Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Research Questions & Hypotheses

Generally, in quantitative studies, reviewers expect hypotheses rather than research questions. However, both research questions and hypotheses serve different purposes and can be beneficial when used together.

Research Questions

Clarify the research’s aim (farrugia et al., 2010).

  • Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.
  • Descriptive: “What factors most influence the academic achievement of senior high school students?”
  • Comparative: “What is the performance difference between teaching methods A and B?”
  • Relationship-based: “What is the relationship between self-efficacy and academic achievement?”
  • Increasing knowledge about a subject can be achieved through systematic literature reviews, in-depth interviews with patients (and proxies), focus groups, and consultations with field experts.
  • Some funding bodies, like the Canadian Institute for Health Research, recommend conducting a systematic review or a pilot study before seeking grants for full trials.
  • The presence of multiple research questions in a study can complicate the design, statistical analysis, and feasibility.
  • It’s advisable to focus on a single primary research question for the study.
  • The primary question, clearly stated at the end of a grant proposal’s introduction, usually specifies the study population, intervention, and other relevant factors.
  • The FINER criteria underscore aspects that can enhance the chances of a successful research project, including specifying the population of interest, aligning with scientific and public interest, clinical relevance, and contribution to the field, while complying with ethical and national research standards.
Feasible
Interesting
Novel
Ethical
Relevant
  • The P ICOT approach is crucial in developing the study’s framework and protocol, influencing inclusion and exclusion criteria and identifying patient groups for inclusion.
Population (patients)
Intervention (for intervention studies only)
Comparison group
Outcome of interest
Time
  • Defining the specific population, intervention, comparator, and outcome helps in selecting the right outcome measurement tool.
  • The more precise the population definition and stricter the inclusion and exclusion criteria, the more significant the impact on the interpretation, applicability, and generalizability of the research findings.
  • A restricted study population enhances internal validity but may limit the study’s external validity and generalizability to clinical practice.
  • A broadly defined study population may better reflect clinical practice but could increase bias and reduce internal validity.
  • An inadequately formulated research question can negatively impact study design, potentially leading to ineffective outcomes and affecting publication prospects.

Checklist: Good research questions for social science projects (Panke, 2018)

were the research questions objectives or hypothesis (is) clearly stated

Research Hypotheses

Present the researcher’s predictions based on specific statements.

  • These statements define the research problem or issue and indicate the direction of the researcher’s predictions.
  • Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.
  • The research or clinical hypothesis, derived from the research question, shapes the study’s key elements: sampling strategy, intervention, comparison, and outcome variables.
  • Hypotheses can express a single outcome or multiple outcomes.
  • After statistical testing, the null hypothesis is either rejected or not rejected based on whether the study’s findings are statistically significant.
  • Hypothesis testing helps determine if observed findings are due to true differences and not chance.
  • Hypotheses can be 1-sided (specific direction of difference) or 2-sided (presence of a difference without specifying direction).
  • 2-sided hypotheses are generally preferred unless there’s a strong justification for a 1-sided hypothesis.
  • A solid research hypothesis, informed by a good research question, influences the research design and paves the way for defining clear research objectives.

Types of Research Hypothesis

  • In a Y-centered research design, the focus is on the dependent variable (DV) which is specified in the research question. Theories are then used to identify independent variables (IV) and explain their causal relationship with the DV.
  • Example: “An increase in teacher-led instructional time (IV) is likely to improve student reading comprehension scores (DV), because extensive guided practice under expert supervision enhances learning retention and skill mastery.”
  • Hypothesis Explanation: The dependent variable (student reading comprehension scores) is the focus, and the hypothesis explores how changes in the independent variable (teacher-led instructional time) affect it.
  • In X-centered research designs, the independent variable is specified in the research question. Theories are used to determine potential dependent variables and the causal mechanisms at play.
  • Example: “Implementing technology-based learning tools (IV) is likely to enhance student engagement in the classroom (DV), because interactive and multimedia content increases student interest and participation.”
  • Hypothesis Explanation: The independent variable (technology-based learning tools) is the focus, with the hypothesis exploring its impact on a potential dependent variable (student engagement).
  • Probabilistic hypotheses suggest that changes in the independent variable are likely to lead to changes in the dependent variable in a predictable manner, but not with absolute certainty.
  • Example: “The more teachers engage in professional development programs (IV), the more their teaching effectiveness (DV) is likely to improve, because continuous training updates pedagogical skills and knowledge.”
  • Hypothesis Explanation: This hypothesis implies a probable relationship between the extent of professional development (IV) and teaching effectiveness (DV).
  • Deterministic hypotheses state that a specific change in the independent variable will lead to a specific change in the dependent variable, implying a more direct and certain relationship.
  • Example: “If the school curriculum changes from traditional lecture-based methods to project-based learning (IV), then student collaboration skills (DV) are expected to improve because project-based learning inherently requires teamwork and peer interaction.”
  • Hypothesis Explanation: This hypothesis presumes a direct and definite outcome (improvement in collaboration skills) resulting from a specific change in the teaching method.
  • Example : “Students who identify as visual learners will score higher on tests that are presented in a visually rich format compared to tests presented in a text-only format.”
  • Explanation : This hypothesis aims to describe the potential difference in test scores between visual learners taking visually rich tests and text-only tests, without implying a direct cause-and-effect relationship.
  • Example : “Teaching method A will improve student performance more than method B.”
  • Explanation : This hypothesis compares the effectiveness of two different teaching methods, suggesting that one will lead to better student performance than the other. It implies a direct comparison but does not necessarily establish a causal mechanism.
  • Example : “Students with higher self-efficacy will show higher levels of academic achievement.”
  • Explanation : This hypothesis predicts a relationship between the variable of self-efficacy and academic achievement. Unlike a causal hypothesis, it does not necessarily suggest that one variable causes changes in the other, but rather that they are related in some way.

Tips for developing research questions and hypotheses for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues, and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Ensure that the research question and objectives are answerable, feasible, and clinically relevant.

If your research hypotheses are derived from your research questions, particularly when multiple hypotheses address a single question, it’s recommended to use both research questions and hypotheses. However, if this isn’t the case, using hypotheses over research questions is advised. It’s important to note these are general guidelines, not strict rules. If you opt not to use hypotheses, consult with your supervisor for the best approach.

Farrugia, P., Petrisor, B. A., Farrokhyar, F., & Bhandari, M. (2010). Practical tips for surgical research: Research questions, hypotheses and objectives.  Canadian journal of surgery. Journal canadien de chirurgie ,  53 (4), 278–281.

Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D., & Newman, T. B. (2007). Designing clinical research. Philadelphia.

Panke, D. (2018). Research design & method selection: Making good choices in the social sciences.  Research Design & Method Selection , 1-368.

were the research questions objectives or hypothesis (is) clearly stated

Research Aims, Objectives & Questions

By: David Phair (PhD) and Alexandra Shaeffer (PhD) | June 2022

Dissertation Coaching

T he research aims , objectives and research questions (collectively called the “golden thread”) are arguably the most important thing you need to get right when you’re crafting a research proposal , dissertation or thesis . We receive questions almost every day about this “holy trinity” of research and there’s certainly a lot of confusion out there, so we’ve crafted this post to help you navigate your way through the fog.

Overview: The Golden Thread

  • What is the golden thread
  • What are research aims ( examples )
  • What are research objectives ( examples )
  • What are research questions ( examples )
  • The importance of alignment in the golden thread

What is the “golden thread”?

The golden thread simply refers to the collective research aims , research objectives , and research questions for any given project (i.e., a dissertation, thesis, or research paper ). These three elements are bundled together because it’s extremely important that they align with each other, and that the entire research project aligns with them.

Importantly, the golden thread needs to weave its way through the entirety of any research project , from start to end. In other words, it needs to be very clearly defined right at the beginning of the project (the topic ideation and proposal stage) and it needs to inform almost every decision throughout the rest of the project. For example, your research design and methodology will be heavily influenced by the golden thread (we’ll explain this in more detail later), as well as your literature review.

The research aims, objectives and research questions (the golden thread) define the focus and scope ( the delimitations ) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can “go deep” and really dig into a specific problem or opportunity. They also help keep you on track , as they act as a litmus test for relevance. In other words, if you’re ever unsure whether to include something in your document, simply ask yourself the question, “does this contribute toward my research aims, objectives or questions?”. If it doesn’t, chances are you can drop it.

Alright, enough of the fluffy, conceptual stuff. Let’s get down to business and look at what exactly the research aims, objectives and questions are and outline a few examples to bring these concepts to life.

Free Webinar: How To Find A Dissertation Research Topic

Research Aims: What are they?

Simply put, the research aim(s) is a statement that reflects the broad overarching goal (s) of the research project. Research aims are fairly high-level (low resolution) as they outline the general direction of the research and what it’s trying to achieve .

Research Aims: Examples

True to the name, research aims usually start with the wording “this research aims to…”, “this research seeks to…”, and so on. For example:

“This research aims to explore employee experiences of digital transformation in retail HR.”   “This study sets out to assess the interaction between student support and self-care on well-being in engineering graduate students”  

As you can see, these research aims provide a high-level description of what the study is about and what it seeks to achieve. They’re not hyper-specific or action-oriented, but they’re clear about what the study’s focus is and what is being investigated.

Need a helping hand?

were the research questions objectives or hypothesis (is) clearly stated

Research Objectives: What are they?

The research objectives take the research aims and make them more practical and actionable . In other words, the research objectives showcase the steps that the researcher will take to achieve the research aims.

The research objectives need to be far more specific (higher resolution) and actionable than the research aims. In fact, it’s always a good idea to craft your research objectives using the “SMART” criteria. In other words, they should be specific, measurable, achievable, relevant and time-bound”.

Research Objectives: Examples

Let’s look at two examples of research objectives. We’ll stick with the topic and research aims we mentioned previously.  

For the digital transformation topic:

To observe the retail HR employees throughout the digital transformation. To assess employee perceptions of digital transformation in retail HR. To identify the barriers and facilitators of digital transformation in retail HR.

And for the student wellness topic:

To determine whether student self-care predicts the well-being score of engineering graduate students. To determine whether student support predicts the well-being score of engineering students. To assess the interaction between student self-care and student support when predicting well-being in engineering graduate students.

  As you can see, these research objectives clearly align with the previously mentioned research aims and effectively translate the low-resolution aims into (comparatively) higher-resolution objectives and action points . They give the research project a clear focus and present something that resembles a research-based “to-do” list.

The research objectives detail the specific steps that you, as the researcher, will take to achieve the research aims you laid out.

Research Questions: What are they?

Finally, we arrive at the all-important research questions. The research questions are, as the name suggests, the key questions that your study will seek to answer . Simply put, they are the core purpose of your dissertation, thesis, or research project. You’ll present them at the beginning of your document (either in the introduction chapter or literature review chapter) and you’ll answer them at the end of your document (typically in the discussion and conclusion chapters).

The research questions will be the driving force throughout the research process. For example, in the literature review chapter, you’ll assess the relevance of any given resource based on whether it helps you move towards answering your research questions. Similarly, your methodology and research design will be heavily influenced by the nature of your research questions. For instance, research questions that are exploratory in nature will usually make use of a qualitative approach, whereas questions that relate to measurement or relationship testing will make use of a quantitative approach.  

Let’s look at some examples of research questions to make this more tangible.

Research Questions: Examples 

Again, we’ll stick with the research aims and research objectives we mentioned previously.  

For the digital transformation topic (which would be qualitative in nature):

How do employees perceive digital transformation in retail HR? What are the barriers and facilitators of digital transformation in retail HR?  

And for the student wellness topic (which would be quantitative in nature):

Does student self-care predict the well-being scores of engineering graduate students? Does student support predict the well-being scores of engineering students? Do student self-care and student support interact when predicting well-being in engineering graduate students?  

You’ll probably notice that there’s quite a formulaic approach to this. In other words, the research questions are basically the research objectives “converted” into question format. While that is true most of the time, it’s not always the case. For example, the first research objective for the digital transformation topic was more or less a step on the path toward the other objectives, and as such, it didn’t warrant its own research question.

So, don’t rush your research questions and sloppily reword your objectives as questions. Carefully think about what exactly you’re trying to achieve (i.e. your research aim) and the objectives you’ve set out, then craft a set of well-aligned research questions . Also, keep in mind that this can be a somewhat iterative process , where you go back and tweak research objectives and aims to ensure tight alignment throughout the golden thread.

The importance of strong alignment

Alignment is the keyword here and we have to stress its importance . Simply put, you need to make sure that there is a very tight alignment between all three pieces of the golden thread. If your research aims and research questions don’t align, for example, your project will be pulling in different directions and will lack focus . This is a common problem students face and can cause many headaches (and tears), so be warned.

Take the time to carefully craft your research aims, objectives and research questions before you run off down the research path. Ideally, get your research supervisor/advisor to review and comment on your golden thread before you invest significant time into your project, and certainly before you start collecting data .  

Recap: The golden thread

In this post, we unpacked the golden thread of research, consisting of the research aims , research objectives and research questions . You can jump back to any section using the links below.

As always, feel free to leave a comment below – we always love to hear from you. Also, if you’re interested in 1-on-1 support, take a look at our private coaching service here.

Research Bootcamps

You Might Also Like:

How To Review & Understand Academic Literature Quickly

How To Review & Understand Academic Literature Quickly

Learn how to fast-track your literature review by reading with intention and clarity. Dr E and Amy Murdock explain how.

Dissertation Writing Services: Far Worse Than You Think

Dissertation Writing Services: Far Worse Than You Think

Thinking about using a dissertation or thesis writing service? You might want to reconsider that move. Here’s what you need to know.

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

The Harsh Truths Of Academic Research

The Harsh Truths Of Academic Research

Dr. Ethar Al-Saraf and Dr. Amy Murdock dive into the darker truths of academic research, so that you’re well prepared for reality.

Dissertation Paralysis: How To Get Unstuck

Dissertation Paralysis: How To Get Unstuck

In this episode of the podcast, Dr. Ethar and Dr. Amy Murdock dive into how to get unstuck when you’re facing dissertation paralysis

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

41 Comments

Isaac Levi

Thank you very much for your great effort put. As an Undergraduate taking Demographic Research & Methodology, I’ve been trying so hard to understand clearly what is a Research Question, Research Aim and the Objectives in a research and the relationship between them etc. But as for now I’m thankful that you’ve solved my problem.

Hatimu Bah

Well appreciated. This has helped me greatly in doing my dissertation.

Dr. Abdallah Kheri

An so delighted with this wonderful information thank you a lot.

so impressive i have benefited a lot looking forward to learn more on research.

Ekwunife, Chukwunonso Onyeka Steve

I am very happy to have carefully gone through this well researched article.

Infact,I used to be phobia about anything research, because of my poor understanding of the concepts.

Now,I get to know that my research question is the same as my research objective(s) rephrased in question format.

I please I would need a follow up on the subject,as I intends to join the team of researchers. Thanks once again.

Tosin

Thanks so much. This was really helpful.

Ishmael

I know you pepole have tried to break things into more understandable and easy format. And God bless you. Keep it up

sylas

i found this document so useful towards my study in research methods. thanks so much.

Michael L. Andrion

This is my 2nd read topic in your course and I should commend the simplified explanations of each part. I’m beginning to understand and absorb the use of each part of a dissertation/thesis. I’ll keep on reading your free course and might be able to avail the training course! Kudos!

Scarlett

Thank you! Better put that my lecture and helped to easily understand the basics which I feel often get brushed over when beginning dissertation work.

Enoch Tindiwegi

This is quite helpful. I like how the Golden thread has been explained and the needed alignment.

Sora Dido Boru

This is quite helpful. I really appreciate!

Chulyork

The article made it simple for researcher students to differentiate between three concepts.

Afowosire Wasiu Adekunle

Very innovative and educational in approach to conducting research.

Sàlihu Abubakar Dayyabu

I am very impressed with all these terminology, as I am a fresh student for post graduate, I am highly guided and I promised to continue making consultation when the need arise. Thanks a lot.

Mohammed Shamsudeen

A very helpful piece. thanks, I really appreciate it .

Sonam Jyrwa

Very well explained, and it might be helpful to many people like me.

JB

Wish i had found this (and other) resource(s) at the beginning of my PhD journey… not in my writing up year… 😩 Anyways… just a quick question as i’m having some issues ordering my “golden thread”…. does it matter in what order you mention them? i.e., is it always first aims, then objectives, and finally the questions? or can you first mention the research questions and then the aims and objectives?

UN

Thank you for a very simple explanation that builds upon the concepts in a very logical manner. Just prior to this, I read the research hypothesis article, which was equally very good. This met my primary objective.

My secondary objective was to understand the difference between research questions and research hypothesis, and in which context to use which one. However, I am still not clear on this. Can you kindly please guide?

Derek Jansen

In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

Saen Fanai

Exactly what I need in this research journey, I look forward to more of your coaching videos.

Abubakar Rofiat Opeyemi

This helped a lot. Thanks so much for the effort put into explaining it.

Lamin Tarawally

What data source in writing dissertation/Thesis requires?

What is data source covers when writing dessertation/thesis

Latifat Muhammed

This is quite useful thanks

Yetunde

I’m excited and thankful. I got so much value which will help me progress in my thesis.

Amer Al-Rashid

where are the locations of the reserch statement, research objective and research question in a reserach paper? Can you write an ouline that defines their places in the researh paper?

Webby

Very helpful and important tips on Aims, Objectives and Questions.

Refiloe Raselane

Thank you so much for making research aim, research objectives and research question so clear. This will be helpful to me as i continue with my thesis.

Annabelle Roda-Dafielmoto

Thanks much for this content. I learned a lot. And I am inspired to learn more. I am still struggling with my preparation for dissertation outline/proposal. But I consistently follow contents and tutorials and the new FB of GRAD Coach. Hope to really become confident in writing my dissertation and successfully defend it.

Joe

As a researcher and lecturer, I find splitting research goals into research aims, objectives, and questions is unnecessarily bureaucratic and confusing for students. For most biomedical research projects, including ‘real research’, 1-3 research questions will suffice (numbers may differ by discipline).

Abdella

Awesome! Very important resources and presented in an informative way to easily understand the golden thread. Indeed, thank you so much.

Sheikh

Well explained

New Growth Care Group

The blog article on research aims, objectives, and questions by Grad Coach is a clear and insightful guide that aligns with my experiences in academic research. The article effectively breaks down the often complex concepts of research aims and objectives, providing a straightforward and accessible explanation. Drawing from my own research endeavors, I appreciate the practical tips offered, such as the need for specificity and clarity when formulating research questions. The article serves as a valuable resource for students and researchers, offering a concise roadmap for crafting well-defined research goals and objectives. Whether you’re a novice or an experienced researcher, this article provides practical insights that contribute to the foundational aspects of a successful research endeavor.

yaikobe

A great thanks for you. it is really amazing explanation. I grasp a lot and one step up to research knowledge.

UMAR SALEH

I really found these tips helpful. Thank you very much Grad Coach.

Rahma D.

I found this article helpful. Thanks for sharing this.

Juhaida

thank you so much, the explanation and examples are really helpful

BhikkuPanna

This is a well researched and superbly written article for learners of research methods at all levels in the research topic from conceptualization to research findings and conclusions. I highly recommend this material to university graduate students. As an instructor of advanced research methods for PhD students, I have confirmed that I was giving the right guidelines for the degree they are undertaking.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

were the research questions objectives or hypothesis (is) clearly stated

  • Print Friendly

Quantitative Research in Mass Communications : R and RStudio

7 formulating research questions and hypotheses, 7.1 introduction to research questions and hypotheses.

In the realm of academic research, particularly within the field of mass communications, the formulation of research questions and hypotheses is a foundational step that sets the direction and scope of a study. These elements are crucial not only for guiding the research process but also for defining the study’s objectives and expectations. This section highlights the significance of research questions and hypotheses and elucidates the role they play in framing a study.

The Importance of Research Questions and Hypotheses in Guiding Research

Defining the Research Focus: Research questions serve as the cornerstone of any study, clearly outlining the specific issue or phenomenon that the research aims to explore. They help narrow down the broad area of interest into a focused inquiry that can be systematically investigated.

Guiding Methodology: The nature of the research question—whether it seeks to describe, compare, or determine cause and effect—directly influences the choice of research design, methods, and analysis techniques. Well-formulated questions ensure that the research methodology is appropriately aligned with the study’s objectives.

Facilitating Hypothesis Formulation: In quantitative research, hypotheses often stem from the research questions, proposing specific predictions or expectations based on theoretical foundations or previous studies. Hypotheses provide a testable statement that guides the empirical investigation and analysis.

7.1.1 Overview of the Role These Elements Play in Framing a Study

Structuring the Research Framework: Together, research questions and hypotheses establish the conceptual framework for a study, defining its boundaries and specifying the variables of interest. This framework serves as a blueprint, guiding all subsequent steps of the research process.

Informing Literature Review: Research questions and hypotheses inform the scope and focus of the literature review, directing attention to relevant theories, concepts, and empirical findings. This ensures that the review is tightly integrated with the study’s aims and contributes to building a solid theoretical foundation.

Determining Data Collection and Analysis: The formulation of research questions and hypotheses has direct implications for data collection methods, sampling strategies, and analytical techniques. They dictate what data are needed, how they should be collected, and the statistical tests or analytical approaches required to address the research questions and test the hypotheses.

Communicating the Study’s Purpose: Research questions and hypotheses effectively communicate the purpose and direction of the study to the academic community, stakeholders, and the broader public. They articulate the study’s contribution to knowledge, its relevance to theoretical debates or practical issues, and the potential implications of the findings.

In summary, research questions and hypotheses are indispensable components of the research process, serving as the guiding light for the entire study. They provide clarity, direction, and purpose, ensuring that the research is coherent, focused, and methodologically sound. By meticulously crafting these elements, researchers in mass communications lay the groundwork for meaningful and impactful studies that advance our understanding of complex media landscapes and communication dynamics.

7.2 Understanding Research Questions

Research questions are the foundation of any scholarly inquiry, guiding the direction and focus of the study. In mass communications research, where topics can range from analyzing media effects to understanding audience behaviors, formulating effective research questions is crucial for defining the scope and objectives of a study. This section delves into the definition and characteristics of a good research question, distinguishes between exploratory and descriptive research questions, and discusses strategies for developing clear and focused questions.

Definition and Characteristics of a Good Research Question

Definition: A research question is a clearly formulated question that outlines the issue or problem your study aims to address. It sets the stage for the research design, data collection, and analysis, directing the inquiry toward a specific goal.

Characteristics of a Good Research Question:

  • Clarity: It should be clearly stated, avoiding ambiguity and ensuring that the research focus is understandable to others.
  • Relevance: The question should be significant to the field of study, addressing gaps in the literature or emerging issues in mass communications.
  • Researchability: It must be possible to answer the question through empirical investigation, using available research methods and tools.
  • Specificity: A good question is specific, targeting a particular aspect of the broader topic to make the research manageable and focused.

Distinction Between Exploratory and Descriptive Research Questions

Exploratory Research Questions: These questions are used when little is known about the topic or phenomenon. Exploratory questions aim to investigate and gain insights into a subject, seeking to understand how or why something happens. In mass communications, an exploratory question might ask, “How do emerging social media platforms influence political engagement among young adults?”

Descriptive Research Questions: Descriptive questions aim to describe the characteristics or features of a subject. They are used when the goal is to provide an accurate representation or count of a phenomenon. A descriptive research question in mass communications might be, “What are the predominant themes in news coverage of environmental issues?”

Developing Clear and Focused Research Questions

  • Specificity: Your research question should be narrowly tailored to address a specific issue within the broader field of mass communications. This specificity helps in defining the study’s scope and focusing the research efforts.
  • Feasibility: Consider the practical aspects of answering your research question, including the availability of data, time constraints, and resource limitations. A feasible question is one that can be realistically investigated within the parameters of your study.
  • Literature Review: Conduct a thorough review of existing research to identify gaps or unresolved questions in the field. This can inspire focused and relevant research questions.
  • Consultation: Discuss your ideas with peers, mentors, or experts in mass communications. Feedback can help refine your questions and ensure they are both specific and feasible.
  • Pilot Studies: Small-scale pilot studies or preliminary investigations can provide insights that help in formulating or refining your research questions.

Crafting clear and focused research questions is a critical step in the research process, setting the stage for meaningful and impactful inquiry. By ensuring that your questions are specific, feasible, and relevant to the field of mass communications, you lay the groundwork for a study that can contribute valuable insights to our understanding of media and communication phenomena.

7.3 Types of Research Questions

In the pursuit of scientific inquiry within mass communications, research questions serve as the navigational compass guiding the research process. These questions can be broadly categorized into two types: nondirectional and directional. Each type serves a distinct purpose and is formulated based on the nature of the study and the specific objectives the researcher aims to achieve. This section explores the definitions, uses, and strategies for crafting both nondirectional and directional research questions.

Nondirectional Research Questions

Definition: Nondirectional research questions are open-ended queries that explore the existence of a relationship between variables without specifying the anticipated direction of this relationship. They are used when the literature does not strongly suggest which outcome is expected or when exploring new or under-researched areas.

When to Use Them: Employ nondirectional questions when previous research is inconclusive, conflicting, or absent. They are particularly useful in exploratory studies where the aim is to uncover patterns, relationships, or phenomena without presupposing outcomes.

Crafting Questions:

  • Focus on Exploration: Phrase your question to emphasize exploration, such as “Is there a relationship between social media usage and political participation among young adults?”
  • Avoid Implied Direction: Ensure the wording does not inadvertently suggest a presumed direction of the relationship. The question should remain open to any outcome, whether positive, negative, or neutral.

Directional Research Questions

Definition: Directional research questions specify the expected direction of the relationship between variables. These questions are based on predictions that are often derived from theoretical frameworks or existing literature.

Purposes: Directional questions are used when there is sufficient theoretical or empirical basis to hypothesize a particular outcome. They guide the research towards testing specific hypotheses, making them suitable for studies aiming to confirm or refute theoretical predictions.

Formulating Questions:

  • Specify Expected Outcomes: Clearly articulate the anticipated direction of the relationship in the question. For example, “Does increased exposure to environmental news lead to higher levels of environmental activism among viewers?”
  • Ground in Literature: Ensure that the directionality implied by your question is supported by theoretical rationales or empirical evidence from previous research. This alignment strengthens the justification for expecting a particular outcome.

7.4 Strategies for Formulating Research Questions

Regardless of the type, crafting effective research questions requires a deep understanding of the topic at hand, a thorough review of the existing literature, and a clear articulation of the research’s goals. Here are some strategies to consider:

  • Engage with Current Research: Immerse yourself in the latest studies and debates within the field of mass communications to identify trends, gaps, and areas ripe for investigation.
  • Consult Theoretical Frameworks: Draw on established theories to guide the formulation of your questions, whether seeking to explore uncharted territory (nondirectional) or test specific propositions (directional).
  • Iterative Refinement: Research questions often evolve during the initial stages of a study. Be prepared to refine your questions as you delve deeper into the literature and sharpen your study’s focus.

By thoughtfully selecting the type of research question that best suits the aims and scope of your study, you lay a solid foundation for a coherent, rigorous, and insightful exploration of mass communications phenomena.

7.5 Operationalization of Concepts

Operationalization is a critical process in the research design phase, particularly in quantitative studies within the realm of mass communications. It involves defining the abstract concepts or variables in measurable terms, determining how they will be observed, measured, or manipulated within the study. This section outlines the essence of operationalization, its pivotal role in research, the steps involved in operationalizing variables, and provides examples pertinent to mass communications research.

Defining Operationalization and Its Significance in Research

Definition: Operationalization is the process by which researchers define how to measure or manipulate the variables of interest in a study. It transforms theoretical constructs into measurable indicators, allowing for empirical observation and quantitative analysis.

Significance: The operationalization of concepts is fundamental to ensuring the reliability and validity of a study. By clearly specifying how variables are measured, researchers enable the replication of the study, enhance the clarity and coherence of their research design, and facilitate the objective analysis of findings.

Steps to Operationalize Variables

Identify the Key Concepts: Begin by clearly identifying the key concepts or variables you intend to study. In mass communications, this might include phenomena like media influence, audience engagement, or digital literacy.

Define the Variables Conceptually: Provide clear, conceptual definitions for each variable, drawing on existing literature or theoretical frameworks to delineate the boundaries of the concept.

Specify the Variables Operationally: Decide on the specific operations, techniques, or instruments you will use to measure or manipulate each variable. This includes determining the type of data to be collected, the scale of measurement, and the method of data collection.

Develop or Select Measurement Instruments: Choose or develop instruments that accurately measure your operationalized variables. This could involve creating surveys, designing experiments, or developing coding schemes for content analysis.

Pilot Test: Conduct a pilot test of your measurement instruments to ensure they effectively capture the operationalized variables. Adjustments based on feedback from the pilot test can improve the reliability and validity of the measures.

Examples of Operationalizing Common Variables in Mass Communications Research

Audience Engagement: Conceptually defined as the level of interaction and involvement an individual has with media content. Operationally, it could be measured through the number of social media shares, comments, or time spent viewing content.

Media Influence on Public Opinion: Conceptually, this refers to the impact media content has on shaping individuals’ attitudes and beliefs. Operationally, it could be measured by changes in attitudes before and after exposure to specific media messages, using pretest-posttest surveys.

Digital Literacy: Conceptually defined as the ability to find, evaluate, create, and communicate information using digital technologies. Operationally, digital literacy could be measured through a questionnaire assessing skills in these areas, with items rated on a Likert scale.

Operationalization is a cornerstone of rigorous research methodology, bridging the gap between theoretical concepts and empirical evidence. By meticulously defining and measuring variables, researchers in mass communications can ground their studies in observable reality, enhancing the validity of their findings and contributing meaningful insights into the complex dynamics of media and communication.

7.6 Developing Hypotheses

In the framework of quantitative research, particularly within the expansive field of mass communications, hypotheses serve as pivotal elements that further refine and operationalize the research questions. This section elucidates the definition and function of hypotheses in quantitative research, explores the relationship between research questions and hypotheses, and outlines the criteria that make a hypothesis testable.

Definition and Function of Hypotheses in Quantitative Research

Definition: A hypothesis is a predictive statement that proposes a possible outcome or relationship between two or more variables. It is grounded in theory or prior empirical findings and serves as a basis for scientific inquiry.

Function: The primary function of a hypothesis is to provide a specific, testable proposition derived from the broader research question. Hypotheses guide the research design, data collection, and analysis process, offering a clear focus for empirical investigation. They enable researchers to apply statistical methods to test the proposed relationships or effects, thereby contributing to the accumulation of scientific knowledge.

The Relationship Between Research Questions and Hypotheses

From Questions to Hypotheses: Research questions set the stage for the research by identifying the key phenomena or relationships of interest. Hypotheses take this a step further by specifying the expected direction or nature of these relationships based on theoretical or empirical groundwork. Essentially, while research questions identify “what” the study aims to explore, hypotheses propose “how” these explorations will unfold.

Complementarity: Research questions and hypotheses are complementary, with the former providing a broad inquiry framework and the latter offering a focused, conjectural answer that can be empirically tested. This synergy ensures that the research is both guided by curiosity and anchored in a framework that facilitates systematic investigation.

Criteria for a Testable Hypothesis

For a hypothesis to effectively contribute to the research process, it must be testable. The following criteria are essential for constructing a hypothesis that can be empirically evaluated:

Specificity: A testable hypothesis must clearly and specifically define the variables involved and the expected relationship between them. This clarity ensures that the hypothesis can be directly linked to observable and measurable outcomes.

Empirical Referents: The variables within the hypothesis must have empirical referents – that is, they must be capable of being measured or manipulated in the real world. This allows the hypothesis to be subjected to empirical testing.

Predictive Nature: A testable hypothesis should make a predictive statement about the expected outcome of the study, enabling the research to confirm or refute the proposed relationship or effect based on empirical evidence.

Grounding in Theory or Prior Research: The hypothesis should be grounded in existing theoretical frameworks or empirical findings, providing a rationale for the expected relationship or outcome. This grounding not only lends credibility to the hypothesis but also ensures that it contributes to the ongoing academic discourse.

Falsifiability: Finally, a testable hypothesis must be falsifiable. This means it should be possible to conceive of an outcome that would contradict the hypothesis, allowing for the possibility of it being disproven through empirical evidence.

Developing well-crafted hypotheses is a critical step in the quantitative research process, particularly in mass communications, where the rapid evolution of media technologies and platforms continually opens new avenues for inquiry. By adhering to these criteria, researchers can ensure that their hypotheses are not only testable but also meaningful, contributing valuable insights to our understanding of complex media landscapes and their impacts on society.

7.7 Types of Hypotheses

In the empirical research landscape, especially within the domain of mass communications, hypotheses are indispensable tools that guide the investigative process. They are typically categorized into null hypotheses and alternative hypotheses, each serving a distinct role in framing the research inquiry. This section provides definitions for these two types of hypotheses, discusses their roles in research, and offers guidance on formulating them effectively.

Null Hypotheses (H0)

Definition: The null hypothesis (H0) posits that there is no difference, effect, or relationship between the variables under investigation. It represents a statement of skepticism or neutrality, suggesting that any observed differences or relationships in the data are due to chance rather than a systematic effect.

Role in Research: The null hypothesis serves as a benchmark for testing the existence of an effect or relationship. By attempting to disprove or reject the null hypothesis through statistical analysis, researchers can provide evidence supporting the presence of a meaningful effect or relationship. The null hypothesis is foundational in hypothesis testing, enabling researchers to apply statistical methods to determine the likelihood that observed data could have occurred under the null condition.

Formulating Null Hypotheses: Null hypotheses are formulated as statements of no difference or no relationship. For example, in a study examining the impact of social media usage on political engagement, a null hypothesis might state, “There is no difference in political engagement levels between users and non-users of social media.”

Alternative Hypotheses (H1)

Definition: The alternative hypothesis (H1) is the counter proposition to the null hypothesis. It posits that there is a significant difference, effect, or relationship between the variables being studied. The alternative hypothesis reflects the researcher’s theoretical expectation or prediction about the outcome of the study.

Complementing Null Hypotheses: The alternative hypothesis directly complements the null hypothesis by specifying the expected effect or relationship that the research aims to demonstrate. While the null hypothesis posits the absence of an effect, the alternative hypothesis asserts its presence, guiding the direction of the study’s empirical investigation.

Crafting Alternative Hypotheses: Alternative hypotheses are crafted to predict specific outcomes based on the research question and theoretical framework. They should clearly articulate the anticipated direction or nature of the relationship or difference between variables. Continuing the earlier example, an alternative hypothesis might state, “Users of social media exhibit higher levels of political engagement than non-users.”

7.8 Strategic Formulation of Hypotheses

The formulation of null and alternative hypotheses is a strategic exercise that sets the stage for empirical testing. Effective hypotheses are:

  • Specific and Concise: Clearly define the variables and the expected relationship or difference, avoiding ambiguity.
  • Empirically Testable: Ensure that the hypotheses can be tested using available research methods and data.
  • Theoretically Grounded: Base your hypotheses on existing literature, theories, or preliminary evidence, providing a rationale for the expected outcomes.

In mass communications research, where the interplay of media, technology, and society offers a rich tapestry of phenomena to explore, the thoughtful formulation of null and alternative hypotheses is crucial. It not only delineates the scope of the investigation but also ensures that the research contributes meaningful insights into the dynamics of communication processes and their impacts.

7.9 Directional and Nondirectional Hypotheses

In the nuanced world of quantitative research, particularly within the field of mass communications, hypotheses serve as a bridge between theoretical inquiry and empirical investigation. They are typically formulated as either directional or nondirectional, each with specific implications for the study’s design and analysis. This section clarifies the distinction between these two types of hypotheses and provides guidance on when to use each, complemented by examples from mass communications research.

Understanding the Distinction and When to Use Each Type

Directional Hypotheses: Directional hypotheses specify the expected direction of the relationship or difference between variables. They are based on theoretical predictions or empirical evidence suggesting a particular outcome. Directional hypotheses are used when prior research or theory provides a strong basis for anticipating the direction of the effect.

Nondirectional Hypotheses: Nondirectional hypotheses indicate that a relationship or difference exists between variables but do not specify the direction. They are appropriate when there is uncertainty about the expected outcome or when previous studies have yielded mixed or inconclusive results.

Examples of Both Directional and Nondirectional Hypotheses in Mass Communications Research

  • “Individuals who frequently engage with news content on social media platforms will exhibit higher levels of political awareness than those who do not engage with news content on these platforms.” This hypothesis predicts a specific direction of the relationship between social media news engagement and political awareness.
  • “Exposure to environmental documentaries will increase viewers’ concern for environmental issues more than exposure to traditional news coverage of the same issues.” This hypothesis specifies an expected difference in the effect of two types of media content on environmental concern.
  • “There is a relationship between the frequency of smartphone use for social media and the level of social isolation experienced by young adults.” This hypothesis suggests a relationship exists but does not predict whether more frequent use increases or decreases social isolation.
  • “The introduction of interactive digital learning tools in communication courses affects students’ academic performance.” This hypothesis indicates that an effect is expected but does not specify whether the effect is positive or negative on academic performance.

7.10 Deciding Between Directional and Nondirectional Hypotheses

The choice between directional and nondirectional hypotheses hinges on several factors:

  • Theoretical Basis: Strong theoretical foundations or extensive empirical evidence supporting a specific outcome favor the use of directional hypotheses.
  • Research Objectives: Exploratory studies aiming to identify patterns or relationships might initially employ nondirectional hypotheses, especially in emerging areas of mass communications where less is known.
  • Statistical Considerations: Directional hypotheses allow for more focused statistical tests (e.g., one-tailed tests), which can be more powerful in detecting specified effects. However, they require a strong justification for predicting the direction of the effect.

By carefully considering these factors, researchers in mass communications can effectively choose the type of hypothesis that best suits their study’s objectives and theoretical framework. Whether directional or nondirectional, the formulation of hypotheses is a critical step in the research process, guiding empirical inquiry and contributing to the advancement of knowledge in the dynamic field of mass communications.

7.11 Criteria for Good Research Questions and Hypotheses

In the rigorous academic landscape of mass communications research, the construction of research questions and hypotheses serves as the bedrock upon which studies are built and conducted. These foundational elements not only guide the direction of the research but also determine its scope, focus, and potential contribution to the field. To ensure the effectiveness and integrity of research, certain criteria must be met. This section outlines the essential qualities of good research questions and hypotheses: clarity and precision, relevance to the field of study, and researchability with empirical testing potential.

Clarity and Precision

Definition: Clarity in research questions and hypotheses means that they are stated in a straightforward and unambiguous manner, easily understood by those within and outside the field. Precision involves the specific delineation of the variables and constructs involved, leaving no room for misinterpretation.

Importance: Clear and precise formulations allow for a focused investigation, guiding the research design, data collection, and analysis process. They ensure that the study addresses the intended concepts and relationships directly and effectively.

Strategies for Achieving Clarity and Precision:

  • Use specific, defined terms and avoid jargon that may not be universally understood.
  • Clearly specify the variables or phenomena being studied and their expected relationships.
  • Ensure that hypotheses are directly testable, with defined criteria for confirmation or refutation.

Relevance to the Field of Study

Definition: Relevance implies that the research questions and hypotheses address significant issues, gaps, or debates within the field of mass communications. They should contribute to advancing understanding, theory, or practice in meaningful ways.

Importance: Research that is relevant to the field is more likely to receive attention from scholars, policymakers, and practitioners, and to secure funding and publication opportunities. It ensures that the study contributes to the ongoing discourse and development of mass communications as a discipline.

Strategies for Ensuring Relevance:

  • Conduct a thorough review of current literature to identify gaps, emerging trends, or unresolved questions.
  • Align research questions and hypotheses with theoretical frameworks or pressing societal issues.
  • Consider the practical implications and potential impact of the research on the field.

Researchability and Empirical Testing Potential

Definition: Researchability refers to the feasibility of addressing the research questions and testing the hypotheses through empirical methods. This includes the availability of data, appropriateness of methodology, and the potential for gathering evidence to support or refute the hypotheses.

Importance: For research to contribute to the body of knowledge, it must be capable of being rigorously investigated using empirical methods. Research questions and hypotheses with high empirical testing potential allow for the derivation of meaningful, verifiable insights.

Strategies for Enhancing Researchability:

  • Ensure that the variables involved can be accurately measured or observed using existing tools or methods.
  • Design hypotheses that are testable within the constraints of time, resources, and ethical considerations.
  • Consider the practical aspects of data collection, including access to participants, media content, or archival resources.

Crafting research questions and hypotheses that are clear and precise, relevant to the field, and amenable to empirical investigation is crucial for conducting impactful research in mass communications. These criteria not only guide the research process but also enhance the study’s validity, reliability, and contribution to the field, fostering a deeper understanding of the complex dynamics that shape media and communication in society.

7.12 Common Mistakes to Avoid in Formulating Research Questions and Hypotheses

When embarking on a research project, especially in a field as dynamic as mass communications, the formulation of research questions and hypotheses is a critical step that sets the stage for the entire study. However, researchers, particularly those new to the field, may encounter pitfalls that can compromise the clarity, relevance, and feasibility of their research. This section highlights common mistakes to avoid in the formulation process, ensuring that research questions and hypotheses are both robust and actionable.

Formulating Questions and Hypotheses That Are Too Broad or Vague

Issue: Broad or vague questions and hypotheses lack specificity and focus, making it difficult to define the scope of the study or determine the appropriate methodology for investigation.

Impact: They can lead to an unwieldy research project with diffuse objectives, posing challenges in data collection, analysis, and interpretation of findings.

Avoidance Strategy: Narrow down the research topic by focusing on specific aspects, populations, or contexts. Use the literature review to identify gaps and refine the research focus to a manageable scope.

Confusing Research Questions with Interview or Survey Questions

Issue: There is a distinction between overarching research questions that guide a study and the specific questions posed in interviews or surveys. Confusing the two can lead to a misalignment between the study’s objectives and the data collection process.

Impact: This confusion can result in collecting data that do not effectively address the research questions, undermining the study’s ability to generate meaningful insights.

Avoidance Strategy: Clearly delineate between the broad research questions that frame your study and the specific items or prompts used in data collection instruments. Ensure that each interview or survey question is directly linked to and serves the purpose of answering the overarching research questions.

Creating Untestable Hypotheses

Issue: Hypotheses that are not empirically testable, either due to the abstract nature of the constructs involved or the lack of available methods for measurement, pose significant challenges to the research process.

Impact: Untestable hypotheses cannot be substantiated or refuted through empirical evidence, limiting the study’s contribution to the field and its scientific merit.

Avoidance Strategy: Ensure that all variables in the hypothesis can be measured or manipulated with existing research methods. Operationalize abstract concepts clearly and consider the feasibility of empirical testing during the hypothesis formulation stage.

7.13 Best Practices for Robust Formulation

Alignment with Theoretical Frameworks: Ground your research questions and hypotheses within established theories or models in mass communications, ensuring they contribute to the broader academic dialogue.

Consultation with Peers and Mentors: Engage in discussions with peers, mentors, or experts in the field to refine your research questions and hypotheses, leveraging their insights to avoid common pitfalls.

Pilot Testing: Consider conducting a pilot study or preliminary analysis to test the feasibility of your research questions and hypotheses, allowing for adjustments before the full-scale study.

By avoiding these common mistakes and adhering to best practices, researchers can formulate research questions and hypotheses that are clear, focused, and empirically testable. This careful preparation enhances the quality and impact of research in mass communications, contributing valuable insights into the complex interplay between media, technology, and society.

were the research questions objectives or hypothesis (is) clearly stated

Research Questions, Hypotheses and Objectives

Research questions.

A research question naturally emerges from a research problem that needs to be resolved. Developing a good research question not only rests on the study of some uncertain phenomenon, but also on the rational need for investigating it. It is therefore essential that a systematic review of extant literature on the research topic be conducted, prior to formulating a research question. Awareness of current trends and latest development in the field of study will certainly assist in formulating a relevant question. There may be several research questions, whether primary or secondary, but they should all be developed during the planning stage of a study. Furthermore, it must be ensured that secondary questions do not compromise the primary research question, which forms the basis of research objectives and hypotheses. Lastly, bear in mind that the number of research questions will inevitably make the research design and data analysis more complex.

Hulley et al . (2001) suggested the use of the FINER criteria in developing a good research question:

  • F - Feasible : adequate number of subjects and technical expertise, affordability in terms of time and money, manageability in scope
  • I - Interesting : getting an answer that intrigues the researcher, the peers and the community
  • N - Novel : confirms, refutes or extends previous findings
  • E - Ethical : a study that will be approved by an institutional review board
  • R - Relevant : to scientific knowledge and future research

A poorly formulated research question may thus affect the choice of study design and hamper the chance of obtaining any significant finding, besides compromising the quality of the study.

Research Hypotheses

First of all, it is essential to understand that it is a hypothesis, not the data, that drives a primary research question . Otherwise, given any dataset, it would be too simple to perform several tests and apply statistical techniques to establish significant associations and/or relationships among variables and/or constructs. In such cases, it would be working backward by using the data to develop the research question, and that would defeat the entire purpose of conducting the study. To make matters worse, spuriously positive findings may result.

Hypothesis testing aims at making inferences about the targeted population on the basis of a random sample taken from that population. A hypothesis must be formulated as a null hypothesis, generally meaning that a prevailing situation has not changed (in the case of finding differences) or that there are no significant relationships among variables and/or constructs. This is the reason why each null hypoythesis must be paired with an alternative hypothesis, should the outcome be significant. The two hypotheses must be mutually exclusive and comprehensively exhaustive, i.e., the acceptance of one would automatically imply the rejection of the other. For a better understanding of the concept of hypothesis testing, you might need to consult our statistician.

At this stage, all you need to know is that the development of a research hypothesis should be supported by a good research question, as it will influence your research design. Once appropriate hypotheses have been developed, you can safely proceed to the formulation of your research objectives.

Research Objectives

You must first learn to distinguish between a research aim and a research objective . While an aim is written in broad terms and explains what is to be achieved at the end of the study, an objective is an active statement that is defined in measurable outcomes via a strong positive statement. The primary objective of a study is paired with the hypothesis of the study, and should be clearly stated in the introduction of the research protocol. Objectives usually state exactly the outcome measures that are going to be used within their statements. Strong verbs like determine , measure , assess , evaluate , identify , examine , investigate , etc., are used in the formulation of objectives.

The importance of objectives is that they guide the development of the protocol and design of study, and play a determining role in sample size calculations. Objectives should be focused on outcomes that are important and relevant to the study.

Research aim To investigate the issue of student indiscipline and its impact on student attainment in Mauritian Secondary Schools Research question What are the various types of student indiscipline currently experienced in secondary schools of Mauritius? Research (null) hypothesis School management style does not impact on student attainment Research objective To identify the most common forms of indiscipline and their level of seriousness

partner

Copyright © 2024, Stat Consul, All rights reserved. Developed by Algopage

Educational resources and simple solutions for your research journey

What Are Research Objectives and How To Write Them (with Examples)

What Are Research Objectives and How to Write Them (with Examples)

What Are Research Objectives and How To Write Them (with Examples)

Table of Contents

Introduction

Research is at the center of everything researchers do, and setting clear, well-defined research objectives plays a pivotal role in guiding scholars toward their desired outcomes. Research papers are essential instruments for researchers to effectively communicate their work. Among the many sections that constitute a research paper, the introduction plays a key role in providing a background and setting the context. 1 Research objectives, which define the aims of the study, are usually stated in the introduction. Every study has a research question that the authors are trying to answer, and the objective is an active statement about how the study will answer this research question. These objectives help guide the development and design of the study and steer the research in the appropriate direction; if this is not clearly defined, a project can fail!

Research studies have a research question, research hypothesis, and one or more research objectives. A research question is what a study aims to answer, and a research hypothesis is a predictive statement about the relationship between two or more variables, which the study sets out to prove or disprove. Objectives are specific, measurable goals that the study aims to achieve. The difference between these three is illustrated by the following example:

  • Research question : How does low-intensity pulsed ultrasound (LIPUS) compare with a placebo device in managing the symptoms of skeletally mature patients with patellar tendinopathy?
  • Research hypothesis : Pain levels are reduced in patients who receive daily active-LIPUS (treatment) for 12 weeks compared with individuals who receive inactive-LIPUS (placebo).
  • Research objective : To investigate the clinical efficacy of LIPUS in the management of patellar tendinopathy symptoms.

This article discusses the importance of clear, well-thought out objectives and suggests methods to write them clearly.

What is the introduction in research papers?

Research objectives are usually included in the introduction section. This section is the first that the readers will read so it is essential that it conveys the subject matter appropriately and is well written to create a good first impression. A good introduction sets the tone of the paper and clearly outlines the contents so that the readers get a quick snapshot of what to expect.

A good introduction should aim to: 2,3

  • Indicate the main subject area, its importance, and cite previous literature on the subject
  • Define the gap(s) in existing research, ask a research question, and state the objectives
  • Announce the present research and outline its novelty and significance
  • Avoid repeating the Abstract, providing unnecessary information, and claiming novelty without accurate supporting information.

Why are research objectives important?

Objectives can help you stay focused and steer your research in the required direction. They help define and limit the scope of your research, which is important to efficiently manage your resources and time. The objectives help to create and maintain the overall structure, and specify two main things—the variables and the methods of quantifying the variables.

A good research objective:

  • defines the scope of the study
  • gives direction to the research
  • helps maintain focus and avoid diversions from the topic
  • minimizes wastage of resources like time, money, and energy

Types of research objectives

Research objectives can be broadly classified into general and specific objectives . 4 General objectives state what the research expects to achieve overall while specific objectives break this down into smaller, logically connected parts, each of which addresses various parts of the research problem. General objectives are the main goals of the study and are usually fewer in number while specific objectives are more in number because they address several aspects of the research problem.

Example (general objective): To investigate the factors influencing the financial performance of firms listed in the New York Stock Exchange market.

Example (specific objective): To assess the influence of firm size on the financial performance of firms listed in the New York Stock Exchange market.

In addition to this broad classification, research objectives can be grouped into several categories depending on the research problem, as given in Table 1.

Table 1: Types of research objectives

Exploratory Explores a previously unstudied topic, issue, or phenomenon; aims to generate ideas or hypotheses
Descriptive Describes the characteristics and features of a particular population or group
Explanatory Explains the relationships between variables; seeks to identify cause-and-effect relationships
Predictive Predicts future outcomes or events based on existing data samples or trends
Diagnostic Identifies factors contributing to a particular problem
Comparative Compares two or more groups or phenomena to identify similarities and differences
Historical Examines past events and trends to understand their significance and impact
Methodological Develops and improves research methods and techniques
Theoretical Tests and refines existing theories or helps develop new theoretical perspectives

Characteristics of research objectives

Research objectives must start with the word “To” because this helps readers identify the objective in the absence of headings and appropriate sectioning in research papers. 5,6

  • A good objective is SMART (mostly applicable to specific objectives):
  • Specific—clear about the what, why, when, and how
  • Measurable—identifies the main variables of the study and quantifies the targets
  • Achievable—attainable using the available time and resources
  • Realistic—accurately addresses the scope of the problem
  • Time-bound—identifies the time in which each step will be completed
  • Research objectives clarify the purpose of research.
  • They help understand the relationship and dissimilarities between variables.
  • They provide a direction that helps the research to reach a definite conclusion.

How to write research objectives?

Research objectives can be written using the following steps: 7

  • State your main research question clearly and concisely.
  • Describe the ultimate goal of your study, which is similar to the research question but states the intended outcomes more definitively.
  • Divide this main goal into subcategories to develop your objectives.
  • Limit the number of objectives (1-2 general; 3-4 specific)
  • Assess each objective using the SMART
  • Start each objective with an action verb like assess, compare, determine, evaluate, etc., which makes the research appear more actionable.
  • Use specific language without making the sentence data heavy.
  • The most common section to add the objectives is the introduction and after the problem statement.
  • Add the objectives to the abstract (if there is one).
  • State the general objective first, followed by the specific objectives.

Formulating research objectives

Formulating research objectives has the following five steps, which could help researchers develop a clear objective: 8

  • Identify the research problem.
  • Review past studies on subjects similar to your problem statement, that is, studies that use similar methods, variables, etc.
  • Identify the research gaps the current study should cover based on your literature review. These gaps could be theoretical, methodological, or conceptual.
  • Define the research question(s) based on the gaps identified.
  • Revise/relate the research problem based on the defined research question and the gaps identified. This is to confirm that there is an actual need for a study on the subject based on the gaps in literature.
  • Identify and write the general and specific objectives.
  • Incorporate the objectives into the study.

Advantages of research objectives

Adding clear research objectives has the following advantages: 4,8

  • Maintains the focus and direction of the research
  • Optimizes allocation of resources with minimal wastage
  • Acts as a foundation for defining appropriate research questions and hypotheses
  • Provides measurable outcomes that can help evaluate the success of the research
  • Determines the feasibility of the research by helping to assess the availability of required resources
  • Ensures relevance of the study to the subject and its contribution to existing literature

Disadvantages of research objectives

Research objectives also have few disadvantages, as listed below: 8

  • Absence of clearly defined objectives can lead to ambiguity in the research process
  • Unintentional bias could affect the validity and accuracy of the research findings

Key takeaways

  • Research objectives are concise statements that describe what the research is aiming to achieve.
  • They define the scope and direction of the research and maintain focus.
  • The objectives should be SMART—specific, measurable, achievable, realistic, and time-bound.
  • Clear research objectives help avoid collection of data or resources not required for the study.
  • Well-formulated specific objectives help develop the overall research methodology, including data collection, analysis, interpretation, and utilization.
  • Research objectives should cover all aspects of the problem statement in a coherent way.
  • They should be clearly stated using action verbs.

Frequently asked questions on research objectives

Q: what’s the difference between research objectives and aims 9.

A: Research aims are statements that reflect the broad goal(s) of the study and outline the general direction of the research. They are not specific but clearly define the focus of the study.

Example: This research aims to explore employee experiences of digital transformation in retail HR.

Research objectives focus on the action to be taken to achieve the aims. They make the aims more practical and should be specific and actionable.

Example: To observe the retail HR employees throughout the digital transformation.

Q: What are the examples of research objectives, both general and specific?

A: Here are a few examples of research objectives:

  • To identify the antiviral chemical constituents in Mumbukura gitoniensis (general)
  • To carry out solvent extraction of dried flowers of Mumbukura gitoniensis and isolate the constituents. (specific)
  • To determine the antiviral activity of each of the isolated compounds. (specific)
  • To examine the extent, range, and method of coral reef rehabilitation projects in five shallow reef areas adjacent to popular tourist destinations in the Philippines.
  • To investigate species richness of mammal communities in five protected areas over the past 20 years.
  • To evaluate the potential application of AI techniques for estimating best-corrected visual acuity from fundus photographs with and without ancillary information.
  • To investigate whether sport influences psychological parameters in the personality of asthmatic children.

Q: How do I develop research objectives?

A: Developing research objectives begins with defining the problem statement clearly, as illustrated by Figure 1. Objectives specify how the research question will be answered and they determine what is to be measured to test the hypothesis.

were the research questions objectives or hypothesis (is) clearly stated

Q: Are research objectives measurable?

A: The word “measurable” implies that something is quantifiable. In terms of research objectives, this means that the source and method of collecting data are identified and that all these aspects are feasible for the research. Some metrics can be created to measure your progress toward achieving your objectives.

Q: Can research objectives change during the study?

A: Revising research objectives during the study is acceptable in situations when the selected methodology is not progressing toward achieving the objective, or if there are challenges pertaining to resources, etc. One thing to keep in mind is the time and resources you would have to complete your research after revising the objectives. Thus, as long as your problem statement and hypotheses are unchanged, minor revisions to the research objectives are acceptable.

Q: What is the difference between research questions and research objectives? 10

Broad statement; guide the overall direction of the research Specific, measurable goals that the research aims to achieve
Identify the main problem Define the specific outcomes the study aims to achieve
Used to generate hypotheses or identify gaps in existing knowledge Used to establish clear and achievable targets for the research
Not mutually exclusive with research objectives Should be directly related to the research question
Example: Example:

Q: Are research objectives the same as hypotheses?

A: No, hypotheses are predictive theories that are expressed in general terms. Research objectives, which are more specific, are developed from hypotheses and aim to test them. A hypothesis can be tested using several methods and each method will have different objectives because the methodology to be used could be different. A hypothesis is developed based on observation and reasoning; it is a calculated prediction about why a particular phenomenon is occurring. To test this prediction, different research objectives are formulated. Here’s a simple example of both a research hypothesis and research objective.

Research hypothesis : Employees who arrive at work earlier are more productive.

Research objective : To assess whether employees who arrive at work earlier are more productive.

To summarize, research objectives are an important part of research studies and should be written clearly to effectively communicate your research. We hope this article has given you a brief insight into the importance of using clearly defined research objectives and how to formulate them.

  • Farrugia P, Petrisor BA, Farrokhyar F, Bhandari M. Practical tips for surgical research: Research questions, hypotheses and objectives. Can J Surg. 2010 Aug;53(4):278-81.
  • Abbadia J. How to write an introduction for a research paper. Mind the Graph website. Accessed June 14, 2023. https://mindthegraph.com/blog/how-to-write-an-introduction-for-a-research-paper/
  • Writing a scientific paper: Introduction. UCI libraries website. Accessed June 15, 2023. https://guides.lib.uci.edu/c.php?g=334338&p=2249903
  • Research objectives—Types, examples and writing guide. Researchmethod.net website. Accessed June 17, 2023. https://researchmethod.net/research-objectives/#:~:text=They%20provide%20a%20clear%20direction,track%20and%20achieve%20their%20goals .
  • Bartle P. SMART Characteristics of good objectives. Community empowerment collective website. Accessed June 16, 2023. https://cec.vcn.bc.ca/cmp/modules/pd-smar.htm
  • Research objectives. Studyprobe website. Accessed June 18, 2023. https://www.studyprobe.in/2022/08/research-objectives.html
  • Corredor F. How to write objectives in a research paper. wikiHow website. Accessed June 18, 2023. https://www.wikihow.com/Write-Objectives-in-a-Research-Proposal
  • Research objectives: Definition, types, characteristics, advantages. AccountingNest website. Accessed June 15, 2023. https://www.accountingnest.com/articles/research/research-objectives
  • Phair D., Shaeffer A. Research aims, objectives & questions. GradCoach website. Accessed June 20, 2023. https://gradcoach.com/research-aims-objectives-questions/
  • Understanding the difference between research questions and objectives. Accessed June 21, 2023. https://board.researchersjob.com/blog/research-questions-and-objectives

R Discovery is a literature search and research reading platform that accelerates your research discovery journey by keeping you updated on the latest, most relevant scholarly content. With 250M+ research articles sourced from trusted aggregators like CrossRef, Unpaywall, PubMed, PubMed Central, Open Alex and top publishing houses like Springer Nature, JAMA, IOP, Taylor & Francis, NEJM, BMJ, Karger, SAGE, Emerald Publishing and more, R Discovery puts a world of research at your fingertips.  

Try R Discovery Prime FREE for 1 week or upgrade at just US$72 a year to access premium features that let you listen to research on the go, read in your language, collaborate with peers, auto sync with reference managers, and much more. Choose a simpler, smarter way to find and read research – Download the app and start your free 7-day trial today !  

Related Posts

difference between journal and conference papers

Conference Paper vs. Journal Paper: What’s the Difference 

literature mapping

Literature Mapping in Research: Definition, Types, and Benefits

educational research techniques

Research techniques and education.

were the research questions objectives or hypothesis (is) clearly stated

Research Purpose, Hypotheses, and Questions

Four key components to a research project are the purpose statement, research questions, hypotheses, and research objectives. In this post, we will define each of these.

Definitions

were the research questions objectives or hypothesis (is) clearly stated

The purpose of this study is to examine the relationship between college completion and organizational commitment of undergraduate students in Thailand. 

Here is an example of a qualitative purpose statement.

The purpose of this study is to explore student experiences at a university in Thailand about completing their tertiary degree.

Both of these examples are short one-sentence responses to what the study will attempt to do. This is a critical first step in shaping the study.

Research Question

The research question(s) in a quantitative or qualitative study narrows the purpose down to a specific question(s) for the researcher to find answers. Below are examples from both the quantitative and qualitative perspective. We are continuing the research themes from the previous section on the purpose statement.

Quantitative

Does organizational commitment affect college completion of students?

Qualitative

What kinds of experiences have students had while completing their degree?

On closer examination, you may have noticed that the research questions sound a lot like the purpose statement. Research questions often split a part a long complex purpose statement into several questions. This is why questions sound so redundant when compared to the purpose statement. Despite this apparent problem, this thought process helps researchers to organize their thinking and proceed in a manner that is much more efficient.

The next two components only relate to quantitative research and they are the hypotheses and research objective(s). For this reason our illustration of qualitative concepts will stop at this point.

Hypotheses are statements a researcher makes about the potential outcome(s) of a study based on the examination of literature. Below is an example from the same theme as before.

Students who have a higher perception of organizational commitment will also have a higher likelihood of completing college.

Again, the wording of the research questions, hypotheses and purpose statement are similarly. The difference is only slightly and is due to context. Seeing these similarities quickly will help you to move faster in finishing a study. The difference between these elements is a matter of perspective rather than a strong difference, as they do sound awfully similar.

Research Objectives

Research objectives are the goals a researcher has for a study. This component is not always included in a study. Below is an example.

To examine the correlation between organizational commitment and the rate of college completion

Share this:

10 thoughts on “ research purpose, hypotheses, and questions ”.

' src=

This is the wrong use of the word, it should be “their” not “there”.

The purpose of this study is to explore student experiences at a university in Thailand about completing there tertiary degree.

' src=

Whoops, thanks for catching that

' src=

Thank you for this, very helpful 🙂

' src=

This has been helpful.

' src=

This was helpful. Thank you

Pingback: Developing a Data Analysis Plan | educational research techniques

' src=

This was helpful.

Glad to be of service

' src=

As an emerging researcher, my worry is that I have six objectives but five research questions and hypotheses. Am I correct or they must all be the same in times of numbers? Thank you

' src=

Thank you, this information helped me so much.

Leave a Reply Cancel reply

Discover more from educational research techniques.

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

help for assessment

  • Customer Reviews
  • Extended Essays
  • IB Internal Assessment
  • Theory of Knowledge
  • Literature Review
  • Dissertations
  • Essay Writing
  • Research Writing
  • Assignment Help
  • Capstone Projects
  • College Application
  • Online Class

Research Questions vs Hypothesis: What’s The Difference?

Author Image

by  Antony W

August 1, 2024

research questions vs hypothesis

You’ll need to come up with a research question or a hypothesis to guide your next research project. But what is a hypothesis in the first place? What is the perfect definition for a research question? And, what’s the difference between the two?

In this guide to research questions vs hypothesis, we’ll look at the definition of each component and the difference between the two.

We’ll also look at when a research question and a hypothesis may be useful and provide you with some tips that you can use to come up with hypothesis and research questions that will suit your research topic . 

Let’s get to it.

What’s a Research Question?

We define a research question as the exact question you want to answer on a given topic or research project. Good research questions should be clear and easy to understand, allow for the collection of necessary data, and be specific and relevant to your field of study.

Research questions are part of heuristic research methods, where researchers use personal experiences and observations to understand a research subject. By using such approaches to explore the question, you should be able to provide an analytical justification of why and how you should respond to the question. 

While it’s common for researchers to focus on one question at a time, more complex topics may require two or more questions to cover in-depth.

When is a Research Question Useful? 

A research question may be useful when and if: 

  • There isn’t enough previous research on the topic
  • You want to report a wider range out of outcome when doing your research project
  • You want to conduct a more open ended inquiries 

Perhaps the biggest drawback with research questions is that they tend to researchers in a position to “fish expectations” or excessively manipulate their findings.

Again, research questions sometimes tend to be less specific, and the reason is that there often no sufficient previous research on the questions.

What’s a Hypothesis? 

A hypothesis is a statement you can approve or disapprove. You develop a hypothesis from a research question by changing the question into a statement.

Primarily applied in deductive research, it involves the use of scientific, mathematical, and sociological findings to agree to or write off an assumption.

Researchers use the null approach for statements they can disapprove. They take a hypothesis and add a “not” to it to make it a working null hypothesis.

A null hypothesis is quite common in scientific methods. In this case, you have to formulate a hypothesis, and then conduct an investigation to disapprove the statement.

If you can disapprove the statement, you develop another hypothesis and then repeat the process until you can’t disapprove the statement.

In other words, if a hypothesis is true, then it must have been repeatedly tested and verified.

The consensus among researchers is that, like research questions, a hypothesis should not only be clear and easy to understand but also have a definite focus, answerable, and relevant to your field of study. 

When is a Hypothesis Useful?

A hypothesis may be useful when or if:

  • There’s enough previous research on the topic
  • You want to test a specific model or a particular theory
  • You anticipate a likely outcome in advance 

The drawback to hypothesis as a scientific method is that it can hinder flexibility, or possibly blind a researcher not to see unanticipated results.

Research Question vs Hypothesis: Which One Should Come First 

Researchers use scientific methods to hone on different theories. So if the purpose of the research project were to analyze a concept, a scientific method would be necessary.

Such a case requires coming up with a research question first, followed by a scientific method.

Since a hypothesis is part of a research method, it will come after the research question.

Research Question vs Hypothesis: What’s the Difference? 

The following are the differences between a research question and a hypothesis.

We look at the differences in purpose and structure, writing, as well as conclusion. 

Research Questions vs Hypothesis: Some Useful Advice 

As much as there are differences between hypothesis and research questions, you have to state either one in the introduction and then repeat the same in the conclusion of your research paper.

Whichever element you opt to use, you should clearly demonstrate that you understand your topic, have achieved the goal of your research project, and not swayed a bit in your research process.

If it helps, start and conclude every chapter of your research project by providing additional information on how you’ve or will address the hypothesis or research question.

You should also include the aims and objectives of coming up with the research question or formulating the hypothesis. Doing so will go a long way to demonstrate that you have a strong focus on the research issue at hand. 

Research Questions vs Hypothesis: Conclusion 

If you need help with coming up with research questions, formulating a hypothesis, and completing your research paper writing , feel free to talk to us. 

About the author 

Antony W is a professional writer and coach at Help for Assessment. He spends countless hours every day researching and writing great content filled with expert advice on how to write engaging essays, research papers, and assignments.

  • Advanced search

CJS

Advanced Search

Research questions, hypotheses and objectives

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Figures & Tables

There is an increasing familiarity with the principles of evidence-based medicine in the surgical community. As surgeons become more aware of the hierarchy of evidence, grades of recommendations and the principles of critical appraisal, they develop an increasing familiarity with research design. Surgeons and clinicians are looking more and more to the literature and clinical trials to guide their practice; as such, it is becoming a responsibility of the clinical research community to attempt to answer questions that are not only well thought out but also clinically relevant. The development of the research question, including a supportive hypothesis and objectives, is a necessary key step in producing clinically relevant results to be used in evidence-based practice. A well-defined and specific research question is more likely to help guide us in making decisions about study design and population and subsequently what data will be collected and analyzed. 1

Objectives of this article

In this article, we discuss important considerations in the development of a research question and hypothesis and in defining objectives for research. By the end of this article, the reader will be able to appreciate the significance of constructing a good research question and developing hypotheses and research objectives for the successful design of a research study. The following article is divided into 3 sections: research question, research hypothesis and research objectives.

Research question

Interest in a particular topic usually begins the research process, but it is the familiarity with the subject that helps define an appropriate research question for a study. 1 Questions then arise out of a perceived knowledge deficit within a subject area or field of study. 2 Indeed, Haynes suggests that it is important to know “where the boundary between current knowledge and ignorance lies.” 1 The challenge in developing an appropriate research question is in determining which clinical uncertainties could or should be studied and also rationalizing the need for their investigation.

Increasing one’s knowledge about the subject of interest can be accomplished in many ways. Appropriate methods include systematically searching the literature, in-depth interviews and focus groups with patients (and proxies) and interviews with experts in the field. In addition, awareness of current trends and technological advances can assist with the development of research questions. 2 It is imperative to understand what has been studied about a topic to date in order to further the knowledge that has been previously gathered on a topic. Indeed, some granting institutions (e.g., Canadian Institute for Health Research) encourage applicants to conduct a systematic review of the available evidence if a recent review does not already exist and preferably a pilot or feasibility study before applying for a grant for a full trial.

In-depth knowledge about a subject may generate a number of questions. It then becomes necessary to ask whether these questions can be answered through one study or if more than one study needed. 1 Additional research questions can be developed, but several basic principles should be taken into consideration. 1 All questions, primary and secondary, should be developed at the beginning and planning stages of a study. Any additional questions should never compromise the primary question because it is the primary research question that forms the basis of the hypothesis and study objectives. It must be kept in mind that within the scope of one study, the presence of a number of research questions will affect and potentially increase the complexity of both the study design and subsequent statistical analyses, not to mention the actual feasibility of answering every question. 1 A sensible strategy is to establish a single primary research question around which to focus the study plan. 3 In a study, the primary research question should be clearly stated at the end of the introduction of the grant proposal, and it usually specifies the population to be studied, the intervention to be implemented and other circumstantial factors. 4

Hulley and colleagues 2 have suggested the use of the FINER criteria in the development of a good research question ( Box 1 ). The FINER criteria highlight useful points that may increase the chances of developing a successful research project. A good research question should specify the population of interest, be of interest to the scientific community and potentially to the public, have clinical relevance and further current knowledge in the field (and of course be compliant with the standards of ethical boards and national research standards).

FINER criteria for a good research question

Feasible
Interesting
Novel
Ethical
Relevant

Adapted with permission from Wolters Kluwer Health. 2

Whereas the FINER criteria outline the important aspects of the question in general, a useful format to use in the development of a specific research question is the PICO format — consider the population (P) of interest, the intervention (I) being studied, the comparison (C) group (or to what is the intervention being compared) and the outcome of interest (O). 3 , 5 , 6 Often timing (T) is added to PICO ( Box 2 ) — that is, “Over what time frame will the study take place?” 1 The PICOT approach helps generate a question that aids in constructing the framework of the study and subsequently in protocol development by alluding to the inclusion and exclusion criteria and identifying the groups of patients to be included. Knowing the specific population of interest, intervention (and comparator) and outcome of interest may also help the researcher identify an appropriate outcome measurement tool. 7 The more defined the population of interest, and thus the more stringent the inclusion and exclusion criteria, the greater the effect on the interpretation and subsequent applicability and generalizability of the research findings. 1 , 2 A restricted study population (and exclusion criteria) may limit bias and increase the internal validity of the study; however, this approach will limit external validity of the study and, thus, the generalizability of the findings to the practical clinical setting. Conversely, a broadly defined study population and inclusion criteria may be representative of practical clinical practice but may increase bias and reduce the internal validity of the study.

PICOT criteria 1

Population (patients)
Intervention (for intervention studies only)
Comparison group
Outcome of interest
Time

A poorly devised research question may affect the choice of study design, potentially lead to futile situations and, thus, hamper the chance of determining anything of clinical significance, which will then affect the potential for publication. Without devoting appropriate resources to developing the research question, the quality of the study and subsequent results may be compromised. During the initial stages of any research study, it is therefore imperative to formulate a research question that is both clinically relevant and answerable.

Research hypothesis

The primary research question should be driven by the hypothesis rather than the data. 1 , 2 That is, the research question and hypothesis should be developed before the start of the study. This sounds intuitive; however, if we take, for example, a database of information, it is potentially possible to perform multiple statistical comparisons of groups within the database to find a statistically significant association. This could then lead one to work backward from the data and develop the “question.” This is counterintuitive to the process because the question is asked specifically to then find the answer, thus collecting data along the way (i.e., in a prospective manner). Multiple statistical testing of associations from data previously collected could potentially lead to spuriously positive findings of association through chance alone. 2 Therefore, a good hypothesis must be based on a good research question at the start of a trial and, indeed, drive data collection for the study.

The research or clinical hypothesis is developed from the research question and then the main elements of the study — sampling strategy, intervention (if applicable), comparison and outcome variables — are summarized in a form that establishes the basis for testing, statistical and ultimately clinical significance. 3 For example, in a research study comparing computer-assisted acetabular component insertion versus freehand acetabular component placement in patients in need of total hip arthroplasty, the experimental group would be computer-assisted insertion and the control/conventional group would be free-hand placement. The investigative team would first state a research hypothesis. This could be expressed as a single outcome (e.g., computer-assisted acetabular component placement leads to improved functional outcome) or potentially as a complex/composite outcome; that is, more than one outcome (e.g., computer-assisted acetabular component placement leads to both improved radiographic cup placement and improved functional outcome).

However, when formally testing statistical significance, the hypothesis should be stated as a “null” hypothesis. 2 The purpose of hypothesis testing is to make an inference about the population of interest on the basis of a random sample taken from that population. The null hypothesis for the preceding research hypothesis then would be that there is no difference in mean functional outcome between the computer-assisted insertion and free-hand placement techniques. After forming the null hypothesis, the researchers would form an alternate hypothesis stating the nature of the difference, if it should appear. The alternate hypothesis would be that there is a difference in mean functional outcome between these techniques. At the end of the study, the null hypothesis is then tested statistically. If the findings of the study are not statistically significant (i.e., there is no difference in functional outcome between the groups in a statistical sense), we cannot reject the null hypothesis, whereas if the findings were significant, we can reject the null hypothesis and accept the alternate hypothesis (i.e., there is a difference in mean functional outcome between the study groups), errors in testing notwithstanding. In other words, hypothesis testing confirms or refutes the statement that the observed findings did not occur by chance alone but rather occurred because there was a true difference in outcomes between these surgical procedures. The concept of statistical hypothesis testing is complex, and the details are beyond the scope of this article.

Another important concept inherent in hypothesis testing is whether the hypotheses will be 1-sided or 2-sided. A 2-sided hypothesis states that there is a difference between the experimental group and the control group, but it does not specify in advance the expected direction of the difference. For example, we asked whether there is there an improvement in outcomes with computer-assisted surgery or whether the outcomes worse with computer-assisted surgery. We presented a 2-sided test in the above example because we did not specify the direction of the difference. A 1-sided hypothesis states a specific direction (e.g., there is an improvement in outcomes with computer-assisted surgery). A 2-sided hypothesis should be used unless there is a good justification for using a 1-sided hypothesis. As Bland and Atlman 8 stated, “One-sided hypothesis testing should never be used as a device to make a conventionally nonsignificant difference significant.”

The research hypothesis should be stated at the beginning of the study to guide the objectives for research. Whereas the investigators may state the hypothesis as being 1-sided (there is an improvement with treatment), the study and investigators must adhere to the concept of clinical equipoise. According to this principle, a clinical (or surgical) trial is ethical only if the expert community is uncertain about the relative therapeutic merits of the experimental and control groups being evaluated. 9 It means there must exist an honest and professional disagreement among expert clinicians about the preferred treatment. 9

Designing a research hypothesis is supported by a good research question and will influence the type of research design for the study. Acting on the principles of appropriate hypothesis development, the study can then confidently proceed to the development of the research objective.

Research objective

The primary objective should be coupled with the hypothesis of the study. Study objectives define the specific aims of the study and should be clearly stated in the introduction of the research protocol. 7 From our previous example and using the investigative hypothesis that there is a difference in functional outcomes between computer-assisted acetabular component placement and free-hand placement, the primary objective can be stated as follows: this study will compare the functional outcomes of computer-assisted acetabular component insertion versus free-hand placement in patients undergoing total hip arthroplasty. Note that the study objective is an active statement about how the study is going to answer the specific research question. Objectives can (and often do) state exactly which outcome measures are going to be used within their statements. They are important because they not only help guide the development of the protocol and design of study but also play a role in sample size calculations and determining the power of the study. 7 These concepts will be discussed in other articles in this series.

From the surgeon’s point of view, it is important for the study objectives to be focused on outcomes that are important to patients and clinically relevant. For example, the most methodologically sound randomized controlled trial comparing 2 techniques of distal radial fixation would have little or no clinical impact if the primary objective was to determine the effect of treatment A as compared to treatment B on intraoperative fluoroscopy time. However, if the objective was to determine the effect of treatment A as compared to treatment B on patient functional outcome at 1 year, this would have a much more significant impact on clinical decision-making. Second, more meaningful surgeon–patient discussions could ensue, incorporating patient values and preferences with the results from this study. 6 , 7 It is the precise objective and what the investigator is trying to measure that is of clinical relevance in the practical setting.

The following is an example from the literature about the relation between the research question, hypothesis and study objectives:

Study: Warden SJ, Metcalf BR, Kiss ZS, et al. Low-intensity pulsed ultrasound for chronic patellar tendinopathy: a randomized, double-blind, placebo-controlled trial. Rheumatology 2008;47:467–71.

Research question: How does low-intensity pulsed ultrasound (LIPUS) compare with a placebo device in managing the symptoms of skeletally mature patients with patellar tendinopathy?

Research hypothesis: Pain levels are reduced in patients who receive daily active-LIPUS (treatment) for 12 weeks compared with individuals who receive inactive-LIPUS (placebo).

Objective: To investigate the clinical efficacy of LIPUS in the management of patellar tendinopathy symptoms.

The development of the research question is the most important aspect of a research project. A research project can fail if the objectives and hypothesis are poorly focused and underdeveloped. Useful tips for surgical researchers are provided in Box 3 . Designing and developing an appropriate and relevant research question, hypothesis and objectives can be a difficult task. The critical appraisal of the research question used in a study is vital to the application of the findings to clinical practice. Focusing resources, time and dedication to these 3 very important tasks will help to guide a successful research project, influence interpretation of the results and affect future publication efforts.

Tips for developing research questions, hypotheses and objectives for research studies

Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.

Learn about current trends and technological advances on the topic.

Seek careful input from experts, mentors, colleagues and collaborators to refine your research question as this will aid in developing the research question and guide the research study.

Use the FINER criteria in the development of the research question.

Ensure that the research question follows PICOT format.

Develop a research hypothesis from the research question.

Develop clear and well-defined primary and secondary (if needed) objectives.

Ensure that the research question and objectives are answerable, feasible and clinically relevant.

FINER = feasible, interesting, novel, ethical, relevant; PICOT = population (patients), intervention (for intervention studies only), comparison group, outcome of interest, time.

Competing interests: No funding was received in preparation of this paper. Dr. Bhandari was funded, in part, by a Canada Research Chair, McMaster University.

  • Accepted January 27, 2009.
  • Brian Haynes R
  • Cummings S ,
  • Browner W ,
  • Sackett D ,
  • Strauss S ,
  • Richardson W ,
  • Fisher CG ,
  • Haynes RB ,
  • Sackett DL ,
  • Guyatt GH ,

In this issue

Canadian Journal of Surgery: 53 (4)

  • Table of Contents
  • Index by author

Article tools

Thank you for your interest in spreading the word on CJS.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager

Twitter logo

  • Tweet Widget
  • Facebook Like

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • How to Conduct a Randomized Controlled Trial
  • Formulating the Research Question and Framing the Hypothesis

Similar Articles

13. Objectives Clearly describe the research question, research objectives and, where appropriate, specific hypotheses being tested. explanation

Explaining the purpose of the study by describing the question(s) that the research addresses, allows readers to determine if the study is relevant to them. Readers can also assess the relevance of the model organism, procedures, outcomes measured, and analysis used.

Knowing if a study is exploratory or hypothesis-testing is critical to its interpretation. A typical exploratory study may measure multiple outcomes and look for patterns in the data, or relationships that can be used to generate hypotheses. It may also be a pilot study which aims to inform the design or feasibility of larger subsequent experiments. Exploratory research helps researchers to design hypothesis-testing experiments, by choosing what variables or outcome measures to focus on in subsequent studies.

Testing a specific hypothesis has implications for both the study design and the data analysis [ 1,2 ]. For example, an experiment designed to detect a hypothesised effect will likely need to be analysed with inferential statistics, and a statistical estimation of the sample size will need to be performed a priori (see item 2 – Sample size ). Hypothesis-testing studies also have a pre-defined primary outcome measure, which is used to assess the evidence in support of the specific research question (see item 6 – Outcome measures ).

In contrast, exploratory research investigates many possible effects, and is likely to yield more false positive results because some will be positive by chance. Thus results from well-designed hypothesis-testing studies provide stronger evidence than those from exploratory or descriptive studies. Independent replication and meta-analysis can further increase the confidence in conclusions.

Clearly outline the objective(s) of the study, including whether it is hypothesis-testing or exploratory, or if it includes research of both types. Hypothesis-testing studies may collect additional information for exploratory purposes, it is important to distinguish which hypotheses were prespecified and which originated after data inspection, especially when reporting unanticipated effects or outcomes that were not part of the original study design.

  • Festing MF and Altman DG (2002). Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR journal . http://www.ncbi.nlm.nih.gov/pubmed/12391400
  • Kimmelman J, Mogil JS and Dirnagl U (2014). Distinguishing between exploratory and confirmatory preclinical research will improve translation. PLoS Biol . doi: 10.1371/journal.pbio.1001863

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

The PMC website is updating on October 15, 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.14(9); 2022 Sep

Logo of cureus

Research Question, Objectives, and Endpoints in Clinical and Oncological Research: A Comprehensive Review

Addanki purna singh.

1 Physiology, Saint James School of Medicine, The Quarter, AIA

Praveen R Shahapur

2 Microbiology, Bijapur Lingayat District Educational Association (BLDE, Deemed to be University) Shri B.M. Patil Medical College, Vijayapur, IND

Sabitha Vadakedath

3 Biochemistry, Prathima Institute of Medical Sciences, Karimnagar, IND

Vallab Ganesh Bharadwaj

4 Microbiology, Trichy Sri Ramasamy Memorial (SRM) Medical College Hospital & Research Centre, Tiruchirapalli, IND

Dr Pranay Kumar

5 Anatomy, Prathima Institute of Medical Sciences, Karimnagar , IND

Venkata BharatKumar Pinnelli

6 Biochemistry, Vydehi Institute of Medical Science & Research Center, Bangalore, IND

Vikram Godishala

7 Biotechnology, Ganapathy Degree College, Parkal, IND

Venkataramana Kandi

8 Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND

Clinical research is a systematic process of conducting research work to find solutions for human health-related problems. It is applied to understand the disease process and assist in the diagnosis, treatment, and prevention. Currently, we are experiencing global unrest caused by the coronavirus disease (COVID-19) pandemic. The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been responsible for the deaths of more than 50 million people worldwide. Also, it has resulted in severe morbidity among the affected population. The cause of such a huge amount of influence on human health by the pandemic was the unavailability of drugs and therapeutic interventions to treat and manage the disease. Cancer is a disease condition wherein the normal cell function is deranged, and the cells multiply in an uncontrolled manner. Based on recent reports by the World Health Organization (WHO), cancer is the second leading cause of death globally. Moreover, the rates of cancers have shown an increasing trend in the past decade. Therefore, it is essential to improve the understanding concerning clinical research to address the health concerns of humans. In this review, we comprehensively discuss critical aspects of clinical research that include the research question, research objectives, patient-reported outcome measures (PROMs), intention-to-treat and per-protocol analysis, and endpoints in clinical and oncological research.

Introduction and background

Successful clinical research can be conducted by well-trained researchers. Other essential factors of clinical research include framing a research question and relevant objectives, documenting, and recording research outcomes, and outcome measures, sample size, and research methodology including the type of randomization, among others [ 1 , 2 ].

Clinicians/physicians and surgeons are increasingly dependent on the clinical research results for improved management of patients. Therefore, researchers need to work upon a relevant research question/hypothesis and specific objectives that may potentially deliver results that can be translated into practice in the form of evidence-based medicine [ 3 ].

Essential elements that facilitate a researcher to frame a research question are in-depth knowledge of the subject and identifying possible gaps. Moreover, the feasible, interesting, novel, ethical, relevant (FINER) approach and the population of interest/target group, intervention, comparison group, outcome of interest, and time of study (PICOT) approach were previously suggested for researchers to be able to frame appropriate research questions [ 4 ].

Moreover, the research objectives should be framed by the researcher before the initiation of the study: a specific, measurable, achievable, realistic, and time-defined (SMART) approach is utilized to devise the objectives based on the research question. It is preferable to have a single primary objective whereas the secondary objectives can be multiple and may be dependent on the amount of data collected. The objectives must be simple and specific and must reflect the research question [ 5 , 6 ].

Given the evolution and the increasing requirement for emergency care, clinical researchers are advised to adopt a population, exposure, comparator, outcome (PECO)/ population, exposure, comparator, outcome (PICO) approach to construct the study objectives and carry out quantitative research. In contrast, qualitative research which is carried out to understand, explore, and examine requires the researcher to understand what and why the research is undertaken along with the roles of the researcher, research process/steps, and participants [ 7 , 8 ].

Since clinical research is envisaged in finding a solution to a health problem, choosing the appropriate endpoint requires special focus. The endpoints are the specific measures of the outcomes of an intervention and therefore they must be chosen judiciously [ 9 ]. The endpoints in a clinical trial can be single or multiple in numbers. The primary endpoints assess the major research question, and the secondary endpoints may assess alternative research questions. Moreover, there are other endpoints like surrogate endpoints, intermediate clinical endpoints, clinical outcomes, clinical outcome assessments, clinician-reported outcomes, observer-reported outcomes, patient-reported outcomes, and performance outcomes [ 10 ] (Figure ​ (Figure1 1 ).

An external file that holds a picture, illustration, etc.
Object name is cureus-0014-00000029575-i01.jpg

This figure has been created by the authors

The clinical trial endpoints are essentially the indicators of the power of the interventions either to cure or control the disease progression. Due to the cost and the tedious nature of the clinical trials, it is suggested that multiple-arm trials that include more than one primary endpoint be used [ 11 ]. Integration of the primary endpoints with the patient prioritized endpoints was recently suggested especially among cardiovascular disease patients [ 12 ]. Cancer research is an increasingly evolving area because of the unavailability of therapeutic interventions for some malignancies like breast and lung cancer, among others [ 13 , 14 ]. Moreover, the drugs available for treating cancers are plagued by adverse reactions. However, since most cancer clinical trials apply overall survival as the preferred and gold standard clinical endpoint, it is difficult for the trial operators to sustain the costs associated with the long lengths of the study that follow-up patients for years to assess the clinical outcomes after interventions. In this study, we comprehensively review the essential elements of clinical research that include the research question, hypothesis, and clinical and oncological endpoints.

Research question

A research question can alternatively be called the aim of the researcher. It describes the problem that the researcher intends to solve vis-à-vis finding an answer to a question. A research question is the first step toward any kind of research process that includes both qualitative as well as quantitative research. Since the research question predicts the core of any project, it must be carefully framed. The essential elements to consider while determining a research question are feasibility, preciseness, and relevance to the real world.

A person interested in a broad subject area must first complete extensive reading of the available literature. This enables the researcher to find out the strengths, loopholes, deficiencies, and missing links that can form the basis for framing a research question. The problem to which a solution needs to be found and the potential causes/reasons for the problems help a researcher frame the research question.

The research questions should be framed in such a way that the researcher will find several possibilities as solutions to the research question rather than a simple yes or no. Among the various factors that determine the power of a research question, the most essential ones include the ability of research questions to find complex answers, focussed, and the specific nature of the question. The research questions must be answerable, debatable, and researchable [ 15 , 16 ]. Research questions differ from the type of research method selected by the researcher as shown in Figure ​ Figure2 2 .

An external file that holds a picture, illustration, etc.
Object name is cureus-0014-00000029575-i02.jpg

FINER: Feasible, interesting, novel, ethical, relevant; PICOT: Population of interest/target group, intervention, comparison group, outcome of interest, time of study; PECO: Population, exposure, comparator, outcome; PICO: Population, intervention, comparator, outcome; SMART: Specific, measurable, achievable, realistic, and time defined; COVID-19: Coronavirus disease-19

Hypothesis testing

A hypothesis is an assumption by the researcher that the answers drawn with reference to the research question are either true or false. The researcher performs hypothesis testing by using appropriate statistical methods on the data collected from the research.

The hypothesis is an assumption/observation of the researcher regarding the outcome of potential research that is being conducted. There are two types of hypotheses, the null hypothesis (H0), wherein, the researcher assumes that there is no relation/causality/effect. The alternate hypothesis (HA) is when the researcher believes/assumes that there is a relationship/effect [ 17 ]. Basically, there are two types of errors while testing a hypothesis. Type I error (α) (false positive) is when the researcher rejects the null hypothesis although it is true. Type II error (β) (false negative) is when the researcher accepts the null hypothesis although it is false.

The errors in hypothesis testing occur because of bias among many other reasons in the study. Many studies set the power of the studies to essentially rule out errors. Researchers consider 5% chance (α=0.05; range: 0.01-0.10) of error in case of a type I error and up to 20% chance (β =0.20; range: 0.05-0.20) in case of type II errors [ 18 ]. The characteristics of a good hypothesis are simple and specific. Moreover, it must be decided by the researcher prior to initiating the study and while writing the study proposal/protocol [ 18 ]. 

Hypothesis testing means sample testing, wherein the information gathered after sample testing is inferred after applying statistical methods. A hypothesis may be generated in several ways that include observations, anatomical features, and other physiological facts observed by physicians [ 19 ]. Hypothesis testing also can be performed by using appropriate statistical methods. The testing of the hypothesis is done to prove the null hypothesis or otherwise use the sample data.

As a researcher, one must assume a null hypothesis, or believe that the alternate hypothesis holds good in the sample selected. After the collection of data, analysis, and interpretation, the researcher either accepts or rejects the hypothesis. Therefore, it must be noted that while a study is initiated, there is only a 50% chance of either the null hypothesis or the alternative hypothesis coming true [ 20 ].

The step-by-step process of hypothesis testing starts with an assumption, criteria for interpretation of results, analysis, and conclusion. The level of significance (95% free of type I error and 80% free of type II error) also is decided initially to ensure that the study results are replicated by the other researchers [ 21 ].

Objectives in clinical research

The most significant objective in clinical research is to find out whether the intervention attempted was successful in curing the disease/medical condition. It is important to understand the fact that research planning greatly influences the research results, and no statistical method can improve the results but a well-designed and conducted clinical research [ 22 ].

The primary objective of clinical research studies includes improvement in patient management. Most clinical research studies are aimed at discovering a new/novel drug to treat a medical condition that presently has no specific treatment, or the available drugs are not particularly effective in curing the disease.

The objectives are formed to address the five 'W's, namely who (children, women, etc.); what (the medical condition/disease/infection); why (causes of the medical condition/disease/infection); when (conditions responsible for the medical condition/disease/infection); and where (geographical aspects of the medical condition/disease/infection) as shown in Figure ​ Figure3 3 .

An external file that holds a picture, illustration, etc.
Object name is cureus-0014-00000029575-i03.jpg

Clinical research can be of several types including primary research and secondary research. Also, the research can be observational (no intervention) and experimental/interventional. Clearly demarcated/framed research objectives are essential to improve the clarity, specificity, and focus of the clinical trial [ 23 ].

Patient-reported outcome measures (PROMs)

While conducting clinical research the investigators collect trial data through clinical observations, laboratory monitoring, and caregiver feedback. There are some aspects of the data like the patient-reported outcomes (PROs) that can be reported by the subject/patient him/herself either in the form of a questionnaire or through interviews. Such data collected from the patients in their words is termed PROMs. The PROMs include a global impression of the trial, the functional status and well-being, symptoms, health-related quality of life (HRQL), treatment compliance, and satisfaction. 

The questionnaire used to collect the PROs is called a PRO instrument. The data collected through this instrument is used to establish the benefit-to-risk ratio of the clinical trial drug. The PRO instruments can be designed as generic (contains a wide variety of health-related aspects and therefore can be used among different patient types), disease-specific (rheumatoid arthritis, psoriasis, etc.), dimension-specific (physical activity, cognitive levels, etc.), region/site-specific, individualized, utility measures, and summary items [ 24 ]. The patient-reported experience measure (PREMs), and the patient and public involvement programs are used to collect the patient’s feedback that invariably helps in improving the quality of healthcare facilities [ 25 ].

It is important to develop PROM tools/instruments for various diseases, especially among children as noted by a recent research report. This study suggested that a suitable PROM instrument is required to measure the status of disease (wheezing/asthma/respiratory diseases) and its control among preschool children [ 26 ].

Intention to treat and per-protocol analysis

The intention to treat (ITT) analysis is used when all the study subject’s data is analyzed including all those participants who were enrolled in the study, and those who have deviated (not signed the informed consent, discontinued from the study, not taken the trial drug as suggested). The ITT studies minimize the bias and ensure both the study and the control groups are compared.

The per-protocol (PP) analysis usually includes the data from only those subjects who have remained till the study period ended, have taken the drugs as suggested by the protocol, and was available for regular follow-up. The disadvantages of PP are potential disturbances in the balance between the study groups (randomized/placebo/control), a lower number of study participants due to the exclusion of dropouts, and non-compliant subjects. Therefore, the results from the PPA studies could be biased [ 27 ].

The randomized clinical trial (RCT) studies of superiority type use ITT analyses as against the non-inferiority and equivalence studies wherein an ITT approach may favor the study hypothesis.

According to the Committee for Proprietary Medicinal Products (CPMP), and the Consolidated Standards for reporting trials (CONSORT), both the ITT and PP analyses must be assessed to effectively interpret the results of the clinical trial including the safety and efficacy [ 28 ]. 

Endpoints in clinical research

The endpoints in clinical research determine whether the clinical trial has been successful in finding out if an intervention/drug has proven beneficial in improving the survival and quality of life of the patient. The endpoints determine the validity of the clinical trial results. There are different types of endpoints like primary endpoints, secondary endpoints, tertiary endpoints, surrogate endpoints (laboratory measurements, physical signs), and others [ 9 ].

The clinical trial endpoints could be subjective and objective in nature. The objective endpoints are survival, disease progression/remission, and the development of disease/condition. The subjective endpoints include symptoms, quality of life, and other patient-reported outcomes [ 29 , 30 ]. The significance of endpoints in clinical trials and the importance of choosing appropriate endpoints were previously reported. This study suggested that the primary endpoints help in deriving the sample size and confirm the generalizability of the results. The secondary and surrogate endpoints could be used while conducting the clinical research without ignoring the aspects of the quality of life of the subjects [ 31 ]. 

Endpoints in oncology clinical trials

Cancer clinical trials assume increased significance because the drugs developed against the cancer are intended to increase the survival of the patients. Also, anti-cancer agents are associated with several side effects. Therefore, oncology trials include several endpoints, the primary being the overall survival, and the secondary endpoints include the assessment of other outcomes that indicate the quality of life (QoL), tumor-related endpoints, and others. The disadvantages of oncology clinical trials are the cost associated with the recruitment of a greater number of subjects and long-time follow-up of the patients [ 32 ].

Although primary endpoints are considered as most significant in oncological trials, a recent report stressed the importance of surrogate markers in assessing the efficacy of anti-cancer drugs [ 33 ]. 

The endpoints in oncology clinical trials, their applications, functions, and drawbacks are summarized in Table ​ Table1 1 .

EndpointApplicationsFunctionsDrawbacks
Overall survivalGold standard primary oncological endpointAssesses time from randomization to death, clinical benefit, easily measurable, gives definite results, and eliminates researcher biasNot effective in slowly progressing diseases, requires quite a high patient number, influenced by cross-over, subsequent therapies, and non-cancer deaths
Duration of clinical benefitPrimary endpointAssesses time from randomization to disease progression or death in patients who achieve a complete response, partial response, or stable disease for 24 weeks or longerNeeds disease-specific validation
Complete response                    A primary endpoint that can also be used as a surrogate endpointAssesses time from randomization to survival advantage associated with improved overall survival and prolonged event-free survival in specific treatment studiesNeeds disease-specific validation
Time to treatment failureA primary endpoint when used in conjunction with secondary endpointsAssesses the time from the initiation of chemotherapy treatment/intervention to its early discontinuationThe inclusion of older patients may affect the results
Health-related quality of lifePreferred as a secondary clinical endpointAssesses patient’s quality of life with respect to health status over time, can directly measure the patient’s benefitData may frequently be missing, and inadequate, the clinical relevance of exceedingly small changes is unknown and requires multiple analyses and validation
Progression-free survivalA surrogate marker for regular and accelerated approvalAssesses time from randomization until the first evidence of disease progression or death, requires a limited patient number, short follow-up period, objective and quantitative evaluation, cost-effective, and not influenced by crossovers or subsequent therapies  It cannot be statistically validated as a surrogate marker for survival, is not definitely measurable, is subject-dependent with a high risk of bias, definitions may differ between studies, and the time of evaluation needs to be balanced between treatment arms
Disease-free survivalA surrogate marker for regular and accelerated approvalAssesses time from randomization until evidence of disease recurrence, and requires limited patient number and short follow-upIt cannot be statistically validated as a surrogate marker for survival, not definitely measurable, and definitions may differ between studies
Objective response rateA surrogate marker for regular and accelerated approvalAssesses how a specific treatment impacts tumor burden in a patient with a history of solid tumors, needs to be evaluated in single-arm studies, much quicker evaluation as compared with survival studies, and requires much more limited patient numberBenefits cannot be measured directly, and detailed measurement of drug activity is unavailable
Duration of responseUsed as a surrogate markerAssesses time from randomization to disease progression or death in patients who achieve complete or partial responseNeeds disease-specific validation
Pathological complete responsePreferred as a surrogate markerAssesses time from randomization to absence of residual invasive cancer upon evaluation of the resected breast tissue and regional lymph nodesDisease-specific, especially in breast cancer
Disease control rateClinical benefit for survivalAssesses time from randomization to complete response, partial response, or stable diseaseCan exaggerate the anticancer effect of the therapy
Clinical benefit rateClinical benefit for survivalAssesses time from randomization to complete response, partial response, or at least six months of stable diseaseIt does not necessarily measure clinical benefit
Milestone survivalUsed as a surrogate endpoint/qualitative endpointAssesses time from randomization to survival probability at a given time pointRequires further validation
Time to progressionPreferred as a surrogate and not a primary endpointAssesses time from randomization to first evidence of disease progression and effectiveness of targeted therapyCan be adversely affected by patients’ disease characteristics
Event free survivalPreferred as a surrogate and as an alternative to the primary endpointAssesses time from randomization to disease progression, discontinuation of the treatment, and/or deathIt needs to be validated for each unique disease/tumor type, treatment, and stage of disease
Time to next treatmentPreferred as a surrogate endpoint for incurable diseasesFollows up the treatment response until the initiation of next-line therapyRequires validations for specific disease

Survival endpoints in oncology clinical trials

The survival endpoint considers the time from randomization to death. This type of follow-up (daily), although difficult to do, will remove bias associated with the investigator’s interpretation. The survival studies require large sample sizes and cross-over therapies act as confounding factors for survival. The survival studies consider patient benefit over drug toxicity. 

Apart from the overall survival, oncology clinical trials use alternative ways to assess the efficacy of the drugs by using other endpoints like progression-free survival [ 34 ]. Other endpoints suggested are biomarkers, disease-free survival, objective response rate, time to progression, complete response, partial response, minor response, time to treatment failure, time to next treatment, duration of clinical benefit, objective response rate, complete response, pathological complete response, disease control rate, clinical benefit rate, milestone survival, event-free survival, and QoL [ 35 ].

Endpoints in immunological diseases and infections

Autoimmune diseases are usually chronic conditions that arise due to the immunologic responses against the self. They are usually associated with hyper-reactivity of immune cells towards the host's own cells/tissue and can cause significant morbidity and mortality among affected people.

Autoimmune diseases are generally genetic in origin, but many such diseases are attributed to other factors such as infection, food, drugs, and other substances. Frequently occurring autoimmune diseases are rheumatoid arthritis, psoriasis, systemic lupus erythematosus (SLE), ulcerative colitis, Crohn’s disease, and multiple sclerosis, among others [ 36 ].

Clinical trials with respect to the development of drugs/medicine to treat autoimmune diseases take into consideration the therapeutic efficacy of the trial drug, no risk, and only benefit to the patients. Therefore, the selection of endpoints for clinical trials in immune diseases must consider all these factors to effectively assess the pharmacological value of the trial drugs. The endpoints for autoimmune hepatitis include remission, incomplete response, treatment failure, and drug toxicity [ 37 ].

The endpoint related to the infections includes the direct measurement of the number of microorganisms. Other endpoints include the measurement of physiological aspects impaired by the infecting microbe and the measurement of immune responses against the infectious agent. The endpoints of human immunodeficiency virus (HIV) infection includes HIV-ribonucleic acid (RNA) viral load, maintenance, improvement, and decline of the cluster of differentiation 4 (CD4)+ T lymphocyte cell counts, and others.

Composite endpoints

Clinical trial for drugs is assessed based on several endpoints that establish efficacy and allow regulatory authorities to decide on approving the drugs for human use. In most instances, the clinical trials apply primary endpoints whereas in recent times the surge in candidate drugs and the necessity for life-saving drugs had ushered in the use of alternative endpoints like the composite endpoints. The composite endpoints are instrumental in reducing the trial costs, minimizing the long follow-ups, and lower subject recruitments. Since the composite endpoints combine more than one outcome during the drug trial, it enables the investigators to understand the efficacy of the drug in a short period of time [ 38 ].

While using multiple endpoints, it is important to understand that each one is as important as the other and the statistical methods must be used to confirm the overall efficacy of the trial drug. The drawbacks of applying composite endpoints in clinical trials are the complexity of the methods, low transparency, including invalid indicators, and the possibility of misleading results and conclusions [ 39 ].

Because there is no specific recommendation as to how the composite endpoints need to be selected, evaluated, and analyzed, there exists a possibility of bias. In a recent report, an index to evaluate the bias attributable to composite outcomes (BACO) was applied and suggested. The BACO index <0, 0 to <1, and >1 indicated that the composite endpoints were inverted, underestimated, and overestimated, respectively. A BACO index of 1 indicates that the composite endpoint usage resulted in unbiased results [ 40 ]. The composite endpoint in a clinical trial means the use of multiple endpoints. For the drug trials for migraine, the composite endpoints include no pain for two hours, nausea after two hours, and photosensitivity after two hours. The clinical trials with vaccines could have more than 20 endpoints. Other trials with multiple endpoints include rheumatoid arthritis (4), acne (4), sleep disorders (6), primary biliary cirrhosis (4), and glaucoma (9).

Conclusions

The clinical research design must be carefully accomplished keeping in mind the financial and time constraints. The trial must be initiated to address a specific research question, which essentially requires the research group to carry out an extensive literature search and identify the knowledge gaps. The research hypothesis needs to be carefully designed to avoid errors. The researchers should ensure the inclusion of appropriate objectives that guarantee quality outcomes and clinical benefits. It is essential to include the PROMs along with the clinician, researcher, and observer reported outcomes to assess the benefit-to-risk ratio of the investigational drug and improve the quality of healthcare facilities, among others. The safety and efficacy of a clinical trial drug should be carefully interpreted based on the results obtained from the ITT and PP analyses. Moreover, a clinical trial should incorporate specific and relevant endpoints that ensure the efficacy or otherwise of the intervention. Cancer clinical trials are even more complex because the interventions could potentially be life-saving and therefore, the selection of endpoints becomes critical as discussed briefly in this review.

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

The authors have declared that no competing interests exist.

IMAGES

  1. How to Write a Strong Hypothesis in 6 Simple Steps

    were the research questions objectives or hypothesis (is) clearly stated

  2. PPT

    were the research questions objectives or hypothesis (is) clearly stated

  3. Research Hypothesis: Definition, Types, Examples and Quick Tips (2022)

    were the research questions objectives or hypothesis (is) clearly stated

  4. Difference Between Hypothesis and Research Question

    were the research questions objectives or hypothesis (is) clearly stated

  5. PPT

    were the research questions objectives or hypothesis (is) clearly stated

  6. PPT

    were the research questions objectives or hypothesis (is) clearly stated

VIDEO

  1. What, When, Why: Research Goals, Questions, and Hypotheses

  2. RESEARCH OBJECTIVES & HYPOTHESIS

  3. Research Questions, Hypotheses, Objectives: A Lecture in URDU ( اُردو میں لیکچر)

  4. Topic 2 Framing your Surgical Research Questions, Objectives and Hypothesis

  5. Research Hypothesis and its Types with examples /urdu/hindi

  6. Research Methods: Literature review

COMMENTS

  1. Research questions, hypotheses and objectives

    Study objectives define the specific aims of the study and should be clearly stated in the introduction of the research protocol. 7 From our previous example and using the investigative hypothesis that there is a difference in functional outcomes between computer-assisted acetabular component placement and free-hand placement, the primary ...

  2. Research Questions & Hypotheses

    The presence of multiple research questions in a study can complicate the design, statistical analysis, and feasibility. It's advisable to focus on a single primary research question for the study. The primary question, clearly stated at the end of a grant proposal's introduction, usually specifies the study population, intervention, and ...

  3. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  4. Research Questions, Objectives & Aims (+ Examples)

    T he research aims, objectives and research questions (collectively called the "golden thread") are arguably the most important thing you need to get right when you're crafting a research proposal, dissertation or thesis.We receive questions almost every day about this "holy trinity" of research and there's certainly a lot of confusion out there, so we've crafted this post to ...

  5. Research: Articulating Questions, Generating Hypotheses, and Choosing

    Articulating a clear and concise research question is fundamental to conducting a robust and useful research study. Although "getting stuck into" the data collection is the exciting part of research, this preparation stage is crucial. Clear and concise research questions are needed for a number of reasons. Initially, they are needed to ...

  6. PDF Research Questions and Hypotheses

    study) Describe the experiences (e.g., phenomenology) Report the stories (e.g., narrative research) Use these more exploratory verbs that are nondirectional rather than directional words that suggest quantitative research, such as "affect," "influence," "impact," "determine," "cause," and "relate.".

  7. How common are explicit research questions in journal articles?

    Purpose statements and research questions or hypotheses are interrelated elements of the research process. Research questions are interrogative statements that reflect the problem to be addressed, usually shaped by the goal or objectives of the study (Onwuegbuzie & Leech, 2006).For example, a healthcare article argued that "a good research paper addresses a specific research question.

  8. PDF Identifying a Research Problem and Question, and Searching Relevant

    Writing a Hypothesis A research hypothesis essentially is a declarative statement of how you expect the research to turn out. In a way, it is a possible answer to your research question. FIGURE 2.1 Characteristics of Good Research Questions ¾ Are specific. ¾ Are clear. ¾ Refer to the problem or phenomenon.

  9. What is the research question?

    A well-articulated research question will clearly define the hypothesis, the research rationale, and core elements of the study: the population, the intervention, the comparator, the outcome, the timing or duration of study, the setting, and the effect to be estimated. Clear definition of these elements will facilitate a research design that ...

  10. PDF Research questions, hypotheses and objectives

    Research questions, hypotheses and objectives T ... research question and hypothesis and in defining objectives for research. By the end of this article, the reader will be able to appreciate the significance of ... to focus the study plan.3In a study, the primary research question should be clearly stated at the end of the intro-

  11. Formulation of Research Question

    Abstract. Formulation of research question (RQ) is an essentiality before starting any research. It aims to explore an existing uncertainty in an area of concern and points to a need for deliberate investigation. It is, therefore, pertinent to formulate a good RQ. The present paper aims to discuss the process of formulation of RQ with stepwise ...

  12. PDF DEVELOPING HYPOTHESIS AND RESEARCH QUESTIONS

    RESEARCH QUESTIONS. Qualitative Approach. The use of Research Questions as opposed to objectives or hypothesis, is more frequent. Characteristics Use of words- what or how. Specify whether the study: discovers, seeks to understand, explores or describes the experiences. Use of non-directional wording in the question.

  13. Shaping the research question and hypothesis

    Contextualise the research question or hypothesis. The research question or hypothesis is part of your thesis core as it guides your own research, but it is usually stated in a lead-in section, such as the thesis introduction. Complete the activity below to learn how a research question or hypothesis can be contextualised.

  14. 7 Formulating Research Questions and Hypotheses

    7.2 Understanding Research Questions. Research questions are the foundation of any scholarly inquiry, guiding the direction and focus of the study. In mass communications research, where topics can range from analyzing media effects to understanding audience behaviors, formulating effective research questions is crucial for defining the scope and objectives of a study.

  15. Research Questions, Hypotheses and Objectives

    The primary objective of a study is paired with the hypothesis of the study, and should be clearly stated in the introduction of the research protocol. Objectives usually state exactly the outcome measures that are going to be used within their statements. Strong verbs like determine, measure, assess, evaluate, identify, examine, investigate ...

  16. What Are Research Objectives and How to Write Them (with Examples)

    Brainstorming your objectives. State your main research question clearly and concisely. Describe the ultimate goal of your study, which is similar to the research question but states the intended outcomes more definitively. Divide this main goal into subcategories to develop your objectives. Limit the number of objectives (1-2 general; 3-4 ...

  17. A well-formulated research question: The foundation stone of good

    A well-formulated research question is the foundation stone of any research. It guides the researcher in determining the study's objectives, planning the right methodology, collecting and analysing data, and drawing inferences. A research question determines the scope and direction of the investigation, ensuring that the study stays focused ...

  18. Research Purpose, Hypotheses, and Questions

    This entry was posted in Research and tagged research on December 14, 2014. Four key components to a research project are the purpose statement, research questions, hypotheses, and research objectives. In this post, we will define each of these. Definitions The purpose statement provides the reader with the overall focus and direction of a study.

  19. Research Questions vs Hypothesis: What's The Difference?

    A hypothesis is a statement you can approve or disapprove. You develop a hypothesis from a research question by changing the question into a statement. Primarily applied in deductive research, it involves the use of scientific, mathematical, and sociological findings to agree to or write off an assumption. Researchers use the null approach for ...

  20. Formulating a good research question: Pearls and pitfalls

    The process of formulating a good research question can be challenging and frustrating. While a comprehensive literature review is compulsory, the researcher usually encounters methodological difficulties in the conduct of the study, particularly if the primary study question has not been adequately selected in accordance with the clinical dilemma that needs to be addressed.

  21. Research questions, hypotheses and objectives

    Study objectives define the specific aims of the study and should be clearly stated in the introduction of the research protocol.7 From our previous example and using the investigative hypothesis that there is a difference in functional outcomes between computer-assisted acetabular component placement and free-hand placement, the primary ...

  22. 13. Objectives

    13 Clearly describe the research question, research objectives and, where appropriate, specific hypotheses being tested. Explanation. Examples. Explaining the purpose of the study by describing the question (s) that the research addresses, allows readers to determine if the study is relevant to them. Readers can also assess the relevance of the ...

  23. Research Question, Objectives, and Endpoints in Clinical and

    Introduction and background. Successful clinical research can be conducted by well-trained researchers. Other essential factors of clinical research include framing a research question and relevant objectives, documenting, and recording research outcomes, and outcome measures, sample size, and research methodology including the type of randomization, among others [1,2].