the integration of ICTs in education but may also be affected by it. For example, the frequent use of ICTs and the use of laptops by students for instructional purposes positively affect the development of digital competencies (Zheng et al., 2016 ) and at the same time, the digital competencies affect the use of ICTs (Fu, 2013 ; Higgins et al., 2012 ). As a result, the impact of digital technologies should be explored more as an enabler of desirable and new practices and not merely as a catalyst that improves the output of the education process i.e. namely student attainment.

Conclusions

Digital technologies offer immense potential for fundamental improvement in schools. However, investment in ICT infrastructure and professional development to improve school education are yet to provide fruitful results. Digital transformation is a complex process that requires large-scale transformative changes that presuppose digital capacity and preparedness. To achieve such changes, all actors within the school’s ecosystem need to share a common vision regarding the integration of ICTs in education and work towards achieving this goal. Our literature review, which synthesized quantitative and qualitative data from a list of meta-analyses and review studies, provided useful insights into the impact of ICTs on different school stakeholders and showed that the impact of digital technologies touches upon many different aspects of school life, which are often overlooked when the focus is on student achievement as the final output of education. Furthermore, the concept of digital technologies is a concept in flux as technologies are not only different among them calling for different uses in the educational practice but they also change through time. Additionally, we opened a forum for discussion regarding the factors that affect a school’s digital capacity and transformation. We hope that our study will inform policy, practice, and research and result in a paradigm shift towards more holistic approaches in impact and assessment studies.

Study limitations and future directions

We presented a review of the study of digital technologies' impact on education and factors influencing schools’ digital capacity and transformation. The study results were based on a non-systematic literature review grounded on the acquisition of documentation in specific databases. Future studies should investigate more databases to corroborate and enhance our results. Moreover, search queries could be enhanced with key terms that could provide additional insights about the integration of ICTs in education, such as “policies and strategies for ICT integration in education”. Also, the study drew information from meta-analyses and literature reviews to acquire evidence about the effects of ICT integration in schools. Such evidence was mostly based on the general conclusions of the studies. It is worth mentioning that, we located individual studies which showed different, such as negative or neutral results. Thus, further insights are needed about the impact of ICTs on education and the factors influencing the impact. Furthermore, the nature of the studies included in meta-analyses and reviews is different as they are based on different research methodologies and data gathering processes. For instance, in a meta-analysis, the impact among the studies investigated is measured in a particular way, depending on policy or research targets (e.g., results from national examinations, pre-/post-tests). Meanwhile, in literature reviews, qualitative studies offer additional insights and detail based on self-reports and research opinions on several different aspects and stakeholders who could affect and be affected by ICT integration. As a result, it was challenging to draw causal relationships between so many interrelating variables.

Despite the challenges mentioned above, this study envisaged examining school units as ecosystems that consist of several actors by bringing together several variables from different research epistemologies to provide an understanding of the integration of ICTs. However, the use of other tools and methodologies and models for evaluation of the impact of digital technologies on education could give more detailed data and more accurate results. For instance, self-reflection tools, like SELFIE—developed on the DigCompOrg framework- (Kampylis et al., 2015 ; Bocconi & Lightfoot, 2021 ) can help capture a school’s digital capacity and better assess the impact of ICTs on education. Furthermore, the development of a theory of change could be a good approach for documenting the impact of digital technologies on education. Specifically, theories of change are models used for the evaluation of interventions and their impact; they are developed to describe how interventions will work and give the desired outcomes (Mayne, 2015 ). Theory of change as a methodological approach has also been used by researchers to develop models for evaluation in the field of education (e.g., Aromatario et al., 2019 ; Chapman & Sammons, 2013 ; De Silva et al., 2014 ).

We also propose that future studies aim at similar investigations by applying more holistic approaches for impact assessment that can provide in-depth data about the impact of digital technologies on education. For instance, future studies could focus on different research questions about the technologies that are used during the interventions or the way the implementation takes place (e.g., What methodologies are used for documenting impact? How are experimental studies implemented? How can teachers be taken into account and trained on the technology and its functions? What are the elements of an appropriate and successful implementation? How is the whole intervention designed? On which learning theories is the technology implementation based?).

Future research could also focus on assessing the impact of digital technologies on various other subjects since there is a scarcity of research related to particular subjects, such as geography, history, arts, music, and design and technology. More research should also be done about the impact of ICTs on skills, emotions, and attitudes, and on equality, inclusion, social interaction, and special needs education. There is also a need for more research about the impact of ICTs on administration, management, digitalization, and home-school relationships. Additionally, although new forms of teaching and learning with the use of ICTs (e.g., blended, hybrid, and online learning) have initiated several investigations in mainstream classrooms, only a few studies have measured their impact on students’ learning. Additionally, our review did not document any study about the impact of flipped classrooms on K-12 education. Regarding teaching and learning approaches, it is worth noting that studies referred to STEM or STEAM did not investigate the impact of STEM/STEAM as an interdisciplinary approach to learning but only investigated the impact of ICTs on learning in each domain as a separate subject (science, technology, engineering, arts, mathematics). Hence, we propose future research to also investigate the impact of the STEM/STEAM approach on education. The impact of emerging technologies on education, such as AR, VR, robotics, and AI has also been investigated recently, but more work needs to be done.

Finally, we propose that future studies could focus on the way in which specific factors, e.g., infrastructure and government support, school leadership and management, students’ and teachers’ digital competencies, approaches teachers utilize in the teaching and learning (e.g., blended, online and hybrid learning, flipped classrooms, STEM/STEAM approach, project-based learning, inquiry-based learning), affect the impact of digital technologies on education. We hope that future studies will give detailed insights into the concept of schools’ digital transformation through further investigation of impacts and factors which influence digital capacity and transformation based on the results and the recommendations of the present study.

Acknowledgements

This project has received funding under Grant Agreement No Ref Ares (2021) 339036 7483039 as well as funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No 739578 and the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy. The UVa co-authors would like also to acknowledge funding from the European Regional Development Fund and the National Research Agency of the Spanish Ministry of Science and Innovation, under project grant PID2020-112584RB-C32.

Data availability statement

Declarations.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Archer K, Savage R, Sanghera-Sidhu S, Wood E, Gottardo A, Chen V. Examining the effectiveness of technology use in classrooms: A tertiary meta-analysis. Computers & Education. 2014; 78 :140–149. doi: 10.1016/j.compedu.2014.06.001. [ CrossRef ] [ Google Scholar ]
  • Aromatario O, Van Hoye A, Vuillemin A, Foucaut AM, Pommier J, Cambon L. Using theory of change to develop an intervention theory for designing and evaluating behavior change SDApps for healthy eating and physical exercise: The OCAPREV theory. BMC Public Health. 2019; 19 (1):1–12. doi: 10.1186/s12889-019-7828-4. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Arztmann, M., Hornstra, L., Jeuring, J., & Kester, L. (2022). Effects of games in STEM education: A meta-analysis on the moderating role of student background characteristics. Studies in Science Education , 1-37. 10.1080/03057267.2022.2057732
  • Bado N. Game-based learning pedagogy: A review of the literature. Interactive Learning Environments. 2022; 30 (5):936–948. doi: 10.1080/10494820.2019.1683587. [ CrossRef ] [ Google Scholar ]
  • Balanskat, A. (2009). Study of the impact of technology in primary schools – Synthesis Report. Empirica and European Schoolnet. Retrieved 30 June 2022 from: https://erte.dge.mec.pt/sites/default/files/Recursos/Estudos/synthesis_report_steps_en.pdf
  • Balanskat, A. (2006). The ICT Impact Report: A review of studies of ICT impact on schools in Europe, European Schoolnet. Retrieved 30 June 2022 from:  https://en.unesco.org/icted/content/ict-impact-report-review-studies-ict-impact-schools-europe
  • Balanskat, A., Blamire, R., & Kefala, S. (2006). The ICT impact report.  European Schoolnet . Retrieved from: http://colccti.colfinder.org/sites/default/files/ict_impact_report_0.pdf
  • Balyer, A., & Öz, Ö. (2018). Academicians’ views on digital transformation in education. International Online Journal of Education and Teaching (IOJET), 5 (4), 809–830. Retrieved 30 June 2022 from  http://iojet.org/index.php/IOJET/article/view/441/295
  • Baragash RS, Al-Samarraie H, Moody L, Zaqout F. Augmented reality and functional skills acquisition among individuals with special needs: A meta-analysis of group design studies. Journal of Special Education Technology. 2022; 37 (1):74–81. doi: 10.1177/0162643420910413. [ CrossRef ] [ Google Scholar ]
  • Bates, A. W. (2015). Teaching in a digital age: Guidelines for designing teaching and learning . Open Educational Resources Collection . 6. Retrieved 30 June 2022 from: https://irl.umsl.edu/oer/6
  • Bingimlas KA. Barriers to the successful integration of ICT in teaching and learning environments: A review of the literature. Eurasia Journal of Mathematics, Science and Technology Education. 2009; 5 (3):235–245. doi: 10.12973/ejmste/75275. [ CrossRef ] [ Google Scholar ]
  • Blaskó Z, Costa PD, Schnepf SV. Learning losses and educational inequalities in Europe: Mapping the potential consequences of the COVID-19 crisis. Journal of European Social Policy. 2022; 32 (4):361–375. doi: 10.1177/09589287221091687. [ CrossRef ] [ Google Scholar ]
  • Bocconi S, Lightfoot M. Scaling up and integrating the selfie tool for schools' digital capacity in education and training systems: Methodology and lessons learnt. European Training Foundation. 2021 doi: 10.2816/907029,JRC123936. [ CrossRef ] [ Google Scholar ]
  • Brooks, D. C., & McCormack, M. (2020). Driving Digital Transformation in Higher Education . Retrieved 30 June 2022 from: https://library.educause.edu/-/media/files/library/2020/6/dx2020.pdf?la=en&hash=28FB8C377B59AFB1855C225BBA8E3CFBB0A271DA
  • Cachia, R., Chaudron, S., Di Gioia, R., Velicu, A., & Vuorikari, R. (2021). Emergency remote schooling during COVID-19, a closer look at European families. Retrieved 30 June 2022 from  https://publications.jrc.ec.europa.eu/repository/handle/JRC125787
  • Çelik B. The effects of computer simulations on students’ science process skills: Literature review. Canadian Journal of Educational and Social Studies. 2022; 2 (1):16–28. doi: 10.53103/cjess.v2i1.17. [ CrossRef ] [ Google Scholar ]
  • Chapman, C., & Sammons, P. (2013). School Self-Evaluation for School Improvement: What Works and Why? . CfBT Education Trust. 60 Queens Road, Reading, RG1 4BS, England.
  • Chauhan S. A meta-analysis of the impact of technology on learning effectiveness of elementary students. Computers & Education. 2017; 105 :14–30. doi: 10.1016/j.compedu.2016.11.005. [ CrossRef ] [ Google Scholar ]
  • Chen, Q., Chan, K. L., Guo, S., Chen, M., Lo, C. K. M., & Ip, P. (2022a). Effectiveness of digital health interventions in reducing bullying and cyberbullying: a meta-analysis. Trauma, Violence, & Abuse , 15248380221082090. 10.1177/15248380221082090 [ PubMed ]
  • Chen B, Wang Y, Wang L. The effects of virtual reality-assisted language learning: A meta-analysis. Sustainability. 2022; 14 (6):3147. doi: 10.3390/su14063147. [ CrossRef ] [ Google Scholar ]
  • Cheok ML, Wong SL. Predictors of e-learning satisfaction in teaching and learning for school teachers: A literature review. International Journal of Instruction. 2015; 8 (1):75–90. doi: 10.12973/iji.2015.816a. [ CrossRef ] [ Google Scholar ]
  • Cheung, A. C., & Slavin, R. E. (2011). The Effectiveness of Education Technology for Enhancing Reading Achievement: A Meta-Analysis. Center for Research and reform in Education .
  • Coban, M., Bolat, Y. I., & Goksu, I. (2022). The potential of immersive virtual reality to enhance learning: A meta-analysis. Educational Research Review , 100452. 10.1016/j.edurev.2022.100452
  • Condie, R., & Munro, R. K. (2007). The impact of ICT in schools-a landscape review. Retrieved 30 June 2022 from: https://oei.org.ar/ibertic/evaluacion/sites/default/files/biblioteca/33_impact_ict_in_schools.pdf
  • Conrads, J., Rasmussen, M., Winters, N., Geniet, A., Langer, L., (2017). Digital Education Policies in Europe and Beyond: Key Design Principles for More Effective Policies. Redecker, C., P. Kampylis, M. Bacigalupo, Y. Punie (ed.), EUR 29000 EN, Publications Office of the European Union, Luxembourg, 10.2760/462941
  • Costa P, Castaño-Muñoz J, Kampylis P. Capturing schools’ digital capacity: Psychometric analyses of the SELFIE self-reflection tool. Computers & Education. 2021; 162 :104080. doi: 10.1016/j.compedu.2020.104080. [ CrossRef ] [ Google Scholar ]
  • Cussó-Calabuig R, Farran XC, Bosch-Capblanch X. Effects of intensive use of computers in secondary school on gender differences in attitudes towards ICT: A systematic review. Education and Information Technologies. 2018; 23 (5):2111–2139. doi: 10.1007/s10639-018-9706-6. [ CrossRef ] [ Google Scholar ]
  • Daniel SJ. Education and the COVID-19 pandemic. Prospects. 2020; 49 (1):91–96. doi: 10.1007/s11125-020-09464-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Delcker J, Ifenthaler D. Teachers’ perspective on school development at German vocational schools during the Covid-19 pandemic. Technology, Pedagogy and Education. 2021; 30 (1):125–139. doi: 10.1080/1475939X.2020.1857826. [ CrossRef ] [ Google Scholar ]
  • Delgado, A., Wardlow, L., O’Malley, K., & McKnight, K. (2015). Educational technology: A review of the integration, resources, and effectiveness of technology in K-12 classrooms. Journal of Information Technology Education Research , 14, 397. Retrieved 30 June 2022 from  http://www.jite.org/documents/Vol14/JITEv14ResearchP397-416Delgado1829.pdf
  • De Silva MJ, Breuer E, Lee L, Asher L, Chowdhary N, Lund C, Patel V. Theory of change: A theory-driven approach to enhance the Medical Research Council's framework for complex interventions. Trials. 2014; 15 (1):1–13. doi: 10.1186/1745-6215-15-267. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Di Pietro G, Biagi F, Costa P, Karpiński Z, Mazza J. The likely impact of COVID-19 on education: Reflections based on the existing literature and recent international datasets. Publications Office of the European Union; 2020. [ Google Scholar ]
  • Elkordy A, Lovinelli J. Competencies, Culture, and Change: A Model for Digital Transformation in K12 Educational Contexts. In: Ifenthaler D, Hofhues S, Egloffstein M, Helbig C, editors. Digital Transformation of Learning Organizations. Springer; 2020. pp. 203–219. [ Google Scholar ]
  • Eng TS. The impact of ICT on learning: A review of research. International Education Journal. 2005; 6 (5):635–650. [ Google Scholar ]
  • European Commission. (2020). Digital Education Action Plan 2021 – 2027. Resetting education and training for the digital age. Retrieved 30 June 2022 from  https://ec.europa.eu/education/sites/default/files/document-library-docs/deap-communication-sept2020_en.pdf
  • European Commission. (2019). 2 nd survey of schools: ICT in education. Objective 1: Benchmark progress in ICT in schools . Retrieved 30 June 2022 from: https://data.europa.eu/euodp/data/storage/f/2019-03-19T084831/FinalreportObjective1-BenchmarkprogressinICTinschools.pdf
  • Eurydice. (2019). Digital Education at School in Europe , Luxembourg: Publications Office of the European Union. Retrieved 30 June 2022 from: https://eacea.ec.europa.eu/national-policies/eurydice/content/digital-education-school-europe_en
  • Escueta, M., Quan, V., Nickow, A. J., & Oreopoulos, P. (2017). Education technology: An evidence-based review. Retrieved 30 June 2022 from  https://ssrn.com/abstract=3031695
  • Fadda D, Pellegrini M, Vivanet G, Zandonella Callegher C. Effects of digital games on student motivation in mathematics: A meta-analysis in K-12. Journal of Computer Assisted Learning. 2022; 38 (1):304–325. doi: 10.1111/jcal.12618. [ CrossRef ] [ Google Scholar ]
  • Fernández-Gutiérrez M, Gimenez G, Calero J. Is the use of ICT in education leading to higher student outcomes? Analysis from the Spanish Autonomous Communities. Computers & Education. 2020; 157 :103969. doi: 10.1016/j.compedu.2020.103969. [ CrossRef ] [ Google Scholar ]
  • Ferrari, A., Cachia, R., & Punie, Y. (2011). Educational change through technology: A challenge for obligatory schooling in Europe. Lecture Notes in Computer Science , 6964 , 97–110. Retrieved 30 June 2022  https://link.springer.com/content/pdf/10.1007/978-3-642-23985-4.pdf
  • Fielding, K., & Murcia, K. (2022). Research linking digital technologies to young children’s creativity: An interpretive framework and systematic review. Issues in Educational Research , 32 (1), 105–125. Retrieved 30 June 2022 from  http://www.iier.org.au/iier32/fielding-abs.html
  • Friedel, H., Bos, B., Lee, K., & Smith, S. (2013). The impact of mobile handheld digital devices on student learning: A literature review with meta-analysis. In Society for Information Technology & Teacher Education International Conference (pp. 3708–3717). Association for the Advancement of Computing in Education (AACE).
  • Fu JS. ICT in education: A critical literature review and its implications. International Journal of Education and Development Using Information and Communication Technology (IJEDICT) 2013; 9 (1):112–125. [ Google Scholar ]
  • Gaol FL, Prasolova-Førland E. Special section editorial: The frontiers of augmented and mixed reality in all levels of education. Education and Information Technologies. 2022; 27 (1):611–623. doi: 10.1007/s10639-021-10746-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Garzón J, Acevedo J. Meta-analysis of the impact of Augmented Reality on students’ learning gains. Educational Research Review. 2019; 27 :244–260. doi: 10.1016/j.edurev.2019.04.001. [ CrossRef ] [ Google Scholar ]
  • Garzón, J., Baldiris, S., Gutiérrez, J., & Pavón, J. (2020). How do pedagogical approaches affect the impact of augmented reality on education? A meta-analysis and research synthesis. Educational Research Review , 100334. 10.1016/j.edurev.2020.100334
  • Grgurović M, Chapelle CA, Shelley MC. A meta-analysis of effectiveness studies on computer technology-supported language learning. ReCALL. 2013; 25 (2):165–198. doi: 10.1017/S0958344013000013. [ CrossRef ] [ Google Scholar ]
  • Haßler B, Major L, Hennessy S. Tablet use in schools: A critical review of the evidence for learning outcomes. Journal of Computer Assisted Learning. 2016; 32 (2):139–156. doi: 10.1111/jcal.12123. [ CrossRef ] [ Google Scholar ]
  • Haleem A, Javaid M, Qadri MA, Suman R. Understanding the role of digital technologies in education: A review. Sustainable Operations and Computers. 2022; 3 :275–285. doi: 10.1016/j.susoc.2022.05.004. [ CrossRef ] [ Google Scholar ]
  • Hardman J. Towards a pedagogical model of teaching with ICTs for mathematics attainment in primary school: A review of studies 2008–2018. Heliyon. 2019; 5 (5):e01726. doi: 10.1016/j.heliyon.2019.e01726. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hattie J, Rogers HJ, Swaminathan H. The role of meta-analysis in educational research. In: Reid AD, Hart P, Peters MA, editors. A companion to research in education. Springer; 2014. pp. 197–207. [ Google Scholar ]
  • Hattie J. Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Routledge. 2008 doi: 10.4324/9780203887332. [ CrossRef ] [ Google Scholar ]
  • Higgins S, Xiao Z, Katsipataki M. The impact of digital technology on learning: A summary for the education endowment foundation. Education Endowment Foundation and Durham University; 2012. [ Google Scholar ]
  • Higgins, K., Huscroft-D’Angelo, J., & Crawford, L. (2019). Effects of technology in mathematics on achievement, motivation, and attitude: A meta-analysis. Journal of Educational Computing Research , 57(2), 283-319.
  • Hillmayr D, Ziernwald L, Reinhold F, Hofer SI, Reiss KM. The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education. 2020; 153 (1038):97. doi: 10.1016/j.compedu.2020.103897. [ CrossRef ] [ Google Scholar ]
  • Istenic Starcic A, Bagon S. ICT-supported learning for inclusion of people with special needs: Review of seven educational technology journals, 1970–2011. British Journal of Educational Technology. 2014; 45 (2):202–230. doi: 10.1111/bjet.12086. [ CrossRef ] [ Google Scholar ]
  • Jewitt C, Clark W, Hadjithoma-Garstka C. The use of learning platforms to organise learning in English primary and secondary schools. Learning, Media and Technology. 2011; 36 (4):335–348. doi: 10.1080/17439884.2011.621955. [ CrossRef ] [ Google Scholar ]
  • JISC. (2020). What is digital transformation?.  Retrieved 30 June 2022 from: https://www.jisc.ac.uk/guides/digital-strategy-framework-for-university-leaders/what-is-digital-transformation
  • Kalati, A. T., & Kim, M. S. (2022). What is the effect of touchscreen technology on young children’s learning?: A systematic review. Education and Information Technologies , 1-19. 10.1007/s10639-021-10816-5
  • Kalemkuş, J., & Kalemkuş, F. (2022). Effect of the use of augmented reality applications on academic achievement of student in science education: Meta-analysis review. Interactive Learning Environments , 1-18. 10.1080/10494820.2022.2027458
  • Kao C-W. The effects of digital game-based learning task in English as a foreign language contexts: A meta-analysis. Education Journal. 2014; 42 (2):113–141. [ Google Scholar ]
  • Kampylis P, Punie Y, Devine J. Promoting effective digital-age learning - a European framework for digitally competent educational organisations. JRC Technical Reports. 2015 doi: 10.2791/54070. [ CrossRef ] [ Google Scholar ]
  • Kazu IY, Yalçin CK. Investigation of the effectiveness of hybrid learning on academic achievement: A meta-analysis study. International Journal of Progressive Education. 2022; 18 (1):249–265. doi: 10.29329/ijpe.2022.426.14. [ CrossRef ] [ Google Scholar ]
  • Koh C. A qualitative meta-analysis on the use of serious games to support learners with intellectual and developmental disabilities: What we know, what we need to know and what we can do. International Journal of Disability, Development and Education. 2022; 69 (3):919–950. doi: 10.1080/1034912X.2020.1746245. [ CrossRef ] [ Google Scholar ]
  • König J, Jäger-Biela DJ, Glutsch N. Adapting to online teaching during COVID-19 school closure: Teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education. 2020; 43 (4):608–622. doi: 10.1080/02619768.2020.1809650. [ CrossRef ] [ Google Scholar ]
  • Lawrence JE, Tar UA. Factors that influence teachers’ adoption and integration of ICT in teaching/learning process. Educational Media International. 2018; 55 (1):79–105. doi: 10.1080/09523987.2018.1439712. [ CrossRef ] [ Google Scholar ]
  • Lee, S., Kuo, L. J., Xu, Z., & Hu, X. (2020). The effects of technology-integrated classroom instruction on K-12 English language learners’ literacy development: A meta-analysis. Computer Assisted Language Learning , 1-32. 10.1080/09588221.2020.1774612
  • Lei, H., Chiu, M. M., Wang, D., Wang, C., & Xie, T. (2022a). Effects of game-based learning on students’ achievement in science: a meta-analysis. Journal of Educational Computing Research . 10.1177/07356331211064543
  • Lei H, Wang C, Chiu MM, Chen S. Do educational games affect students' achievement emotions? Evidence from a meta-analysis. Journal of Computer Assisted Learning. 2022; 38 (4):946–959. doi: 10.1111/jcal.12664. [ CrossRef ] [ Google Scholar ]
  • Liao YKC, Chang HW, Chen YW. Effects of computer application on elementary school student's achievement: A meta-analysis of students in Taiwan. Computers in the Schools. 2007; 24 (3–4):43–64. doi: 10.1300/J025v24n03_04. [ CrossRef ] [ Google Scholar ]
  • Li Q, Ma X. A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational Psychology Review. 2010; 22 (3):215–243. doi: 10.1007/s10648-010-9125-8. [ CrossRef ] [ Google Scholar ]
  • Liu, M., Pang, W., Guo, J., & Zhang, Y. (2022). A meta-analysis of the effect of multimedia technology on creative performance. Education and Information Technologies , 1-28. 10.1007/s10639-022-10981-1
  • Lu Z, Chiu MM, Cui Y, Mao W, Lei H. Effects of game-based learning on students’ computational thinking: A meta-analysis. Journal of Educational Computing Research. 2022 doi: 10.1177/07356331221100740. [ CrossRef ] [ Google Scholar ]
  • Martinez L, Gimenes M, Lambert E. Entertainment video games for academic learning: A systematic review. Journal of Educational Computing Research. 2022 doi: 10.1177/07356331211053848. [ CrossRef ] [ Google Scholar ]
  • Mayne J. Useful theory of change models. Canadian Journal of Program Evaluation. 2015; 30 (2):119–142. doi: 10.3138/cjpe.230. [ CrossRef ] [ Google Scholar ]
  • Moran J, Ferdig RE, Pearson PD, Wardrop J, Blomeyer RL., Jr Technology and reading performance in the middle-school grades: A meta-analysis with recommendations for policy and practice. Journal of Literacy Research. 2008; 40 (1):6–58. doi: 10.1080/10862960802070483. [ CrossRef ] [ Google Scholar ]
  • OECD. (2015). Students, Computers and Learning: Making the Connection . PISA, OECD Publishing, Paris. Retrieved from: 10.1787/9789264239555-en
  • OECD. (2021). OECD Digital Education Outlook 2021: Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots. Retrieved from: https://www.oecd-ilibrary.org/education/oecd-digital-education-outlook-2021_589b283f-en
  • Pan Y, Ke F, Xu X. A systematic review of the role of learning games in fostering mathematics education in K-12 settings. Educational Research Review. 2022; 36 :100448. doi: 10.1016/j.edurev.2022.100448. [ CrossRef ] [ Google Scholar ]
  • Pettersson F. Understanding digitalization and educational change in school by means of activity theory and the levels of learning concept. Education and Information Technologies. 2021; 26 (1):187–204. doi: 10.1007/s10639-020-10239-8. [ CrossRef ] [ Google Scholar ]
  • Pihir, I., Tomičić-Pupek, K., & Furjan, M. T. (2018). Digital transformation insights and trends. In Central European Conference on Information and Intelligent Systems (pp. 141–149). Faculty of Organization and Informatics Varazdin. Retrieved 30 June 2022 from https://www.proquest.com/conference-papers-proceedings/digital-transformation-insights-trends/docview/2125639934/se-2
  • Punie, Y., Zinnbauer, D., & Cabrera, M. (2006). A review of the impact of ICT on learning. Working Paper prepared for DG EAC. Retrieved 30 June 2022 from: http://www.eurosfaire.prd.fr/7pc/doc/1224678677_jrc47246n.pdf
  • Quah CY, Ng KH. A systematic literature review on digital storytelling authoring tool in education: January 2010 to January 2020. International Journal of Human-Computer Interaction. 2022; 38 (9):851–867. doi: 10.1080/10447318.2021.1972608. [ CrossRef ] [ Google Scholar ]
  • Ran H, Kim NJ, Secada WG. A meta-analysis on the effects of technology's functions and roles on students' mathematics achievement in K-12 classrooms. Journal of computer assisted learning. 2022; 38 (1):258–284. doi: 10.1111/jcal.12611. [ CrossRef ] [ Google Scholar ]
  • Ređep, N. B. (2021). Comparative overview of the digital preparedness of education systems in selected CEE countries. Center for Policy Studies. CEU Democracy Institute .
  • Rott, B., & Marouane, C. (2018). Digitalization in schools–organization, collaboration and communication. In Digital Marketplaces Unleashed (pp. 113–124). Springer, Berlin, Heidelberg.
  • Savva M, Higgins S, Beckmann N. Meta-analysis examining the effects of electronic storybooks on language and literacy outcomes for children in grades Pre-K to grade 2. Journal of Computer Assisted Learning. 2022; 38 (2):526–564. doi: 10.1111/jcal.12623. [ CrossRef ] [ Google Scholar ]
  • Schmid RF, Bernard RM, Borokhovski E, Tamim RM, Abrami PC, Surkes MA, Wade CA, Woods J. The effects of technology use in postsecondary education: A meta-analysis of classroom applications. Computers & Education. 2014; 72 :271–291. doi: 10.1016/j.compedu.2013.11.002. [ CrossRef ] [ Google Scholar ]
  • Schuele CM, Justice LM. The importance of effect sizes in the interpretation of research: Primer on research: Part 3. The ASHA Leader. 2006; 11 (10):14–27. doi: 10.1044/leader.FTR4.11102006.14. [ CrossRef ] [ Google Scholar ]
  • Schwabe, A., Lind, F., Kosch, L., & Boomgaarden, H. G. (2022). No negative effects of reading on screen on comprehension of narrative texts compared to print: A meta-analysis. Media Psychology , 1-18. 10.1080/15213269.2022.2070216
  • Sellar S. Data infrastructure: a review of expanding accountability systems and large-scale assessments in education. Discourse: Studies in the Cultural Politics of Education. 2015; 36 (5):765–777. doi: 10.1080/01596306.2014.931117. [ CrossRef ] [ Google Scholar ]
  • Stock WA. Systematic coding for research synthesis. In: Cooper H, Hedges LV, editors. The handbook of research synthesis, 236. Russel Sage; 1994. pp. 125–138. [ Google Scholar ]
  • Su, J., Zhong, Y., & Ng, D. T. K. (2022). A meta-review of literature on educational approaches for teaching AI at the K-12 levels in the Asia-Pacific region. Computers and Education: Artificial Intelligence , 100065. 10.1016/j.caeai.2022.100065
  • Su J, Yang W. Artificial intelligence in early childhood education: A scoping review. Computers and Education: Artificial Intelligence. 2022; 3 :100049. doi: 10.1016/j.caeai.2022.100049. [ CrossRef ] [ Google Scholar ]
  • Sung YT, Chang KE, Liu TC. The effects of integrating mobile devices with teaching and learning on students' learning performance: A meta-analysis and research synthesis. Computers & Education. 2016; 94 :252–275. doi: 10.1016/j.compedu.2015.11.008. [ CrossRef ] [ Google Scholar ]
  • Talan T, Doğan Y, Batdı V. Efficiency of digital and non-digital educational games: A comparative meta-analysis and a meta-thematic analysis. Journal of Research on Technology in Education. 2020; 52 (4):474–514. doi: 10.1080/15391523.2020.1743798. [ CrossRef ] [ Google Scholar ]
  • Tamim, R. M., Bernard, R. M., Borokhovski, E., Abrami, P. C., & Schmid, R. F. (2011). What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. Review of Educational research, 81 (1), 4–28. Retrieved 30 June 2022 from 10.3102/0034654310393361
  • Tamim, R. M., Borokhovski, E., Pickup, D., Bernard, R. M., & El Saadi, L. (2015). Tablets for teaching and learning: A systematic review and meta-analysis. Commonwealth of Learning. Retrieved from: http://oasis.col.org/bitstream/handle/11599/1012/2015_Tamim-et-al_Tablets-for-Teaching-and-Learning.pdf
  • Tang C, Mao S, Xing Z, Naumann S. Improving student creativity through digital technology products: A literature review. Thinking Skills and Creativity. 2022; 44 :101032. doi: 10.1016/j.tsc.2022.101032. [ CrossRef ] [ Google Scholar ]
  • Tolani-Brown, N., McCormac, M., & Zimmermann, R. (2011). An analysis of the research and impact of ICT in education in developing country contexts. In ICTs and sustainable solutions for the digital divide: Theory and perspectives (pp. 218–242). IGI Global.
  • Trucano, M. (2005). Knowledge Maps: ICTs in Education. Washington, DC: info Dev / World Bank. Retrieved 30 June 2022 from  https://files.eric.ed.gov/fulltext/ED496513.pdf
  • Ulum H. The effects of online education on academic success: A meta-analysis study. Education and Information Technologies. 2022; 27 (1):429–450. doi: 10.1007/s10639-021-10740-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Underwood, J. D. (2009). The impact of digital technology: A review of the evidence of the impact of digital technologies on formal education. Retrieved 30 June 2022 from: http://dera.ioe.ac.uk/id/eprint/10491
  • Verschaffel, L., Depaepe, F., & Mevarech, Z. (2019). Learning Mathematics in metacognitively oriented ICT-Based learning environments: A systematic review of the literature. Education Research International , 2019 . 10.1155/2019/3402035
  • Villena-Taranilla R, Tirado-Olivares S, Cózar-Gutiérrez R, González-Calero JA. Effects of virtual reality on learning outcomes in K-6 education: A meta-analysis. Educational Research Review. 2022; 35 :100434. doi: 10.1016/j.edurev.2022.100434. [ CrossRef ] [ Google Scholar ]
  • Voogt J, Knezek G, Cox M, Knezek D, ten Brummelhuis A. Under which conditions does ICT have a positive effect on teaching and learning? A call to action. Journal of Computer Assisted Learning. 2013; 29 (1):4–14. doi: 10.1111/j.1365-2729.2011.00453.x. [ CrossRef ] [ Google Scholar ]
  • Vuorikari, R., Punie, Y., & Cabrera, M. (2020). Emerging technologies and the teaching profession: Ethical and pedagogical considerations based on near-future scenarios  (No. JRC120183). Joint Research Centre. Retrieved 30 June 2022 from: https://publications.jrc.ec.europa.eu/repository/handle/JRC120183
  • Wang LH, Chen B, Hwang GJ, Guan JQ, Wang YQ. Effects of digital game-based STEM education on students’ learning achievement: A meta-analysis. International Journal of STEM Education. 2022; 9 (1):1–13. doi: 10.1186/s40594-022-00344-0. [ CrossRef ] [ Google Scholar ]
  • Wen X, Walters SM. The impact of technology on students’ writing performances in elementary classrooms: A meta-analysis. Computers and Education Open. 2022; 3 :100082. doi: 10.1016/j.caeo.2022.100082. [ CrossRef ] [ Google Scholar ]
  • Zheng B, Warschauer M, Lin CH, Chang C. Learning in one-to-one laptop environments: A meta-analysis and research synthesis. Review of Educational Research. 2016; 86 (4):1052–1084. doi: 10.3102/0034654316628645. [ CrossRef ] [ Google Scholar ]
  • Our Mission

Effective Uses of Technology in Elementary School

Minimizing screen time and maximizing student interactions are worthwhile, but there are still good uses of technology in the elementary grades.

Two elementary students work on tablets in classroom

Following months of virtual schooling and tuning in to a device for synchronous and asynchronous learning, many teachers and students have been happy this year to move away from digital experiences and return to analog learning activities.

Many elementary school activities engage children in hands-on, dynamic activities that do not require the use of technology, limiting how much time students spend in front of a screen. However, there are ways that technology can develop and sustain unique learning opportunities in schools.

As an educational technologist, I collaborate with teachers to implement technologies that improve student learning. I’ll talk about and share examples of how teachers can use technology in the classroom to provide instructional guidance and support, encourage students’ self-reflection, and spark creativity.

Using Technology as an Instructional Tool

Teachers can create short audio or video clips to supplement and extend classroom instruction. Many teachers have discovered how simple it is to create a short video that students can use to review a concept or reread a set of instructions while participating in remote learning.

You can create detailed instructions or give information to guide students through a series of exercises for a lesson or project. Plan a class activity in which students, for example, rotate among different stations (individually or in small groups) to complete a series of independent tasks.

Each station could have its own device, such as an iPad or a Chromebook, where students can review prerecorded instructions or rewatch brief presentations while doing activities at that station. You might create a screencast  as a tutorial or explain the steps to completing a math review worksheet .

Students Using Technology to Self-Reflect on Their Learning and Progress

Students can use technology to keep track of their progress. They can use images or a short video to document special classroom moments, activities, projects, or presentations, and then create a presentation that highlights their learning from these snapshots.

For example, a third-grade student learning about the composition of a cell could create a presentation that included a photo of a cell diagram, descriptions of why certain parts of a cell were included, explanations of what materials were used to create the cell model, and a written reflection of what they learned about the parts of a cell. For a framework of how to write a self-reflection, you can provide students with protocols such as Project Zero’s thinking routine “ I Used to Think… Now I Think .” John Spencer’s blog post about digital portfolios is another resource you can use to prompt students’ self-reflection.

To help students develop their metacognitive skills, you can combine learning snapshots with opportunities for their self-reflection. During a large or small group presentation, students can present a slide show with voice-overs or explain what they were doing and what they learned at the moment. They can respond to questions such as “Did this learning experience make you feel successful?” and “What would you do differently next time?” Students can revisit these reflections later in the year to assess and celebrate their progress.

In one upper elementary classroom I visited, for example, students were trying out different study strategies to see which ones worked best for them. After they completed a formative assessment activity, the teacher asked them to reflect on whether they had felt successful throughout the assessment activity because of using study strategies.

The teacher asked students to identify which strategies they used and whether they thought the strategies were effective in helping them explore new content and ideas. One student described how using flash cards and rereading a chapter helped her prepare for and pass a science quiz.

You can allow students to reflect with fewer specific prompts as they become accustomed to considering their work and feel comfortable exploring how they think throughout a learning experience.

Using Technology to Provide Choice and Spark Students’ Creativity

You can design projects that allow students to choose how they want to use technology. Students can create digital art by using various websites and tools. They can create original artwork or learning resources such as math manipulatives using classroom art supplies and then record a brief video explaining or displaying their work.

Comic strips, slide shows, green screen images, infographics, timelines, digital posters, videos, podcasts, mini-portfolios, and video book talks are other forms of digital student creation. When students combine these various modalities, they have even more opportunities for creativity and self-expression.

With the help of technology, sharing digital creations like these is simple. Google’s share settings can publish Google Slideshows or documents. Google Sites is also an excellent tool for students to keep track of their assignments. Students can include video, images, Google Drive files, PDF files, and much more on a Google Site. Microsoft Office 365 tools, Flipgrid, and Padlet are some of the other platforms for creating, curating, and sharing student work.

When using technology in the elementary classroom, be judicious and intentional. Before implementing it, consider your goals for using it and whether it provides a functional improvement to a learning task. Documenting student learning, providing extra student support via audio or video, and enhancing student creation capabilities are all excellent ways for technology to improve the teaching and learning process.

Become an Insider

Sign up today to receive premium content.

Home

The Evolution of Technology in K–12 Classrooms: 1659 to Today

Bio Photo of Alexander Huls

Alexander Huls is a Toronto-based writer whose work has appeared in  The New York Times ,  Popular Mechanics ,  Esquire ,  The Atlantic  and elsewhere.

In the 21st century, it can feel like advanced technology is changing the K–12 classroom in ways we’ve never seen before. But the truth is, technology and education have a long history of evolving together to dramatically change how students learn.

With more innovations surely headed our way, why not look back at how we got to where we are today, while looking forward to how educators can continue to integrate new technologies into their learning?

DISCOVER:  Special education departments explore advanced tech in their classrooms.

Using Technology in the K–12 Classroom: A History

1659: magic lantern.

  • Inventor:  Christiaan Huygens
  • A Brief History:  An ancestor of the slide projector, the magic lantern projected glass slides with light from oil lamps or candles. In the 1680s, the technology was brought to the education space to show detailed anatomical illustrations, which were difficult to sketch on a chalkboard.
  • Interesting Fact:  Huygens initially regretted his creation, thinking it was too frivolous.

1795: Pencil

  • Inventor:  Nicolas-Jacques Conté
  • A Brief History : Versions of the pencil can be traced back hundreds of years, but what’s considered the modern pencil is credited to Conté, a scientist in Napoleon Bonaparte’s army. It made its impact on the classroom, however, when it began to be mass produced in the 1900s.
  • Interesting Fact:  The Aztecs used a form of graphite pencil in the 13th century.

1801: Chalkboard

  • Inventor:  James Pillans
  • A Brief History:  Pillans — a headmaster at a high school in Edinburgh, Scotland — created the first front-of-class chalkboard, or “blackboard,” to better teach his students geography with large maps. Prior to his creation, educators worked with students on smaller, individual pieces of wood or slate. In the 1960s, the creation was upgraded to a green board, which became a familiar fixture in every classroom.
  • Interesting Fact:  Before chalkboards were commercially manufactured, some were made do-it-yourself-style with ingredients like pine board, egg whites and charred potatoes.

1888: Ballpoint Pen

  • Inventory:  John L. Loud
  • A Brief History:  John L. Loud invented and patented the first ballpoint pen after seeking to create a tool that could write on leather. It was not a commercial success. Fifty years later, following the lapse of Loud’s patent, Hungarian journalist László Bíró invented a pen with a quick-drying special ink that wouldn’t smear thanks to a rolling ball in its nib.
  • Interesting Fact:  When ballpoint pens debuted in the U.S., they were so popular that Gimbels, the department store selling them, made $81 million in today’s money within six months.

LEARN MORE:  Logitech Pen works with Chromebooks to combine digital and physical learning.

1950s: Overhead Projector

  • Inventor:  Roger Appeldorn
  • A Brief History:  Overhead projects were used during World War II for mission briefings. However, 3M employee Appeldorn is credited with creating not only a projectable transparent film, but also the overhead projectors that would find a home in classrooms for decades.
  • Interesting Fact:  Appeldorn’s creation is the predecessor to today’s  bright and efficient laser projectors .

1959: Photocopier

  • Inventor:  Chester Carlson
  • A Brief History:  Because of his arthritis, patent attorney and inventor Carlson wanted to create a less painful alternative to making carbon copies. Between 1938 and 1947, working with The Haloid Photographic Company, Carlson perfected the process of electrophotography, which led to development of the first photocopy machines.
  • Interesting Fact:  Haloid and Carlson named their photocopying process xerography, which means “dry writing” in Greek. Eventually, Haloid renamed its company (and its flagship product line) Xerox .

1967: Handheld Calculator

  • Inventor:   Texas Instruments
  • A Brief History:  As recounted in our  history of the calculator , Texas Instruments made calculators portable with a device that weighed 45 ounces and featured a small keyboard with 18 keys and a visual display of 12 decimal digits.
  • Interesting Fact:  The original 1967 prototype of the device can be found in the Smithsonian Institution’s  National Museum of American History .

1981: The Osborne 1 Laptop

  • Inventor:  Adam Osborne, Lee Felsenstein
  • A Brief History:  Osborne, a computer book author, teamed up with computer engineer Felsenstein to create a portable computer that would appeal to general consumers. In the process, they provided the technological foundation that made modern one-to-one devices — like Chromebooks — a classroom staple.
  • Interesting Fact:  At 24.5 pounds, the Osborne 1 was about as big and heavy as a sewing machine, earning it the current classification of a “luggable” computer, rather than a laptop.

1990: World Wide Web

  • Inventor:  Tim Berners-Lee
  • A Brief History:  In the late 1980s, British scientist Berners-Lee created the World Wide Web to enable information sharing between scientists and academics. It wasn’t long before the Web could connect anyone, anywhere to a wealth of information, and it was soon on its way to powering the modern classroom.
  • Interesting Fact:  The first web server Berners-Lee created was so new, he had to put a sign on the computer that read, “This machine is a server. DO NOT POWER IT DOWN!”

Click the banner  to access customized K–12 technology content when you sign up as an Insider.

K-12 Insider Mobile Devices

What Technology Is Used in Today’s K–12 Classrooms?

Technology has come so far that modern classrooms are more technologically advanced than many science labs were two decades ago. Students have access to digital textbooks,  personal devices , collaborative  cloud-based tools , and  interactive whiteboards . Emerging technologies now being introduced to K–12 classrooms include voice assistants, virtual reality devices and 3D printers.

Perhaps the most important thing about ed tech in K–12 isn’t what the technology is, but how it’s used.

How to Integrate Technology into K–12 Classrooms

The first step to integrating technology into the K–12 classroom is  figuring out which solution to integrate , given the large variety of tools available to educators. That variety comes with benefits — like the ability to align tech with district objectives and grade level — but also brings challenges.

“It’s difficult to know how to choose the appropriate digital tool or resource,” says Judi Harris, professor and Pavey Family Chair in Educational Technology at the William & Mary School of Education. “Teachers need some familiarity with the tools so that they understand the potential advantages and disadvantages.”

Dr. Judi Harris

Judi Harris Professor and Pavey Family Chair in Educational Technology, William and Mary School of Education

K–12 IT leaders should also be careful not to focus too much on technology implementation at the expense of curriculum-based learning needs. “What districts need to ask themselves is not only whether they’re going to adopt a technology, but how they’re going to adopt it,” says Royce Kimmons, associate professor of instructional psychology and technology at Brigham Young University.

In other words, while emerging technologies may be exciting, acquiring them without proper consideration of their role in improving classroom learning will likely result in mixed student outcomes. For effective integration, educators should ask themselves, in what ways would the tech increase or support a student’s productivity and learning outcomes? How will it improve engagement?

Integrating ed tech also requires some practical know-how. “Teachers need to be comfortable and confident with the tools they ask students to use,” says Harris.

Professional development for new technologies is crucial, as are supportive IT teams, tech providers with generous onboarding programs and technology integration specialists. Harris also points to initiatives like YES: Youth and Educators Succeeding, a nonprofit organization that prepares students to act as resident experts and classroom IT support.

KEEP READING:  What is the continued importance of professional development in K–12 education?

But as educational technology is rolled out and integrated, it’s important to keep academic goals in sight. “We should never stop focusing on how to best understand and help the learner to achieve those learning objectives,” says Harris.

That should continue to be the case as the technology timeline unfolds, something Harris has witnessed firsthand during her four decades in the field. “It’s been an incredible thing to watch and to participate in,” she notes. “The great majority of teachers are extremely eager to learn and to do anything that will help their students learn better.”

article writing on use of technology in education

  • Professional Development

Related Articles

Mindy Fiscus and Justin Morgan

Learn from Your Peers

What can you glean about security from other IT pros? Check out new CDW research and insight from our experts.

Copyright © 2024 CDW LLC 200 N. Milwaukee Avenue , Vernon Hills, IL 60061 Do Not Sell My Personal Information

  • Future Students
  • Current Students
  • Faculty/Staff

Stanford Graduate School of Education

News and Media

  • News & Media Home
  • Research Stories
  • School's In
  • In the Media

You are here

How technology is reinventing education.

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of  Stanford Graduate School of Education  (GSE), who is also a professor of educational technology at the GSE and faculty director of the  Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately  worried  that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or  coach  students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the  AI + Education initiative  at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of  CRAFT  (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the  Digital Learning initiative  at the Stanford Accelerator for Learning, which runs a program exploring the use of  virtual field trips  to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”

Gamification

Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

More Stories

A tutor sitting with a young reader

⟵ Go to all Research Stories

Get the Educator

Subscribe to our monthly newsletter.

Stanford Graduate School of Education

482 Galvez Mall Stanford, CA 94305-3096 Tel: (650) 723-2109

  • Contact Admissions
  • GSE Leadership
  • Site Feedback
  • Web Accessibility
  • Career Resources
  • Faculty Open Positions
  • Explore Courses
  • Academic Calendar
  • Office of the Registrar
  • Cubberley Library
  • StanfordWho
  • StanfordYou

Improving lives through learning

Make a gift now

  • Stanford Home
  • Maps & Directions
  • Search Stanford
  • Emergency Info
  • Terms of Use
  • Non-Discrimination
  • Accessibility

© Stanford University , Stanford , California 94305 .

  • Philosophy of Art

Impact of modern technology in education

  • Journal of Applied and Advanced Research 3(S1):33
  • CC BY-NC 4.0
  • This person is not on ResearchGate, or hasn't claimed this research yet.

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • P. Sujendra Swami
  • T. Hareesh Kumar
  • Y. Jahangir
  • Renjith George

Preethy Mary Donald

  • Sangeetha Periyasamy
  • Yulia Nofriza
  • Zelhendri Zen
  • Rida Rasmini
  • Suhairee Berngacha

Leo-Martin Angelo Ruiz Ocampo

  • Dhimas Wahyu Pradana

Ofianto Ofianto

  • Fini Fajri Mulyani

Alim Mustafaevich Asanov

  • Letícia Sequinatto-Rossi
  • Gabriele Schemes Nascimento
  • João Vitor Scopel Velho

Megha Sharma

  • J.D. Bransford
  • R. R. Cocking
  • BRIT J EDUC TECHNOL

Jennifer M. Brill

  • Chad Galloway
  • FUTURE CHILD
  • J Roschelle
  • H Wenglinski
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

sustainability-logo

Article Menu

  • Subscribe SciFeed
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

The use of digital technology for sustainable teaching and learning.

article writing on use of technology in education

Conflicts of Interest

  • Forbes, D.; Gedera, D.; Hartnett, M.; Datt, A.; Brown, C. Sustainable strategies for teaching and learning online. Sustainability 2023 , 15 , 13118. [ Google Scholar ] [ CrossRef ]
  • Hwang, W.Y.; Nurtantyana, R. X-Education: Education of All Things with AI and Edge Computing—One Case Study for EFL Learning. Sustainability 2022 , 14 , 12533. [ Google Scholar ] [ CrossRef ]
  • Hwang, W.Y.; Wu, T.H.; Shadiev, R. Applications of reciprocal teaching in flipped classroom to facilitate high level of cognition for sustainable learning practices. Sustainability 2023 , 15 , 5848. [ Google Scholar ] [ CrossRef ]
  • Shayakhmetova, L.; Mukharlyamova, L.; Zhussupova, R.; Beisembayeva, Z. Developing Collaborative Academic Writing Skills in English in CALL Classroom. Int. J. High. Educ. 2020 , 9 , 13–18. [ Google Scholar ] [ CrossRef ]
  • Meng, Z.; Li, R. Understanding Chinese teachers’ informal online learning continuance in a mobile learning community: An intrinsic–extrinsic motivation perspective. J. Comput. High. Educ. 2023 . [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Reynolds, B.L. (Ed.) Introduction: A scoping review of second language vocabulary learning in the wild. In Vocabulary Learning in the Wild ; Springer: Singapore, 2023; pp. 1–63. [ Google Scholar ]
  • Zhang, X.; Chen, S.; Wang, X. How can technology leverage university teaching & learning innovation? A longitudinal case study of diffusion of technology innovation from the knowledge creation perspective. Educ. Inf. Technol. 2023 , 28 , 15543–15569. [ Google Scholar ]
  • Hwang, W.Y.; Hariyanti, U. Investigation of students’ and parents’ perceptions of authentic contextual learning at home and their mutual influence on technological and pedagogical aspects of learning under COVID-19. Sustainability 2020 , 12 , 10074. [ Google Scholar ] [ CrossRef ]
  • Liu, S.; Reynolds, B.L.; Thomas, N.; Soyoof, A. The use of digital technologies to develop young children’s language and literacy skills: A systematic review. Sage Open 2024 , 14 , 21582440241230850. [ Google Scholar ] [ CrossRef ]
  • Soyoof, A.; Reynolds, B.L.; Neumann, M.M.; Vazquez-Calvo, B. Maternal scaffolding of Iranian children’s extramural informal digital learning of English (IDLE): A qualitative study. Early Child. Educ. J. 2024 , 1–17. [ Google Scholar ] [ CrossRef ]
  • Spector, J.M. Emerging educational technologies and research directions. J. Educ. Technol. Soc. 2013 , 16 , 21–30. [ Google Scholar ]
  • Lee, S.M. A systematic review of context-aware technology use in foreign language learning. Comput. Assist. Lang. Learn. 2022 , 35 , 294–318. [ Google Scholar ] [ CrossRef ]
  • Li, R. Effects of mobile-assisted language learning on foreign language learners’ speaking skill development. Lang. Learn. Technol. 2024 , 28 , 1–26. Available online: https://www.lltjournal.org/item/10125-73553/ (accessed on 17 May 2024).
  • Shadiev, R.; Wang, X.Y.; Liu, T.Y.; Yang, M. Improving students’ creativity in familiar versus unfamiliar mobile-assisted language learning environments. Interact. Learn. Environ. 2023 , 31 , 5899–5921. [ Google Scholar ] [ CrossRef ]
  • Li, R. Research trends of blended language learning: A bibliometric synthesis of SSCI-indexed journal articles during 2000–2019. ReCALL 2022 , 34 , 309–326. [ Google Scholar ] [ CrossRef ]
  • Li, R. Effects of blended language learning on EFL learners’ language performance: An Activity Theory approach. J. Comput. Assist. Learn. 2022 , 38 , 1273–1285. [ Google Scholar ] [ CrossRef ]
  • Shadiev, R.; Liang, Q. A review of research on AR-supported language learning. Innov. Lang. Learn. Teach. 2024 , 18 , 78–100. [ Google Scholar ] [ CrossRef ]
  • Anasheva, D.; Zhussupova, R.; Gauriyeva, G.; Tezekbayeva, G.; Baltynova, A.; Baigunissova, G.; Yerik, G. Developing academic speaking and writing skills of university students by means of stylistic devices and expressive means under Muller’s method. In Proceedings of the INTCESS 2020-7th International Conference on Education and Social Sciences, Dubai, United Arab Emirates, 20–22 January 2020. [ Google Scholar ]
  • Shadiev, R.; Sintawati, W. A review of research on intercultural learning supported by technology. Educ. Res. Rev. 2020 , 31 , 100338. [ Google Scholar ] [ CrossRef ]
  • Chun, H.; Lee, S.; Park, I. A systematic review of AI technology use in English education. Multimed.-Assist. Lang. Learn. 2021 , 24 , 87–103. [ Google Scholar ]
  • Kerimbayev, N.; Nurym, N.; Akramova, A.; Abdykarimova, S. Educational Robotics: Development of computational thinking in collaborative online learning. Educ. Inf. Technol. 2023 , 28 , 14987–15009. [ Google Scholar ] [ CrossRef ]
  • Yang, L.; Li, R. ChatGPT for L2 learning: Current status and implications. System 2024 , 1–14. [ Google Scholar ]
  • Rezai, A.; Soyoof, A.; Reynolds, B.L. Effectiveness of informal digital learning of English on EFL learners’ vocabulary knowledge: A mixed-methods investigation. Comput. Assist. Lang. Learn. 2024 , 1–26. [ Google Scholar ] [ CrossRef ]
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Shadiev, R.; Reynolds, B.L.; Li, R. The Use of Digital Technology for Sustainable Teaching and Learning. Sustainability 2024 , 16 , 5353. https://doi.org/10.3390/su16135353

Shadiev R, Reynolds BL, Li R. The Use of Digital Technology for Sustainable Teaching and Learning. Sustainability . 2024; 16(13):5353. https://doi.org/10.3390/su16135353

Shadiev, Rustam, Barry Lee Reynolds, and Rui Li. 2024. "The Use of Digital Technology for Sustainable Teaching and Learning" Sustainability 16, no. 13: 5353. https://doi.org/10.3390/su16135353

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

The Evolution of Technology in the Classroom

Technology has always been at the forefront of human education. From the days of carving figures on rock walls to today, when most students are equipped with several portable technological devices at any given time, technology continues to push educational capabilities to new levels. In looking at where educational methods and tools have come from to where they are going in the future, technology’s importance in the classroom is evident now more than ever.

A History of Classroom Technology: The Primitive Classroom

In the Colonial years, wooden paddles with printed lessons, called Horn-Books, were used to assist students in learning verses. Over 200 years later, in 1870, technology advanced to include the Magic Lantern, a primitive version of a slide projector that projected images printed on glass plates. By the time World War I ended, around 8,000 lantern slides were circulating through the Chicago public school system. By the time the Chalkboard came around in 1890, followed by the pencil in 1900, it was clear that students were hungry for more advanced educational tools.

  • Radio in the 1920s sparked an entirely new wave of learning; on-air classes began popping up for any student within listening range.
  • Next came the overhead projector in 1930, followed by the ballpoint pen in 1940 and headphones in 1950.
  • Videotapes arrived on the scene in 1951, creating a new and exciting method of instruction.
  • The Skinner Teaching Machine produced a combined system of teaching and testing, providing reinforcement for correct answers so that the student can move on to the next lesson.
  • The photocopier (1959) and handheld calculator (1972) entered the classrooms next, allowing for mass production of material on the fly and quick mathematical calculations.
  • The Scantron system of testing, introduced by Michael Sokolski n 1972, allowed educators to grade tests more quickly and efficiently.

The pre-computer years were formative in the choices made for computers in the years following. Immediate response-type systems (video, calculator, Scantron) had become necessary, and quick production of teaching materials, using the photocopier, had become a standard. The U.S. Department of Education reports that high school enrollment was only 10% in 1900, but by 1992 had expanded to 95%. The number of students in college in 1930 was around 1 million, but by 2012 had grown to a record 21.6 million. Teachers needed new methods of instruction and testing, and students were looking for new ways to communicate, study, and learn.

The Entrance and Significance of Personal Computers

Although the first computers were developed in the ‘30s, everyday-use computers were introduced in the ‘80s. The first portable computer, in 1981, weighed 24 pounds and cost $1,795. When IBM introduced its first personal computer in 1981, the educational world knew that it was on the verge of greatness. Time magazine named The Computer its “ Man of the Year ” in 1982, and aptly so: the foundation of immediate learning capabilities had been laid. Time declared, “it is the end result of a technological revolution that has been in the making for four decades and is now, quite literally, hitting home.”

  • Toshiba released its first mass-market consumer laptop in 1985 (the T1100), and Apple’s infamous Mac (which later evolved into the Powerbook) was available starting in 1984.
  • In 1990, The World Wide Web was given life when a British researcher developed Hyper Text Markup Language, or HTML, and when the National Science Foundation (NSF) removed restrictions on the commercial use of the Internet in 1993, the world exploded into a frenzy of newfound research and communication methods.
  • The first Personal Digital Assistants (PDAs) were released by Apple Computer Inc. in 1993, and with that, computers were a part of every day, if not every moment. By 2009, 97% of classrooms had one or more computers , and 93% of classroom computers had Internet access. For every 5 students, there was one computer. Instructors stated that 40% of students used computers often in their educational methods, in addition to interactive whiteboards and digital cameras. College students nowadays are rarely without some form of computer technology: 83% own a laptop, and over 50% have a Smartphone.

The Future of Technology in the Classroom

It seems like years since MySpace, first introduced in 2003, Facebook (2004) and Twitter (2007) have changed both the communication and business worlds. Instant connectivity has branched out from merely a tool of personal communication, to a platform for educational instruction and outreach. Social media is now being recognized as an accepted form of instruction in some instances, and groups such as Scholastic Teachers provide excellent support and tips for instructors. Many instructors use social media to communicate directly with their students, or to form forum-style groups for students to communicate with each other, and the method seems to be proving valuable in providing one-on-one attention to student’s questions and concerns.

With the classroom having already evolved into a hotbed of technological advances, what can the future possibly hold that could further educational proficiencies even more?

  • Biometrics, a technology that recognizes people based on certain physical or behavioral traits, is on the technological horizon. The science will be used to recognize the physical and emotional disposition of students in the classroom, altering course material to tailor to each individual’s needs based on biometric signals.
  • A second up-and-coming technology is Augmented Reality (AR) glasses , rumored to be on Google’s release list, and this technology could be a whole new world for education. AR Glasses (or even contact lenses) will layer data on top of what we naturally see, to allow for a real-world learning experience. For example, a student wearing AR Glasses could potentially sit at his desk and have a conversation with Thomas Edison about invention. It was Edison, after all, who said that “Books will soon be obsolete in schools. Scholars will soon be instructed through the eye.”
  • Multi-touch surfaces are commonly used through equipment such as the iPhone, but the technology could become more relevant to education through entirely multi-touch surfaces, such as desks or workstations. This could allow students to collaborate with other students, even those around the world, and videos and other virtual tools could be streamed directly to the surface.

Educators and the Evolution of Technology in the Classroom

With the evolution of technology, educational capabilities are growing and changing every day. The Internet is a vast electronic library of information, and both research and instruction can be achieved through a click of the mouse. With these advances come new responsibilities to the instructor and therefore increase the value of a Master of Science in Education in Learning Design and Technology. As technology advances, an educator’s abilities will grow by leaps and bounds, and without the knowledge of these changes and capabilities, an instructor has a good chance of being left behind.

A career in education requires hard work and dedication, but, for the diligent educator, can prove very rewarding. For those who are serious about success in the education field, staying well-informed of current and changing technologies is imperative. As the world of technology evolves, the learning environment, both on-campus and online, will equally progress, and the need for teachers who are educated in technology and design will continue to grow.

Learn more about the online MSEd in Learning Design and Technology at Purdue University today and help redefine the way in which individuals learn. Call (877) 497-5851 to speak with an admissions advisor or to request more information.

3 Tips for Using Tech to Meet All Students’ Needs

article writing on use of technology in education

  • Share article

The overall number of ed-tech tools districts are using is increasing, and many districts now have 1-to-1 computing programs .

Yet equitable technology access for all students still isn’t a reality, and educators don’t always use technology in ways that serve the needs of all students, experts said during a June 24 panel discussion at the International Society for Technology in Education conference here.

The panel explored technology’s role in fostering inclusive and equitable digital learning environments.

The panelists were Brittany Wade, Ed Farm’s senior manager of curriculum and assessment; Yaritza Villalba, an education coach for Samsung Education; Kimberly Niebauer, an elementary school teacher in Duval County schools in Florida; Stevie Frank, a technology integration specialist for Zionsville Community Schools in Indiana; and Renee Dawson, an ed-tech specialist for the Atlanta public schools.

Here are three important lessons for educators from the panel discussion.

1. Focus on building good pedagogical practices

To ensure that teachers are using technology in inclusive and equitable ways, the panelists underscored the importance of focusing on pedagogy.

“As we have seen, tools come and go,” Frank said. “But good pedagogical practices don’t.”

Start with the standards, with what students have to know by the end of the school year. And then figure out how they’re going to get there and what role technology plays in that, Frank recommended. And sometimes, she emphasized, technology doesn’t have a role.

2. Show teachers how to use the technology’s accessibility features

Access goes beyond having the software and the hardware, the panelists said.

“Without training, without intention, without truly empowering people to use technology in meaningful ways, you don’t really have access,” Wade said.

In her work training educators, Wade often hears them say, “Hey, I have all this stuff, but I don’t know how to use it.” Teachers ask her how to use the accessibility features and how to design lessons that are meaningful for all students.

“You have to start with going beyond the tool,” Wade said. Start with “that intentionality of how do we use it to meet the needs of every learner. How do we use it to let them see themselves?”

3. Make sure the technology works for the student with the most needs

The easiest way to make the classroom inclusive is to level the playing field by making sure the technology works for the student with the most needs, Dawson said. If it works for that student, she said, it’ll work for everybody in that classroom.

That could mean using tools that have accessibility features built in so teachers don’t have to reinvent the wheel, she said.

It takes time and practice to use these features, so teachers shouldn’t feel like they have to get it right the first time, the panelists said.

Creating an inclusive digital learning environment also means teaching all students how to use accessibility features, such as text-to-speech and live captions, even if they don’t need them, “because they might encounter someone who does,” Wade said.

Educators should also teach parents how to use these features, because they’re the ones who are at home with the students and need to know how to help with school work they have to do outside of regular school hours, Villalba said.

Sign Up for EdWeek Tech Leader

Edweek top school jobs.

Close-up stock photograph showing a touchscreen monitor with a woman’s hand looking at responses being asked by an AI chatbot.

Sign Up & Sign In

module image 9

IMAGES

  1. The Importance Of Technology In Education Infographic

    article writing on use of technology in education

  2. Essay on Contribution of Technology in Education

    article writing on use of technology in education

  3. Paragraph on Technology 100, 150, 200, 250 to 300 Words for Kids

    article writing on use of technology in education

  4. SOLUTION: Contribution of technology in education essay

    article writing on use of technology in education

  5. Technology Essay

    article writing on use of technology in education

  6. ≫ Contribution of Technology in Education Free Essay Sample on Samploon.com

    article writing on use of technology in education

VIDEO

  1. Growing use of technology in classrooms

  2. The New Uses of Technology in Education

  3. Should We Use Technology in Education?

  4. Why publish a paper in a Education and Technology journal?

  5. Is AI Cheating? ChatGPT Debate and Its Implications in current Education #shorts

  6. The Importance of Modern Technology in Schools

COMMENTS

  1. Full article: Why Do We Need Technology in Education?

    Using the Universal Design for Learning (UDL) (CAST, Inc., 2012) principles as a guide, technology can increase access to, and representation of, content, provide students with a variety of ways to communicate and express their knowledge, and motivate student learning through interest and engagement.

  2. Understanding the role of digital technologies in education: A review

    Students are taught how to use technology responsibly and strategically, which can help them make decisions and develop self-discipline. Technology in education can help students to prepare for lifelong learning. These technologies provide students with a virtual world and the freedom to access digital knowledge according to their learning styles.

  3. The Impact of Technology on Students' Writing Performances in

    In line with Page et al., [60], the searches were further conducted by exploring online resources and websites, including Common Sense Education, Education Week, International Literacy Association, Reading Rocket Launching for Young Readers, and THE Journal (in alphabetical order).The two researchers located any articles related to technology and elementary school writing based on these websites.

  4. (PDF) The Role of Technology in Education: Enhancing ...

    better understanding and retention. Gives students the fundamental 21st-century skills they need to succeed in the workplace, including. digital literacy, critical thinking, and problem-solving ...

  5. Education reform and change driven by digital technology: a

    Based on Table 6, it is apparent that the highest number of articles in the domain of digital technology in education research were published in Education and Information Technologies (47 articles ...

  6. Technology and writing: Review of research

    This review examined 29 empirical studies published in peer-reviewed journals from 2002 to 2017 that investigated the use of computers and information and communication technologies during writing instruction and related writing activities. Qualitative content analysis was employed to investigate how technology was used in the writing program ...

  7. Realizing the promise: How can education technology improve learning

    Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning. 1. Take stock of how your current schools ...

  8. Impacts of digital technologies on education and factors ...

    Digital technologies have brought changes to the nature and scope of education and led education systems worldwide to adopt strategies and policies for ICT integration. The latter brought about issues regarding the quality of teaching and learning with ICTs, especially concerning the understanding, adaptation, and design of the education systems in accordance with current technological trends ...

  9. The Impact of Digital Tools on Student Writing and How Writing is

    The study was designed to explore teachers' views of the ways today's digital environment is shaping the research and writing habits of middle and high school students, as well as teachers' own technology use and their efforts to incorporate new digital tools into their classrooms. About the data collection

  10. Time to Rethink: Educating for a Technology-Transformed World

    As we write this, educators across the globe are struggling as schools, students, and families deal with the consequences of the worldwide COVID-19 pandemic. Uncertainty is the order of the day as local and national policies on vaccination and masks change and, at times, conflict. ... Educational Technology Research and Development, 68, 3393 ...

  11. How technology is reinventing K-12 education

    In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data. Technology is "requiring people to check their assumptions ...

  12. The use of technology in higher education teaching by academics during

    This paper presents a systematic review of scholarly efforts that uniquely emerged at the onset of the COVID-19 pandemic and focused primarily on higher education teachers' perspectives on technology use and on associated changes in the relationship between teachers and students amidst the transition to emergency remote teaching worldwide. Our narrative synthesis of 32 studies, the majority ...

  13. Full article: Is technology always helpful?: A critical review of the

    There is increasing interest in the use of technology in education. In April 2019, the UK government announced a £10 m investment in education technology for England. ... Hattie's meta-analysis (Hattie Citation 2018), for example, reported an effect size of +0.42 for the use of technology in writing. Sung, Chang, and Liu ...

  14. New global data reveal education technology's impact on learning

    The use of technology in education has become a lifeline during the COVID-19 pandemic. As students return to the classroom, school systems must carefully consider the longer-term role of education technology. ... When students who mostly write by hand set out to type an essay, their attention will be focused on the typing rather than the essay ...

  15. How Technology Is Changing the Future of Higher Education

    Tony Cenicola/The New York Times. This article is part of our latest Learning special report. We're focusing on Generation Z, which is facing challenges from changing curriculums and new ...

  16. Writing is a technology that restructures thought

    Writing education is often seen by universities as a remedial skill, something students should already know how to do. In reality, much more writing instruction is needed.

  17. The how and how much of technology use in the classroom: A motivational

    1 INTRODUCTION. Teachers' motivational styles in the classroom matter. A self-determination theory perspective to education (Ryan & Deci, 2017, 2019) posits that when teachers use autonomy-supportive styles—those that provide a sense of choice, self-expression and personal volition—students volitionally engage in learning activities and experience a sense of well-being in the classroom ...

  18. Impacts of digital technologies on education and factors influencing

    Although the analysis of the literature review demonstrated different impacts of the use of digital technology on education, several authors highlighted the importance of various factors, besides the technology itself, that affect this impact. ... The impact of technology on students' writing performances in elementary classrooms: A meta ...

  19. Effective Uses of Technology in Elementary School

    Students can use technology to keep track of their progress. They can use images or a short video to document special classroom moments, activities, projects, or presentations, and then create a presentation that highlights their learning from these snapshots. For example, a third-grade student learning about the composition of a cell could ...

  20. The Evolution Of Technology In The Classroom

    Perhaps the most important thing about ed tech in K-12 isn't what the technology is, but how it's used. How to Integrate Technology into K-12 Classrooms. The first step to integrating technology into the K-12 classroom is figuring out which solution to integrate, given the large variety of tools available to educators. That variety ...

  21. How technology is reinventing education

    New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed.

  22. (PDF) Impact of modern technology in education

    The importance of technology in schools cannot be ignored. In fact, with the onset of computers in education, it has become easier for teachers to impart knowledge and for students to acquire it ...

  23. The Use of Digital Technology for Sustainable Teaching and Learning

    Sustainable teaching and learning encompass practices where educators equip students with the skills and strategies needed for lifelong, independent learning beyond the confinement of a traditional classroom and independent of a sole knowledgeable instructor [].Teachers who foster sustainable learning engage students in experiential, project-based tasks that necessitate research, critical ...

  24. Technology and writing: Review of research

    Abstract. This review examined 29 empirical studies published in peer-reviewed journals from 2002 to 2017 that investigated the use of computers and information and communication technologies during writing instruction and related writing activities. Qualitative content analysis was employed to investigate how technology was used in the writing ...

  25. The Evolution of Technology in the Classroom

    With the evolution of technology, educational capabilities are growing and changing every day. The Internet is a vast electronic library of information, and both research and instruction can be achieved through a click of the mouse. With these advances come new responsibilities to the instructor and therefore increase the value of a Master of ...

  26. How is the use of technology in education evaluated? A systematic

    The findings provide an analytical framework that educators and researchers can utilize when evaluating the use of technology in education, and could potentially inform the development of new, more holistic and more robust evaluation methods. 1. Background and motivation for this study.

  27. 3 Tips for Using Tech to Meet All Students' Needs

    The overall number of ed-tech tools districts are using is increasing, and many districts now have 1-to-1 computing programs. Yet equitable technology access for all students still isn't a ...

  28. Google Buys Stake in Taiwan Solar Power Firm Owned by BlackRock

    LONDON (Reuters) - Google said it has taken a stake in Taiwan's New Green Power and could buy up to 300 megawatts of renewable energy from the BlackRock fund-owned firm to help cut its carbon ...

  29. South Korea's SK Hynix to Invest $75 Billion by 2028 in AI, Chips

    Earlier this year, the government announced a 26 trillion won ($19 billion) support package for its chip businesses, citing a need to keep up in areas like chip design and contract manufacturing ...