Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Independent vs. Dependent Variables | Definition & Examples

Independent vs. Dependent Variables | Definition & Examples

Published on February 3, 2022 by Pritha Bhandari . Revised on June 22, 2023.

In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores.

Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  • The independent variable is the cause. Its value is independent of other variables in your study.
  • The dependent variable is the effect. Its value depends on changes in the independent variable.

Your independent variable is the temperature of the room. You vary the room temperature by making it cooler for half the participants, and warmer for the other half.

Table of contents

What is an independent variable, types of independent variables, what is a dependent variable, identifying independent vs. dependent variables, independent and dependent variables in research, visualizing independent and dependent variables, other interesting articles, frequently asked questions about independent and dependent variables.

An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

These terms are especially used in statistics , where you estimate the extent to which an independent variable change can explain or predict changes in the dependent variable.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

There are two main types of independent variables.

  • Experimental independent variables can be directly manipulated by researchers.
  • Subject variables cannot be manipulated by researchers, but they can be used to group research subjects categorically.

Experimental variables

In experiments, you manipulate independent variables directly to see how they affect your dependent variable. The independent variable is usually applied at different levels to see how the outcomes differ.

You can apply just two levels in order to find out if an independent variable has an effect at all.

You can also apply multiple levels to find out how the independent variable affects the dependent variable.

You have three independent variable levels, and each group gets a different level of treatment.

You randomly assign your patients to one of the three groups:

  • A low-dose experimental group
  • A high-dose experimental group
  • A placebo group (to research a possible placebo effect )

Independent and dependent variables

A true experiment requires you to randomly assign different levels of an independent variable to your participants.

Random assignment helps you control participant characteristics, so that they don’t affect your experimental results. This helps you to have confidence that your dependent variable results come solely from the independent variable manipulation.

Subject variables

Subject variables are characteristics that vary across participants, and they can’t be manipulated by researchers. For example, gender identity, ethnicity, race, income, and education are all important subject variables that social researchers treat as independent variables.

It’s not possible to randomly assign these to participants, since these are characteristics of already existing groups. Instead, you can create a research design where you compare the outcomes of groups of participants with characteristics. This is a quasi-experimental design because there’s no random assignment. Note that any research methods that use non-random assignment are at risk for research biases like selection bias and sampling bias .

Your independent variable is a subject variable, namely the gender identity of the participants. You have three groups: men, women and other.

Your dependent variable is the brain activity response to hearing infant cries. You record brain activity with fMRI scans when participants hear infant cries without their awareness.

A dependent variable is the variable that changes as a result of the independent variable manipulation. It’s the outcome you’re interested in measuring, and it “depends” on your independent variable.

In statistics , dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

The dependent variable is what you record after you’ve manipulated the independent variable. You use this measurement data to check whether and to what extent your independent variable influences the dependent variable by conducting statistical analyses.

Based on your findings, you can estimate the degree to which your independent variable variation drives changes in your dependent variable. You can also predict how much your dependent variable will change as a result of variation in the independent variable.

Distinguishing between independent and dependent variables can be tricky when designing a complex study or reading an academic research paper .

A dependent variable from one study can be the independent variable in another study, so it’s important to pay attention to research design .

Here are some tips for identifying each variable type.

Recognizing independent variables

Use this list of questions to check whether you’re dealing with an independent variable:

  • Is the variable manipulated, controlled, or used as a subject grouping method by the researcher?
  • Does this variable come before the other variable in time?
  • Is the researcher trying to understand whether or how this variable affects another variable?

Recognizing dependent variables

Check whether you’re dealing with a dependent variable:

  • Is this variable measured as an outcome of the study?
  • Is this variable dependent on another variable in the study?
  • Does this variable get measured only after other variables are altered?

Prevent plagiarism. Run a free check.

Independent and dependent variables are generally used in experimental and quasi-experimental research.

Here are some examples of research questions and corresponding independent and dependent variables.

Research question Independent variable Dependent variable(s)
Do tomatoes grow fastest under fluorescent, incandescent, or natural light?
What is the effect of intermittent fasting on blood sugar levels?
Is medical marijuana effective for pain reduction in people with chronic pain?
To what extent does remote working increase job satisfaction?

For experimental data, you analyze your results by generating descriptive statistics and visualizing your findings. Then, you select an appropriate statistical test to test your hypothesis .

The type of test is determined by:

  • your variable types
  • level of measurement
  • number of independent variable levels.

You’ll often use t tests or ANOVAs to analyze your data and answer your research questions.

In quantitative research , it’s good practice to use charts or graphs to visualize the results of studies. Generally, the independent variable goes on the x -axis (horizontal) and the dependent variable on the y -axis (vertical).

The type of visualization you use depends on the variable types in your research questions:

  • A bar chart is ideal when you have a categorical independent variable.
  • A scatter plot or line graph is best when your independent and dependent variables are both quantitative.

To inspect your data, you place your independent variable of treatment level on the x -axis and the dependent variable of blood pressure on the y -axis.

You plot bars for each treatment group before and after the treatment to show the difference in blood pressure.

independent and dependent variables

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Independent vs. Dependent Variables | Definition & Examples. Scribbr. Retrieved September 11, 2024, from https://www.scribbr.com/methodology/independent-and-dependent-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, explanatory and response variables | definitions & examples, confounding variables | definition, examples & controls, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Types of Variables in Research | Definitions & Examples

Types of Variables in Research | Definitions & Examples

Published on 19 September 2022 by Rebecca Bevans . Revised on 28 November 2022.

In statistical research, a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good experimental design .

You need to know which types of variables you are working with in order to choose appropriate statistical tests and interpret the results of your study.

You can usually identify the type of variable by asking two questions:

  • What type of data does the variable contain?
  • What part of the experiment does the variable represent?

Table of contents

Types of data: quantitative vs categorical variables, parts of the experiment: independent vs dependent variables, other common types of variables, frequently asked questions about variables.

Data is a specific measurement of a variable – it is the value you record in your data sheet. Data is generally divided into two categories:

  • Quantitative data represents amounts.
  • Categorical data represents groupings.

A variable that contains quantitative data is a quantitative variable ; a variable that contains categorical data is a categorical variable . Each of these types of variable can be broken down into further types.

Quantitative variables

When you collect quantitative data, the numbers you record represent real amounts that can be added, subtracted, divided, etc. There are two types of quantitative variables: discrete and continuous .

Discrete vs continuous variables
Type of variable What does the data represent? Examples
Discrete variables (aka integer variables) Counts of individual items or values.
Continuous variables (aka ratio variables) Measurements of continuous or non-finite values.

Categorical variables

Categorical variables represent groupings of some kind. They are sometimes recorded as numbers, but the numbers represent categories rather than actual amounts of things.

There are three types of categorical variables: binary , nominal , and ordinal variables.

Binary vs nominal vs ordinal variables
Type of variable What does the data represent? Examples
Binary variables (aka dichotomous variables) Yes/no outcomes.
Nominal variables Groups with no rank or order between them.
Ordinal variables Groups that are ranked in a specific order.

*Note that sometimes a variable can work as more than one type! An ordinal variable can also be used as a quantitative variable if the scale is numeric and doesn’t need to be kept as discrete integers. For example, star ratings on product reviews are ordinal (1 to 5 stars), but the average star rating is quantitative.

Example data sheet

To keep track of your salt-tolerance experiment, you make a data sheet where you record information about the variables in the experiment, like salt addition and plant health.

To gather information about plant responses over time, you can fill out the same data sheet every few days until the end of the experiment. This example sheet is colour-coded according to the type of variable: nominal , continuous , ordinal , and binary .

Example data sheet showing types of variables in a plant salt tolerance experiment

Prevent plagiarism, run a free check.

Experiments are usually designed to find out what effect one variable has on another – in our example, the effect of salt addition on plant growth.

You manipulate the independent variable (the one you think might be the cause ) and then measure the dependent variable (the one you think might be the effect ) to find out what this effect might be.

You will probably also have variables that you hold constant ( control variables ) in order to focus on your experimental treatment.

Independent vs dependent vs control variables
Type of variable Definition Example (salt tolerance experiment)
Independent variables (aka treatment variables) Variables you manipulate in order to affect the outcome of an experiment. The amount of salt added to each plant’s water.
Dependent variables (aka response variables) Variables that represent the outcome of the experiment. Any measurement of plant health and growth: in this case, plant height and wilting.
Control variables Variables that are held constant throughout the experiment. The temperature and light in the room the plants are kept in, and the volume of water given to each plant.

In this experiment, we have one independent and three dependent variables.

The other variables in the sheet can’t be classified as independent or dependent, but they do contain data that you will need in order to interpret your dependent and independent variables.

Example of a data sheet showing dependent and independent variables for a plant salt tolerance experiment.

What about correlational research?

When you do correlational research , the terms ‘dependent’ and ‘independent’ don’t apply, because you are not trying to establish a cause-and-effect relationship.

However, there might be cases where one variable clearly precedes the other (for example, rainfall leads to mud, rather than the other way around). In these cases, you may call the preceding variable (i.e., the rainfall) the predictor variable and the following variable (i.e., the mud) the outcome variable .

Once you have defined your independent and dependent variables and determined whether they are categorical or quantitative, you will be able to choose the correct statistical test .

But there are many other ways of describing variables that help with interpreting your results. Some useful types of variable are listed below.

Type of variable Definition Example (salt tolerance experiment)
A variable that hides the true effect of another variable in your experiment. This can happen when another variable is closely related to a variable you are interested in, but you haven’t controlled it in your experiment. Pot size and soil type might affect plant survival as much as or more than salt additions. In an experiment, you would control these potential confounders by holding them constant.
Latent variables A variable that can’t be directly measured, but that you represent via a proxy. Salt tolerance in plants cannot be measured directly, but can be inferred from measurements of plant health in our salt-addition experiment.
Composite variables A variable that is made by combining multiple variables in an experiment. These variables are created when you analyse data, not when you measure it. The three plant-health variables could be combined into a single plant-health score to make it easier to present your findings.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g., the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g., water volume or weight).

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bevans, R. (2022, November 28). Types of Variables in Research | Definitions & Examples. Scribbr. Retrieved 9 September 2024, from https://www.scribbr.co.uk/research-methods/variables-types/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, a quick guide to experimental design | 5 steps & examples, quasi-experimental design | definition, types & examples, construct validity | definition, types, & examples.

Independent and Dependent Variables

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In research, a variable is any characteristic, number, or quantity that can be measured or counted in experimental investigations . One is called the dependent variable, and the other is the independent variable.

In research, the independent variable is manipulated to observe its effect, while the dependent variable is the measured outcome. Essentially, the independent variable is the presumed cause, and the dependent variable is the observed effect.

Variables provide the foundation for examining relationships, drawing conclusions, and making predictions in research studies.

variables2

Independent Variable

In psychology, the independent variable is the variable the experimenter manipulates or changes and is assumed to directly affect the dependent variable.

It’s considered the cause or factor that drives change, allowing psychologists to observe how it influences behavior, emotions, or other dependent variables in an experimental setting. Essentially, it’s the presumed cause in cause-and-effect relationships being studied.

For example, allocating participants to drug or placebo conditions (independent variable) to measure any changes in the intensity of their anxiety (dependent variable).

In a well-designed experimental study , the independent variable is the only important difference between the experimental (e.g., treatment) and control (e.g., placebo) groups.

By changing the independent variable and holding other factors constant, psychologists aim to determine if it causes a change in another variable, called the dependent variable.

For example, in a study investigating the effects of sleep on memory, the amount of sleep (e.g., 4 hours, 8 hours, 12 hours) would be the independent variable, as the researcher might manipulate or categorize it to see its impact on memory recall, which would be the dependent variable.

Dependent Variable

In psychology, the dependent variable is the variable being tested and measured in an experiment and is “dependent” on the independent variable.

In psychology, a dependent variable represents the outcome or results and can change based on the manipulations of the independent variable. Essentially, it’s the presumed effect in a cause-and-effect relationship being studied.

An example of a dependent variable is depression symptoms, which depend on the independent variable (type of therapy).

In an experiment, the researcher looks for the possible effect on the dependent variable that might be caused by changing the independent variable.

For instance, in a study examining the effects of a new study technique on exam performance, the technique would be the independent variable (as it is being introduced or manipulated), while the exam scores would be the dependent variable (as they represent the outcome of interest that’s being measured).

Examples in Research Studies

For example, we might change the type of information (e.g., organized or random) given to participants to see how this might affect the amount of information remembered.

In this example, the type of information is the independent variable (because it changes), and the amount of information remembered is the dependent variable (because this is being measured).

Independent and Dependent Variables Examples

For the following hypotheses, name the IV and the DV.

1. Lack of sleep significantly affects learning in 10-year-old boys.

IV……………………………………………………

DV…………………………………………………..

2. Social class has a significant effect on IQ scores.

DV……………………………………………….…

3. Stressful experiences significantly increase the likelihood of headaches.

4. Time of day has a significant effect on alertness.

Operationalizing Variables

To ensure cause and effect are established, it is important that we identify exactly how the independent and dependent variables will be measured; this is known as operationalizing the variables.

Operational variables (or operationalizing definitions) refer to how you will define and measure a specific variable as it is used in your study. This enables another psychologist to replicate your research and is essential in establishing reliability (achieving consistency in the results).

For example, if we are concerned with the effect of media violence on aggression, then we need to be very clear about what we mean by the different terms. In this case, we must state what we mean by the terms “media violence” and “aggression” as we will study them.

Therefore, you could state that “media violence” is operationally defined (in your experiment) as ‘exposure to a 15-minute film showing scenes of physical assault’; “aggression” is operationally defined as ‘levels of electrical shocks administered to a second ‘participant’ in another room.

In another example, the hypothesis “Young participants will have significantly better memories than older participants” is not operationalized. How do we define “young,” “old,” or “memory”? “Participants aged between 16 – 30 will recall significantly more nouns from a list of twenty than participants aged between 55 – 70” is operationalized.

The key point here is that we have clarified what we mean by the terms as they were studied and measured in our experiment.

If we didn’t do this, it would be very difficult (if not impossible) to compare the findings of different studies to the same behavior.

Operationalization has the advantage of generally providing a clear and objective definition of even complex variables. It also makes it easier for other researchers to replicate a study and check for reliability .

For the following hypotheses, name the IV and the DV and operationalize both variables.

1. Women are more attracted to men without earrings than men with earrings.

I.V._____________________________________________________________

D.V. ____________________________________________________________

Operational definitions:

I.V. ____________________________________________________________

2. People learn more when they study in a quiet versus noisy place.

I.V. _________________________________________________________

D.V. ___________________________________________________________

3. People who exercise regularly sleep better at night.

Can there be more than one independent or dependent variable in a study?

Yes, it is possible to have more than one independent or dependent variable in a study.

In some studies, researchers may want to explore how multiple factors affect the outcome, so they include more than one independent variable.

Similarly, they may measure multiple things to see how they are influenced, resulting in multiple dependent variables. This allows for a more comprehensive understanding of the topic being studied.

What are some ethical considerations related to independent and dependent variables?

Ethical considerations related to independent and dependent variables involve treating participants fairly and protecting their rights.

Researchers must ensure that participants provide informed consent and that their privacy and confidentiality are respected. Additionally, it is important to avoid manipulating independent variables in ways that could cause harm or discomfort to participants.

Researchers should also consider the potential impact of their study on vulnerable populations and ensure that their methods are unbiased and free from discrimination.

Ethical guidelines help ensure that research is conducted responsibly and with respect for the well-being of the participants involved.

Can qualitative data have independent and dependent variables?

Yes, both quantitative and qualitative data can have independent and dependent variables.

In quantitative research, independent variables are usually measured numerically and manipulated to understand their impact on the dependent variable. In qualitative research, independent variables can be qualitative in nature, such as individual experiences, cultural factors, or social contexts, influencing the phenomenon of interest.

The dependent variable, in both cases, is what is being observed or studied to see how it changes in response to the independent variable.

So, regardless of the type of data, researchers analyze the relationship between independent and dependent variables to gain insights into their research questions.

Can the same variable be independent in one study and dependent in another?

Yes, the same variable can be independent in one study and dependent in another.

The classification of a variable as independent or dependent depends on how it is used within a specific study. In one study, a variable might be manipulated or controlled to see its effect on another variable, making it independent.

However, in a different study, that same variable might be the one being measured or observed to understand its relationship with another variable, making it dependent.

The role of a variable as independent or dependent can vary depending on the research question and study design.

Print Friendly, PDF & Email

Educational resources and simple solutions for your research journey

independent vs dependent variables

Independent vs Dependent Variables: Definitions & Examples

A variable is an important element of research. It is a characteristic, number, or quantity of any category that can be measured or counted and whose value may change with time or other parameters.  

Variables are defined in different ways in different fields. For instance, in mathematics, a variable is an alphabetic character that expresses a numerical value. In algebra, a variable represents an unknown entity, mostly denoted by a, b, c, x, y, z, etc. In statistics, variables represent real-world conditions or factors. Despite the differences in definitions, in all fields, variables represent the entity that changes and help us understand how one factor may or may not influence another factor.  

Variables in research and statistics are of different types—independent, dependent, quantitative (discrete or continuous), qualitative (nominal/categorical, ordinal), intervening, moderating, extraneous, confounding, control, and composite. In this article we compare the first two types— independent vs dependent variables .  

Table of Contents

What is a variable?  

Researchers conduct experiments to understand the cause-and-effect relationships between various entities. In such experiments, the entities whose values change are called variables. These variables describe the relationships among various factors and help in drawing conclusions in experiments. They help in understanding how some factors influence others. Some examples of variables include age, gender, race, income, weight, etc.   

As mentioned earlier, different types of variables are used in research. Of these, we will compare the most common types— independent vs dependent variables . The independent variable is the cause and the dependent variable is the effect, that is, independent variables influence dependent variables. In research, a dependent variable is the outcome of interest of the study and the independent variable is the factor that may influence the outcome. Let’s explain this with an independent and dependent variable example : In a study to analyze the effect of antibiotic use on microbial resistance, antibiotic use is the independent variable and microbial resistance is the dependent variable because antibiotic use affects microbial resistance.( 1)  

What is an independent variable?  

Here is a list of the important characteristics of independent variables .( 2,3)  

  • An independent variable is the factor that is being manipulated in an experiment.  
  • In a research study, independent variables affect or influence dependent variables and cause them to change.  
  • Independent variables help gather evidence and draw conclusions about the research subject.  
  • They’re also called predictors, factors, treatment variables, explanatory variables, and input variables.  
  • On graphs, independent variables are usually placed on the X-axis.  
  • Example: In a study on the relationship between screen time and sleep problems, screen time is the independent variable because it influences sleep (the dependent variable).  
  • In addition, some factors like age are independent variables because other variables such as a person’s income will not change their age.  

defining variables in research

Types of independent variables  

Independent variables in research are of the following two types:( 4)  

Quantitative  

Quantitative independent variables differ in amounts or scales. They are numeric and answer questions like “how many” or “how often.”  

Here are a few quantitative independent variables examples :  

  • Differences in treatment dosages and frequencies: Useful in determining the appropriate dosage to get the desired outcome.  
  • Varying salinities: Useful in determining the range of salinity that organisms can tolerate.  

Qualitative  

Qualitative independent variables are non-numerical variables.  

A few qualitative independent variables examples are listed below:  

  • Different strains of a species: Useful in identifying the strain of a crop that is most resistant to a specific disease.  
  • Varying methods of how a treatment is administered—oral or intravenous.  

A quantitative variable is represented by actual amounts and a qualitative variable by categories or groups.  

What is a dependent variable ?  

Here are a few characteristics of dependent variables: ( 3)  

  • A dependent variable represents a quantity whose value depends on the independent variable and how it is changed.  
  • The dependent variable is influenced by the independent variable under various circumstances.  
  • It is also known as the response variable and outcome variable.  
  • On graphs, dependent variables are placed on the Y-axis.  

Here are a few dependent variable examples :  

  • In a study on the effect of exercise on mood, the dependent variable is mood because it may change with exercise.  
  • In a study on the effect of pH on enzyme activity, the enzyme activity is the dependent variable because it changes with changing pH.   

Types of dependent variables  

Dependent variables are of two types:( 5)  

Continuous dependent variables

These variables can take on any value within a given range and are measured on a continuous scale, for example, weight, height, temperature, time, distance, etc.  

Categorical or discrete dependent variables

These variables are divided into distinct categories. They are not measured on a continuous scale so only a limited number of values are possible, for example, gender, race, etc.  

defining variables in research

Differences between independent and dependent variables  

The following table compares independent vs dependent variables .  

     
How to identify  Manipulated or controlled  Observed or measured 
Purpose  Cause or predictor variable  Outcome or response variable 
Relationship  Independent of other variables  Influenced by the independent variable 
Control  Manipulated or assigned by researcher  Measured or observed during experiments 

Independent and dependent variable examples  

Listed below are a few examples of research questions from various disciplines and their corresponding independent and dependent variables.( 6)

       
Genetics  What is the relationship between genetics and susceptibility to diseases?  genetic factors  susceptibility to diseases 
History  How do historical events influence national identity?  historical events  national identity 
Political science  What is the effect of political campaign advertisements on voter behavior?  political campaign advertisements  voter behavior 
Sociology  How does social media influence cultural awareness?  social media exposure  cultural awareness 
Economics  What is the impact of economic policies on unemployment rates?  economic policies  unemployment rates 
Literature  How does literary criticism affect book sales?  literary criticism  book sales 
Geology  How do a region’s geological features influence the magnitude of earthquakes?  geological features  earthquake magnitudes 
Environment  How do changes in climate affect wildlife migration patterns?  climate changes  wildlife migration patterns 
Gender studies  What is the effect of gender bias in the workplace on job satisfaction?  gender bias  job satisfaction 
Film studies  What is the relationship between cinematographic techniques and viewer engagement?  cinematographic techniques  viewer engagement 
Archaeology  How does archaeological tourism affect local communities?  archaeological techniques  local community development 

  Independent vs dependent variables in research  

Experiments usually have at least two variables—independent and dependent. The independent variable is the entity that is being tested and the dependent variable is the result. Classifying independent and dependent variables as discrete and continuous can help in determining the type of analysis that is appropriate in any given research experiment, as shown in the table below. ( 7)  

   
   
    Chi-Square  t-test 
Logistic regression  ANOVA 
Phi  Regression 
Cramer’s V  Point-biserial correlation 
  Logistic regression  Regression 
Point-biserial correlation  Correlation 

  Here are some more research questions and their corresponding independent and dependent variables. ( 6)  

     
What is the impact of online learning platforms on academic performance?  type of learning  academic performance 
What is the association between exercise frequency and mental health?  exercise frequency  mental health 
How does smartphone use affect productivity?  smartphone use  productivity levels 
Does family structure influence adolescent behavior?  family structure  adolescent behavior 
What is the impact of nonverbal communication on job interviews?  nonverbal communication  job interviews 

  How to identify independent vs dependent variables  

In addition to all the characteristics of independent and dependent variables listed previously, here are few simple steps to identify the variable types in a research question.( 8)  

  • Keep in mind that there are no specific words that will always describe dependent and independent variables.  
  • If you’re given a paragraph, convert that into a question and identify specific words describing cause and effect.  
  • The word representing the cause is the independent variable and that describing the effect is the dependent variable.  

Let’s try out these steps with an example.  

A researcher wants to conduct a study to see if his new weight loss medication performs better than two bestseller alternatives. He wants to randomly select 20 subjects from Richmond, Virginia, aged 20 to 30 years and weighing above 60 pounds. Each subject will be randomly assigned to three treatment groups.  

To identify the independent and dependent variables, we convert this paragraph into a question, as follows: Does the new medication perform better than the alternatives? Here, the medications are the independent variable and their performances or effect on the individuals are the dependent variable.  

defining variables in research

Visualizing independent vs dependent variables  

Data visualization is the graphical representation of information by using charts, graphs, and maps. Visualizations help in making data more understandable by making it easier to compare elements, identify trends and relationships (among variables), among other functions.  

Bar graphs, pie charts, and scatter plots are the best methods to graphically represent variables. While pie charts and bar graphs are suitable for depicting categorical data, scatter plots are appropriate for quantitative data. The independent variable is usually placed on the X-axis and the dependent variable on the Y-axis.  

Figure 1 is a scatter plot that depicts the relationship between the number of household members and their monthly grocery expenses. 9 The number of household members is the independent variable and the expenses the dependent variable. The graph shows that as the number of members increases the expenditure also increases.  

scatter plot

Key takeaways   

Let’s summarize the key takeaways about independent vs dependent variables from this article:  

  • A variable is any entity being measured in a study.  
  • A dependent variable is often the focus of a research study and is the response or outcome. It depends on or varies with changes in other variables.  
  • Independent variables cause changes in dependent variables and don’t depend on other variables.  
  • An independent variable can influence a dependent variable, but a dependent variable cannot influence an independent variable.  
  • An independent variable is the cause and dependent variable is the effect.  

Frequently asked questions  

  • What are the different types of variables used in research?  

The following table lists the different types of variables used in research.( 10)  

     
Categorical  Measures a construct that has different categories  gender, race, religious affiliation, political affiliation 
Quantitative  Measures constructs that vary by degree of the amount  weight, height, age, intelligence scores 
Independent (IV)  Measures constructs considered to be the cause  Higher education (IV) leads to higher income (DV) 
Dependent (DV)  Measures constructs that are considered the effect  Exercise (IV) will reduce anxiety levels (DV) 
Intervening or mediating (MV)  Measures constructs that intervene or stand in between the cause and effect  Incarcerated individuals are more likely to have psychiatric disorder (MV), which leads to disability in social roles 
Confounding (CV)  “Rival explanations” that explain the cause-and-effect relationship  Age (CV) explains the relationship between increased shoe size and increase in intelligence in children 
Control variable   Extraneous variables whose influence can be controlled or eliminated  Demographic data such as gender, socioeconomic status, age 

 2. Why is it important to differentiate between independent vs dependent variables ?  

  Differentiating between independent vs dependent variables is important to ensure the correct application in your own research and also the correct understanding of other studies. An incorrectly framed research question can lead to confusion and inaccurate results. An easy way to differentiate is to identify the cause and effect.  

 3. How are independent and dependent variables used in non-experimental research?  

  So far in this article we talked about variables in relation to experimental research, wherein variables are manipulated or measured to test a hypothesis, that is, to observe the effect on dependent variables. Let’s examine non-experimental research and how variable are used. 11 In non-experimental research, variables are not manipulated but are observed in their natural state. Researchers do not have control over the variables and cannot manipulate them based on their research requirements. For example, a study examining the relationship between income and education level would not manipulate either variable. Instead, the researcher would observe and measure the levels of each variable in the sample population. The level of control researchers have is the major difference between experimental and non-experimental research. Another difference is the causal relationship between the variables. In non-experimental research, it is not possible to establish a causal relationship because other variables may be influencing the outcome.  

  4. Are there any advantages and disadvantages of using independent vs dependent variables ?

  Here are a few advantages and disadvantages of both independent and dependent variables.( 12)

Advantages: 

  • Dependent variables are not liable to any form of bias because they cannot be manipulated by researchers or other external factors.  
  • Independent variables are easily obtainable and don’t require complex mathematical procedures to be observed, like dependent variables. This is because researchers can easily manipulate these variables or collect the data from respondents.  
  • Some independent variables are natural factors and cannot be manipulated. They are also easily obtainable because less time is required for data collection.

Disadvantages: 

  • Obtaining dependent variables is a very expensive and effort- and time-intensive process because these variables are obtained from longitudinal research by solving complex equations.  
  • Independent variables are prone to researcher and respondent bias because they can be manipulated, and this may affect the study results.  

We hope this article has provided you with an insight into the use and importance of independent vs dependent variables , which can help you effectively use variables in your next research study.    

  • Kaliyadan F, Kulkarni V. Types of variables, descriptive statistics, and sample size. Indian Dermatol Online J. 2019 Jan-Feb; 10(1): 82–86. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362742/  
  • What Is an independent variable? (with uses and examples). Indeed website. Accessed March 11, 2024. https://www.indeed.com/career-advice/career-development/what-is-independent-variable  
  • Independent and dependent variables: Differences & examples. Statistics by Jim website. Accessed March 10, 2024. https://statisticsbyjim.com/regression/independent-dependent-variables/  
  • Independent variable. Biology online website. Accessed March 9, 2024. https://www.biologyonline.com/dictionary/independent-variable#:~:text=The%20independent%20variable%20in%20research,how%20many%20or%20how%20often .  
  • Dependent variables: Definition and examples. Clubz Tutoring Services website. Accessed March 10, 2024. https://clubztutoring.com/ed-resources/math/dependent-variable-definitions-examples-6-7-2/  
  • Research topics with independent and dependent variables. Good research topics website. Accessed March 12, 2024. https://goodresearchtopics.com/research-topics-with-independent-and-dependent-variables/  
  • Levels of measurement and using the correct statistical test. Univariate quantitative methods. Accessed March 14, 2024. https://web.pdx.edu/~newsomj/uvclass/ho_levels.pdf  
  • Easiest way to identify dependent and independent variables. Afidated website. Accessed March 15, 2024. https://www.afidated.com/2014/07/how-to-identify-dependent-and.html  
  • Choosing data visualizations. Math for the people website. Accessed March 14, 2024. https://web.stevenson.edu/mbranson/m4tp/version1/environmental-racism-choosing-data-visualization.html  
  • Trivedi C. Types of variables in scientific research. Concepts Hacked website. Accessed March 15, 2024. https://conceptshacked.com/variables-in-scientific-research/  
  • Variables in experimental and non-experimental research. Statistics solutions website. Accessed March 14, 2024. https://www.statisticssolutions.com/variables-in-experimental-and-non-experimental-research/#:~:text=The%20independent%20variable%20would%20be,state%20instead%20of%20manipulating%20them .  
  • Dependent vs independent variables: 11 key differences. Formplus website. Accessed March 15, 2024. https://www.formpl.us/blog/dependent-independent-variables

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

Editage All Access Boosting Productivity for Academics in India

How Editage All Access is Boosting Productivity for Academics in India

Peer Review Basics: Who is Reviewer 2?

How to Write a Dissertation: A Beginner’s Guide 

defining variables in research

Research Variables 101

Independent variables, dependent variables, control variables and more

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | January 2023

If you’re new to the world of research, especially scientific research, you’re bound to run into the concept of variables , sooner or later. If you’re feeling a little confused, don’t worry – you’re not the only one! Independent variables, dependent variables, confounding variables – it’s a lot of jargon. In this post, we’ll unpack the terminology surrounding research variables using straightforward language and loads of examples .

Overview: Variables In Research

1. ?
2. variables
3. variables
4. variables

5. variables
6. variables
7. variables
8. variables

What (exactly) is a variable?

The simplest way to understand a variable is as any characteristic or attribute that can experience change or vary over time or context – hence the name “variable”. For example, the dosage of a particular medicine could be classified as a variable, as the amount can vary (i.e., a higher dose or a lower dose). Similarly, gender, age or ethnicity could be considered demographic variables, because each person varies in these respects.

Within research, especially scientific research, variables form the foundation of studies, as researchers are often interested in how one variable impacts another, and the relationships between different variables. For example:

  • How someone’s age impacts their sleep quality
  • How different teaching methods impact learning outcomes
  • How diet impacts weight (gain or loss)

As you can see, variables are often used to explain relationships between different elements and phenomena. In scientific studies, especially experimental studies, the objective is often to understand the causal relationships between variables. In other words, the role of cause and effect between variables. This is achieved by manipulating certain variables while controlling others – and then observing the outcome. But, we’ll get into that a little later…

The “Big 3” Variables

Variables can be a little intimidating for new researchers because there are a wide variety of variables, and oftentimes, there are multiple labels for the same thing. To lay a firm foundation, we’ll first look at the three main types of variables, namely:

  • Independent variables (IV)
  • Dependant variables (DV)
  • Control variables

What is an independent variable?

Simply put, the independent variable is the “ cause ” in the relationship between two (or more) variables. In other words, when the independent variable changes, it has an impact on another variable.

For example:

  • Increasing the dosage of a medication (Variable A) could result in better (or worse) health outcomes for a patient (Variable B)
  • Changing a teaching method (Variable A) could impact the test scores that students earn in a standardised test (Variable B)
  • Varying one’s diet (Variable A) could result in weight loss or gain (Variable B).

It’s useful to know that independent variables can go by a few different names, including, explanatory variables (because they explain an event or outcome) and predictor variables (because they predict the value of another variable). Terminology aside though, the most important takeaway is that independent variables are assumed to be the “cause” in any cause-effect relationship. As you can imagine, these types of variables are of major interest to researchers, as many studies seek to understand the causal factors behind a phenomenon.

Need a helping hand?

defining variables in research

What is a dependent variable?

While the independent variable is the “ cause ”, the dependent variable is the “ effect ” – or rather, the affected variable . In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable.

Keeping with the previous example, let’s look at some dependent variables in action:

  • Health outcomes (DV) could be impacted by dosage changes of a medication (IV)
  • Students’ scores (DV) could be impacted by teaching methods (IV)
  • Weight gain or loss (DV) could be impacted by diet (IV)

In scientific studies, researchers will typically pay very close attention to the dependent variable (or variables), carefully measuring any changes in response to hypothesised independent variables. This can be tricky in practice, as it’s not always easy to reliably measure specific phenomena or outcomes – or to be certain that the actual cause of the change is in fact the independent variable.

As the adage goes, correlation is not causation . In other words, just because two variables have a relationship doesn’t mean that it’s a causal relationship – they may just happen to vary together. For example, you could find a correlation between the number of people who own a certain brand of car and the number of people who have a certain type of job. Just because the number of people who own that brand of car and the number of people who have that type of job is correlated, it doesn’t mean that owning that brand of car causes someone to have that type of job or vice versa. The correlation could, for example, be caused by another factor such as income level or age group, which would affect both car ownership and job type.

To confidently establish a causal relationship between an independent variable and a dependent variable (i.e., X causes Y), you’ll typically need an experimental design , where you have complete control over the environmen t and the variables of interest. But even so, this doesn’t always translate into the “real world”. Simply put, what happens in the lab sometimes stays in the lab!

As an alternative to pure experimental research, correlational or “ quasi-experimental ” research (where the researcher cannot manipulate or change variables) can be done on a much larger scale more easily, allowing one to understand specific relationships in the real world. These types of studies also assume some causality between independent and dependent variables, but it’s not always clear. So, if you go this route, you need to be cautious in terms of how you describe the impact and causality between variables and be sure to acknowledge any limitations in your own research.

Free Webinar: Research Methodology 101

What is a control variable?

In an experimental design, a control variable (or controlled variable) is a variable that is intentionally held constant to ensure it doesn’t have an influence on any other variables. As a result, this variable remains unchanged throughout the course of the study. In other words, it’s a variable that’s not allowed to vary – tough life 🙂

As we mentioned earlier, one of the major challenges in identifying and measuring causal relationships is that it’s difficult to isolate the impact of variables other than the independent variable. Simply put, there’s always a risk that there are factors beyond the ones you’re specifically looking at that might be impacting the results of your study. So, to minimise the risk of this, researchers will attempt (as best possible) to hold other variables constant . These factors are then considered control variables.

Some examples of variables that you may need to control include:

  • Temperature
  • Time of day
  • Noise or distractions

Which specific variables need to be controlled for will vary tremendously depending on the research project at hand, so there’s no generic list of control variables to consult. As a researcher, you’ll need to think carefully about all the factors that could vary within your research context and then consider how you’ll go about controlling them. A good starting point is to look at previous studies similar to yours and pay close attention to which variables they controlled for.

Of course, you won’t always be able to control every possible variable, and so, in many cases, you’ll just have to acknowledge their potential impact and account for them in the conclusions you draw. Every study has its limitations , so don’t get fixated or discouraged by troublesome variables. Nevertheless, always think carefully about the factors beyond what you’re focusing on – don’t make assumptions!

 A control variable is intentionally held constant (it doesn't vary) to ensure it doesn’t have an influence on any other variables.

Other types of variables

As we mentioned, independent, dependent and control variables are the most common variables you’ll come across in your research, but they’re certainly not the only ones you need to be aware of. Next, we’ll look at a few “secondary” variables that you need to keep in mind as you design your research.

  • Moderating variables
  • Mediating variables
  • Confounding variables
  • Latent variables

Let’s jump into it…

What is a moderating variable?

A moderating variable is a variable that influences the strength or direction of the relationship between an independent variable and a dependent variable. In other words, moderating variables affect how much (or how little) the IV affects the DV, or whether the IV has a positive or negative relationship with the DV (i.e., moves in the same or opposite direction).

For example, in a study about the effects of sleep deprivation on academic performance, gender could be used as a moderating variable to see if there are any differences in how men and women respond to a lack of sleep. In such a case, one may find that gender has an influence on how much students’ scores suffer when they’re deprived of sleep.

It’s important to note that while moderators can have an influence on outcomes , they don’t necessarily cause them ; rather they modify or “moderate” existing relationships between other variables. This means that it’s possible for two different groups with similar characteristics, but different levels of moderation, to experience very different results from the same experiment or study design.

What is a mediating variable?

Mediating variables are often used to explain the relationship between the independent and dependent variable (s). For example, if you were researching the effects of age on job satisfaction, then education level could be considered a mediating variable, as it may explain why older people have higher job satisfaction than younger people – they may have more experience or better qualifications, which lead to greater job satisfaction.

Mediating variables also help researchers understand how different factors interact with each other to influence outcomes. For instance, if you wanted to study the effect of stress on academic performance, then coping strategies might act as a mediating factor by influencing both stress levels and academic performance simultaneously. For example, students who use effective coping strategies might be less stressed but also perform better academically due to their improved mental state.

In addition, mediating variables can provide insight into causal relationships between two variables by helping researchers determine whether changes in one factor directly cause changes in another – or whether there is an indirect relationship between them mediated by some third factor(s). For instance, if you wanted to investigate the impact of parental involvement on student achievement, you would need to consider family dynamics as a potential mediator, since it could influence both parental involvement and student achievement simultaneously.

Mediating variables can explain the relationship between the independent and dependent variable, including whether it's causal or not.

What is a confounding variable?

A confounding variable (also known as a third variable or lurking variable ) is an extraneous factor that can influence the relationship between two variables being studied. Specifically, for a variable to be considered a confounding variable, it needs to meet two criteria:

  • It must be correlated with the independent variable (this can be causal or not)
  • It must have a causal impact on the dependent variable (i.e., influence the DV)

Some common examples of confounding variables include demographic factors such as gender, ethnicity, socioeconomic status, age, education level, and health status. In addition to these, there are also environmental factors to consider. For example, air pollution could confound the impact of the variables of interest in a study investigating health outcomes.

Naturally, it’s important to identify as many confounding variables as possible when conducting your research, as they can heavily distort the results and lead you to draw incorrect conclusions . So, always think carefully about what factors may have a confounding effect on your variables of interest and try to manage these as best you can.

What is a latent variable?

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study. They’re also known as hidden or underlying variables , and what makes them rather tricky is that they can’t be directly observed or measured . Instead, latent variables must be inferred from other observable data points such as responses to surveys or experiments.

For example, in a study of mental health, the variable “resilience” could be considered a latent variable. It can’t be directly measured , but it can be inferred from measures of mental health symptoms, stress, and coping mechanisms. The same applies to a lot of concepts we encounter every day – for example:

  • Emotional intelligence
  • Quality of life
  • Business confidence
  • Ease of use

One way in which we overcome the challenge of measuring the immeasurable is latent variable models (LVMs). An LVM is a type of statistical model that describes a relationship between observed variables and one or more unobserved (latent) variables. These models allow researchers to uncover patterns in their data which may not have been visible before, thanks to their complexity and interrelatedness with other variables. Those patterns can then inform hypotheses about cause-and-effect relationships among those same variables which were previously unknown prior to running the LVM. Powerful stuff, we say!

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study.

Let’s recap

In the world of scientific research, there’s no shortage of variable types, some of which have multiple names and some of which overlap with each other. In this post, we’ve covered some of the popular ones, but remember that this is not an exhaustive list .

To recap, we’ve explored:

  • Independent variables (the “cause”)
  • Dependent variables (the “effect”)
  • Control variables (the variable that’s not allowed to vary)

If you’re still feeling a bit lost and need a helping hand with your research project, check out our 1-on-1 coaching service , where we guide you through each step of the research journey. Also, be sure to check out our free dissertation writing course and our collection of free, fully-editable chapter templates .

defining variables in research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

Fiona

Very informative, concise and helpful. Thank you

Ige Samuel Babatunde

Helping information.Thanks

Ancel George

practical and well-demonstrated

Michael

Very helpful and insightful

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

defining variables in research

  • Print Friendly
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Independent and Dependent Variables
  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Definitions

Dependent Variable The variable that depends on other factors that are measured. These variables are expected to change as a result of an experimental manipulation of the independent variable or variables. It is the presumed effect.

Independent Variable The variable that is stable and unaffected by the other variables you are trying to measure. It refers to the condition of an experiment that is systematically manipulated by the investigator. It is the presumed cause.

Cramer, Duncan and Dennis Howitt. The SAGE Dictionary of Statistics . London: SAGE, 2004; Penslar, Robin Levin and Joan P. Porter. Institutional Review Board Guidebook: Introduction . Washington, DC: United States Department of Health and Human Services, 2010; "What are Dependent and Independent Variables?" Graphic Tutorial.

Identifying Dependent and Independent Variables

Don't feel bad if you are confused about what is the dependent variable and what is the independent variable in social and behavioral sciences research . However, it's important that you learn the difference because framing a study using these variables is a common approach to organizing the elements of a social sciences research study in order to discover relevant and meaningful results. Specifically, it is important for these two reasons:

  • You need to understand and be able to evaluate their application in other people's research.
  • You need to apply them correctly in your own research.

A variable in research simply refers to a person, place, thing, or phenomenon that you are trying to measure in some way. The best way to understand the difference between a dependent and independent variable is that the meaning of each is implied by what the words tell us about the variable you are using. You can do this with a simple exercise from the website, Graphic Tutorial. Take the sentence, "The [independent variable] causes a change in [dependent variable] and it is not possible that [dependent variable] could cause a change in [independent variable]." Insert the names of variables you are using in the sentence in the way that makes the most sense. This will help you identify each type of variable. If you're still not sure, consult with your professor before you begin to write.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349;

Structure and Writing Style

The process of examining a research problem in the social and behavioral sciences is often framed around methods of analysis that compare, contrast, correlate, average, or integrate relationships between or among variables . Techniques include associations, sampling, random selection, and blind selection. Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent.

The variables should be outlined in the introduction of your paper and explained in more detail in the methods section . There are no rules about the structure and style for writing about independent or dependent variables but, as with any academic writing, clarity and being succinct is most important.

After you have described the research problem and its significance in relation to prior research, explain why you have chosen to examine the problem using a method of analysis that investigates the relationships between or among independent and dependent variables . State what it is about the research problem that lends itself to this type of analysis. For example, if you are investigating the relationship between corporate environmental sustainability efforts [the independent variable] and dependent variables associated with measuring employee satisfaction at work using a survey instrument, you would first identify each variable and then provide background information about the variables. What is meant by "environmental sustainability"? Are you looking at a particular company [e.g., General Motors] or are you investigating an industry [e.g., the meat packing industry]? Why is employee satisfaction in the workplace important? How does a company make their employees aware of sustainability efforts and why would a company even care that its employees know about these efforts?

Identify each variable for the reader and define each . In the introduction, this information can be presented in a paragraph or two when you describe how you are going to study the research problem. In the methods section, you build on the literature review of prior studies about the research problem to describe in detail background about each variable, breaking each down for measurement and analysis. For example, what activities do you examine that reflect a company's commitment to environmental sustainability? Levels of employee satisfaction can be measured by a survey that asks about things like volunteerism or a desire to stay at the company for a long time.

The structure and writing style of describing the variables and their application to analyzing the research problem should be stated and unpacked in such a way that the reader obtains a clear understanding of the relationships between the variables and why they are important. This is also important so that the study can be replicated in the future using the same variables but applied in a different way.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; “Case Example for Independent and Dependent Variables.” ORI Curriculum Examples. U.S. Department of Health and Human Services, Office of Research Integrity; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349; “Independent Variables and Dependent Variables.” Karl L. Wuensch, Department of Psychology, East Carolina University [posted email exchange]; “Variables.” Elements of Research. Dr. Camille Nebeker, San Diego State University.

  • << Previous: Design Flaws to Avoid
  • Next: Glossary of Research Terms >>
  • Last Updated: Sep 4, 2024 9:40 AM
  • URL: https://libguides.usc.edu/writingguide

Logo for University of Iowa Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Unit 12: Variables.

39 Variables; Operational and Conceptual Definitions

Listen, this whole “conceptual and operational definition” stuff might seem painfully boring but it’s actually one of the most useful Superpowers in your SYBI toolbox. The disconnect between the actual concept, the conceptual definition, and the operational definition is more prevalent than you think! And the disconnect between the scholar’s ConceptConceptualDefinitionOperationalDefinition and the average journalist’s perception? Oi ve! It’s enough to make you want to laterally read EVERYTHING that comes your way. At least, I hope it does. Let’s start in nice and slow and think about what are variables anyway? Student textbook authors: Take it away!

Learning Objectives

What is a variable?

Variables; Operational and Conceptual Definitions

Many of you have probably heard of or know what a variable from other classes like algebra. Variables are important in research because they help define and measure what is being researched. In this unit you should be able to define a variable and know the two main components of  variable.

Variables in social scientific research are similar to what you have learned in math classes, meaning they change depending on another element.

There are two components of a variable:

  • A conceptual definition
  • An operational definition

Conceptual Definitions- How we define something. It is the foundation of your research question because you must know  what  something is before you study its’ impact.

Example: How do Americans define the term freedom?

Operational Definitions- How we measure the variable. This is what you would typically think of when asked about the relationship between research and the research question. It relies on the conceptual definition.

Example: How do we measure what it means to have freedom?

Find the variables memory game .

Link to the “test” I mention in the video below:

https://www.idrlabs.com/gender-coordinates/test.php

“Researchers H. Heilman, Ph.D. and C. Peus, Ph.D. used a multidimensional framework to assess how people view men and women respectively. Their research results found that men and women consistently ascribe the same characteristics to each gender.”

Give it a whirl , take the “test.” What do YOU think about how they have operationalized the concept of gender?

Humor me and read the information below the start of the questions when you visit that link [1] .

This second link takes you to a different test but of the same basic concept. This is the one I referenced as “Bem’s Sex Role Inventory [2] .” https://www.idrlabs.com/gender/test.php

Ok, so take this one too (it really doesn’t take long, I promise). What do you think about the questions? Did you “score” the same? If not, why do you think that is? What does that say about operationalizing the concept? In future chapters I’ll ask you to think about what this would say about results and implications! I know – you are so excited!!

Also. Was not exaggerating my results:

First image is coordinates (IN the blue box), second is Bem’s (under the blue box)

defining variables in research

Got ideas for questions to include on the exam?

Click this link to add them!

… Unit 1 … Unit 2 …. Unit 3 … Unit 4 … Unit 5 … Unit 6 … Unit 7 … Unit 8 … Unit 9 … Unit 10 … Unit 11 … Unit 12 … Unit 13 … Unit 14 … Unit 15 … Unit 16 …

VIII . Unit 8: Theory…and Research…and Methods (oh my!)

28. Logical Systems: Induction and Deduction

29. Variables; Operational and Conceptual Definitions

30. Variable oh variable! Wherefore art thou o’ variable?

31. On being skeptical [about concepts and variables]

defining variables in research

Gender Coordinates Test

Based on the work of heilman and peus, question 1 of 35.

Self-confident

  • "Drawing on the work of Dr. Sandra Lipsitz Bem, this test classifies your personality as masculine or feminine. Though gender stereotyping is controversial, it is important to note that Bem's work has been tested in several countries and has repeatedly been shown to have high levels of validity and test-retest reliability. The test exclusively tests for immanent conceptions of gender (meaning that it doesn't theorize about whether gender roles are biological, cultural, or both). Consequently, the test has been used both by feminists as an instrument of cultural criticism and by gender traditionalists who seek to confirm that gender roles are natural and heritable." ↵

Communication Research in Real Life Copyright © 2023 by Kate Magsamen-Conrad. All Rights Reserved.

Share This Book

  • How it works

researchprospect post subheader

Types of Variables – A Comprehensive Guide

Published by Carmen Troy at August 14th, 2021 , Revised On October 26, 2023

A variable is any qualitative or quantitative characteristic that can change and have more than one value, such as age, height, weight, gender, etc.

Before conducting research, it’s essential to know what needs to be measured or analysed and choose a suitable statistical test to present your study’s findings. 

In most cases, you can do it by identifying the key issues/variables related to your research’s main topic.

Example:  If you want to test whether the hybridisation of plants harms the health of people. You can use the key variables like agricultural techniques, type of soil, environmental factors, types of pesticides used, the process of hybridisation, type of yield obtained after hybridisation, type of yield without hybridisation, etc.

Variables are broadly categorised into:

  • Independent variables
  • Dependent variable
  • Control variable

Independent Vs. Dependent Vs. Control Variable

Type of variable Definition Example
Independent Variable (Stimulus) It is the variable that influences other variables.
Dependent variable (Response) The dependent variable is the outcome of the influence of the independent variable. You want to identify “How refined carbohydrates affect the health of human beings?”

: refined carbohydrates

: the health of human beings

You can manipulate the consumption of refined carbs in your human participants and measure how those levels of consuming processed carbohydrates influence human health.

Control Variables
Control variables are variables that are not changed and kept constant throughout the experiment.

The research includes finding ways:

  • To change the independent variables.
  • To prevent the controlled variables from changing.
  • To measure the dependent variables.

Note:  The term dependent and independent is not applicable in  correlational research  as this is not a  controlled experiment.  A researcher doesn’t have control over the variables. The association and between two or more variables are measured. If one variable affects another one, then it’s called the predictor variable and outcome variable.

Example:  Correlation between investment (predictor variable) and profit (outcome variable)

What data collection best suits your research?

  • Find out by hiring an expert from ResearchProspect today!
  • Despite how challenging the subject may be, we are here to help you.

data collection best suits your research

Types of Variables Based on the Types of Data

A data is referred to as the information and statistics gathered for analysis of a research topic. Data is broadly divided into two categories, such as:

Quantitative/Numerical data  is associated with the aspects of measurement, quantity, and extent. 

Categorial data  is associated with groupings.

A qualitative variable consists of qualitative data, and a quantitative variable consists of a quantitative variable.

Types of variable

Quantitative Variable

The quantitative variable is associated with measurement, quantity, and extent, like how many . It follows the statistical, mathematical, and computational techniques in numerical data such as percentages and statistics. The research is conducted on a large group of population.

Example:  Find out the weight of students of the fifth standard studying in government schools.

The quantitative variable can be further categorised into continuous and discrete.

Type of variable Definition Example
Continuous Variable A continuous variable is a quantitative variable that can take a value between two specific values.
Discrete Variable A discrete variable is a quantitative variable whose attributes are separated from each other.  Literacy rate, gender, and nationality.

Scale: Nominal and ordinal.

Categorial Variable

The categorical variable includes measurements that vary in categories such as names but not in terms of rank or degree. It means one level of a categorical variable cannot be considered better or greater than another level. 

Example: Gender, brands, colors, zip codes

The categorical variable is further categorised into three types:

Type of variable Definition Example
Dichotomous (Binary) Variable This is the categorical variable with two possible results (Yes/No) Alcoholic (Yes/No)
Nominal Variable Nominal Variable can take the value that is not organised in terms of groups, degree, or rank.
Ordinal Variable Ordinal Variable can take the value that can be logically ordered or ranked.

Note:  Sometimes, an ordinal variable also acts as a quantitative variable. Ordinal data has an order, but the intervals between scale points may be uneven.

Example: Numbers on a rating scale represent the reviews’ rank or range from below average to above average. However, it also represents a quantitative variable showing how many stars and how much rating is given.

Not sure which statistical tests to use for your data?

Let the experts at researchprospect do the daunting work for you..

Using our approach, we illustrate how to collect data, sample sizes, validity, reliability, credibility, and ethics, so you won’t have to do it all by yourself!

Other Types of Variables

It’s important to understand the difference between dependent and independent variables and know whether they are quantitative or categorical to choose the appropriate statistical test.

There are many other types of variables to help you differentiate and understand them.

Also, read a comprehensive guide written about inductive and deductive reasoning .

Type of variable Definition Example
Confounding variables The confounding variable is a hidden variable that produces an association between two unrelated variables because the hidden variable affects both of them. There is an association between water consumption and cold drink sales.

The confounding variable could be the   and compels people to drink a lot of water and a cold drink to reduce heat and thirst caused due to the heat.

Latent Variable These are the variables that cannot be observed or measured directly. Self-confidence and motivation cannot be measured directly. Still, they can be interpreted through other variables such as habits, achievements, perception, and lifestyle.
Composite variables
A composite variable is a combination of multiple variables. It is used to measure multidimensional aspects that are difficult to observe.
  • Entertainment
  • Online education
  • Database management, storage, and retrieval

Frequently Asked Questions

What are the 10 types of variables in research.

The 10 types of variables in research are:

  • Independent
  • Confounding
  • Categorical
  • Extraneous.

What is an independent variable?

An independent variable, often termed the predictor or explanatory variable, is the variable manipulated or categorized in an experiment to observe its effect on another variable, called the dependent variable. It’s the presumed cause in a cause-and-effect relationship, determining if changes in it produce changes in the observed outcome.

What is a variable?

In research, a variable is any attribute, quantity, or characteristic that can be measured or counted. It can take on various values, making it “variable.” Variables can be classified as independent (manipulated), dependent (observed outcome), or control (kept constant). They form the foundation for hypotheses, observations, and data analysis in studies.

What is a dependent variable?

A dependent variable is the outcome or response being studied in an experiment or investigation. It’s what researchers measure to determine the effect of changes in the independent variable. In a cause-and-effect relationship, the dependent variable is presumed to be influenced or caused by the independent variable.

What is a variable in programming?

In programming, a variable is a symbolic name for a storage location that holds data or values. It allows data storage and retrieval for computational operations. Variables have types, like integer or string, determining the nature of data they can hold. They’re fundamental in manipulating and processing information in software.

What is a control variable?

A control variable in research is a factor that’s kept constant to ensure that it doesn’t influence the outcome. By controlling these variables, researchers can isolate the effects of the independent variable on the dependent variable, ensuring that other factors don’t skew the results or introduce bias into the experiment.

What is a controlled variable in science?

In science, a controlled variable is a factor that remains constant throughout an experiment. It ensures that any observed changes in the dependent variable are solely due to the independent variable, not other factors. By keeping controlled variables consistent, researchers can maintain experiment validity and accurately assess cause-and-effect relationships.

How many independent variables should an investigation have?

Ideally, an investigation should have one independent variable to clearly establish cause-and-effect relationships. Manipulating multiple independent variables simultaneously can complicate data interpretation.

However, in advanced research, experiments with multiple independent variables (factorial designs) are used, but they require careful planning to understand interactions between variables.

You May Also Like

Struggling to figure out “whether I should choose primary research or secondary research in my dissertation?” Here are some tips to help you decide.

You can transcribe an interview by converting a conversation into a written format including question-answer recording sessions between two or more people.

A meta-analysis is a formal, epidemiological, quantitative study design that uses statistical methods to generalise the findings of the selected independent studies.

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works

Our websites may use cookies to personalize and enhance your experience. By continuing without changing your cookie settings, you agree to this collection. For more information, please see our University Websites Privacy Notice .

Neag School of Education

Educational Research Basics by Del Siegle

Each person/thing we collect data on is called an OBSERVATION (in our work these are usually people/subjects. Currently, the term participant rather than subject is used when describing the people from whom we collect data).

OBSERVATIONS (participants) possess a variety of CHARACTERISTICS .

If a CHARACTERISTIC of an OBSERVATION (participant) is the same for every member of the group (doesn’t vary) it is called a CONSTANT .

If a CHARACTERISTIC of an OBSERVATION (participant) differs for group members it is called a VARIABLE . In research we don’t get excited about CONSTANTS (since everyone is the same on that characteristic); we’re more interested in VARIABLES. Variables can be classified as QUANTITATIVE or QUALITATIVE (also known as CATEGORICAL).

QUANTITATIVE variables are ones that exist along a continuum that runs from low to high. Ordinal, interval, and ratio variables are quantitative.  QUANTITATIVE variables are sometimes called CONTINUOUS VARIABLES because they have a variety (continuum) of characteristics. Height in inches and scores on a test would be examples of quantitative variables.

QUALITATIVE variables do not express differences in amount, only differences. They are sometimes referred to as CATEGORICAL variables because they classify by categories. Nominal variables such as gender, religion, or eye color are CATEGORICAL variables. Generally speaking, categorical variables

Categorical variables are groups…such as gender or type of degree sought. Quantitative variables are numbers that have a range…like weight in pounds or baskets made during a ball game. When we analyze data we do turn the categorical variables into numbers but only for identification purposes…e.g. 1 = male and 2 = female. Just because 2 = female does not mean that females are better than males who are only 1.  With quantitative data having a higher number means you have more of something. So higher values have meaning.

A special case of a CATEGORICAL variable is a DICHOTOMOUS VARIABLE. DICHOTOMOUS variables have only two CHARACTERISTICS (male or female). When naming QUALITATIVE variables, it is important to name the category rather than the levels (i.e., gender is the variable name, not male and female).

Variables have different purposes or roles…

Independent (Experimental, Manipulated, Treatment, Grouping) Variable- That factor which is measured, manipulated, or selected by the experimenter to determine its relationship to an observed phenomenon. “In a research study, independent variables are antecedent conditions that are presumed to affect a dependent variable. They are either manipulated by the researcher or are observed by the researcher so that their values can be related to that of the dependent variable. For example, in a research study on the relationship between mosquitoes and mosquito bites, the number of mosquitoes per acre of ground would be an independent variable” (Jaeger, 1990, p. 373)

While the independent variable is often manipulated by the researcher, it can also be a classification where subjects are assigned to groups. In a study where one variable causes the other, the independent variable is the cause. In a study where groups are being compared, the independent variable is the group classification.

Dependent (Outcome) Variable- That factor which is observed and measured to determine the effect of the independent variable, i.e., that factor that appears, disappears, or varies as the experimenter introduces, removes, or varies the independent variable. “In a research study, the independent variable defines a principal focus of research interest. It is the consequent variable that is presumably affected by one or more independent variables that are either manipulated by the researcher or observed by the researcher and regarded as antecedent conditions that determine the value of the dependent variable. For example, in a study of the relationship between mosquitoes and mosquito bites, the number of mosquito bites per hour would be the dependent variable” (Jaeger, 1990, p. 370). The dependent variable is the participant’s response.

The dependent variable is the outcome. In an experiment, it may be what was caused or what changed as a result of the study. In a comparison of groups, it is what they differ on.

Moderator Variable- That factor which is measured, manipulated, or selected by the experimenter to discover whether it modifies the relationship of the independent variable to an observed phenomenon. It is a special type of independent variable.

The independent variable’s relationship with the dependent variable may change under different conditions. That condition is the moderator variable. In a study of two methods of teaching reading, one of the methods of teaching reading may work better with boys than girls. Method of teaching reading is the independent variable and reading achievement is the dependent variable. Gender is the moderator variable because it moderates or changes the relationship between the independent variable (teaching method) and the dependent variable (reading achievement).

Suppose we do a study of reading achievement where we compare whole language with phonics, and we also include students’ social economic status (SES) as a variable. The students are randomly assigned to either whole language instruction or phonics instruction. There are students of high and low SES in each group.

Let’s assume that we found that whole language instruction worked better than phonics instruction with the high SES students, but phonics instruction worked better than whole language instruction with the low SES students. Later you will learn in statistics that this is an interaction effect. In this study, language instruction was the independent variable (with two levels: phonics and whole language). SES was the moderator variable (with two levels: high and low). Reading achievement was the dependent variable (measured on a continuous scale so there aren’t levels).

With a moderator variable, we find the type of instruction did make a difference, but it worked differently for the two groups on the moderator variable. We select this moderator variable because we think it is a variable that will moderate the effect of the independent on the dependent. We make this decision before we start the study.

If the moderator had not been in the study above, we would have said that there was no difference in reading achievement between the two types of reading instruction. This would have happened because the average of the high and low scores of each SES group within a reading instruction group would cancel each other an produce what appears to be average reading achievement in each instruction group (i.e., Phonics: Low—6 and High—2; Whole Language:   Low—2 and High—6; Phonics has an average of 4 and Whole Language has an average of 4. If we just look at the averages (without regard to the moderator), it appears that the instruction types produced similar results).

Extraneous Variable- Those factors which cannot be controlled. Extraneous variables are independent variables that have not been controlled. They may or may not influence the results. One way to control an extraneous variable which might influence the results is to make it a constant (keep everyone in the study alike on that characteristic). If SES were thought to influence achievement, then restricting the study to one SES level would eliminate SES as an extraneous variable.

Here are some examples similar to your homework:

Null Hypothesis: Students who receive pizza coupons as a reward do not read more books than students who do not receive pizza coupon rewards. Independent Variable: Reward Status Dependent Variable: Number of Books Read

High achieving students do not perform better than low achieving student when writing stories regardless of whether they use paper and pencil or a word processor. Independent Variable: Instrument Used for Writing Moderator Variable: Ability Level of the Students Dependent Variable:  Quality of Stories Written When we are comparing two groups, the groups are the independent variable. When we are testing whether something influences something else, the influence (cause) is the independent variable. The independent variable is also the one we manipulate. For example, consider the hypothesis “Teachers given higher pay will have more positive attitudes toward children than teachers given lower pay.” One approach is to ask ourselves “Are there two or more groups being compared?” The answer is “Yes.” “What are the groups?” Teachers who are given higher pay and teachers who are given lower pay. Therefore, the independent variable is teacher pay (it has two levels– high pay and low pay). The dependent variable (what the groups differ on) is attitude towards school.

We could also approach this another way. “Is something causing something else?” The answer is “Yes.” “What is causing what?” Teacher pay is causing attitude towards school. Therefore, teacher pay is the independent variable (cause) and attitude towards school is the dependent variable (outcome).

Research Questions and Hypotheses

The research question drives the study. It should specifically state what is being investigated. Statisticians often convert their research questions to null and alternative hypotheses. The null hypothesis states that no relationship (correlation study) or difference (experimental study) exists. Converting research questions to hypotheses is a simple task. Take the questions and make it a positive statement that says a relationship exists (correlation studies) or a difference exists (experiment study) between the groups and we have the alternative hypothesis. Write a statement  that a relationship does not exist or a difference does not exist and we have the null hypothesis.

Format for sample research questions and accompanying hypotheses:

Research Question for Relationships: Is there a relationship between height and weight? Null Hypothesis:  There is no relationship between height and weight. Alternative Hypothesis:   There is a relationship between height and weight.

When a researcher states a nondirectional hypothesis in a study that compares the performance of two groups, she doesn’t state which group she believes will perform better. If the word “more” or “less” appears in the hypothesis, there is a good chance that we are reading a directional hypothesis. A directional hypothesis is one where the researcher states which group she believes will perform better.  Most researchers use nondirectional hypotheses.

We usually write the alternative hypothesis (what we believe might happen) before we write the null hypothesis (saying it won’t happen).

Directional Research Question for Differences: Do boys like reading more than girls? Null Hypothesis:   Boys do not like reading more than girls. Alternative Hypothesis:   Boys do like reading more than girls.

Nondirectional Research Question for Differences: Is there a difference between boys’ and girls’ attitude towards reading? –or– Do boys’ and girls’ attitude towards reading differ? Null Hypothesis:   There is no difference between boys’ and girls’ attitude towards reading.  –or–  Boys’ and girls’ attitude towards reading do not differ. Alternative Hypothesis:   There is a difference between boys’ and girls’ attitude towards reading.  –or–  Boys’ and girls’ attitude towards reading differ.

Del Siegle, Ph.D. Neag School of Education – University of Connecticut [email protected] www.delsiegle.com

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian Dermatol Online J
  • v.10(1); Jan-Feb 2019

Types of Variables, Descriptive Statistics, and Sample Size

Feroze kaliyadan.

Department of Dermatology, King Faisal University, Al Hofuf, Saudi Arabia

Vinay Kulkarni

1 Department of Dermatology, Prayas Amrita Clinic, Pune, Maharashtra, India

This short “snippet” covers three important aspects related to statistics – the concept of variables , the importance, and practical aspects related to descriptive statistics and issues related to sampling – types of sampling and sample size estimation.

What is a variable?[ 1 , 2 ] To put it in very simple terms, a variable is an entity whose value varies. A variable is an essential component of any statistical data. It is a feature of a member of a given sample or population, which is unique, and can differ in quantity or quantity from another member of the same sample or population. Variables either are the primary quantities of interest or act as practical substitutes for the same. The importance of variables is that they help in operationalization of concepts for data collection. For example, if you want to do an experiment based on the severity of urticaria, one option would be to measure the severity using a scale to grade severity of itching. This becomes an operational variable. For a variable to be “good,” it needs to have some properties such as good reliability and validity, low bias, feasibility/practicality, low cost, objectivity, clarity, and acceptance. Variables can be classified into various ways as discussed below.

Quantitative vs qualitative

A variable can collect either qualitative or quantitative data. A variable differing in quantity is called a quantitative variable (e.g., weight of a group of patients), whereas a variable differing in quality is called a qualitative variable (e.g., the Fitzpatrick skin type)

A simple test which can be used to differentiate between qualitative and quantitative variables is the subtraction test. If you can subtract the value of one variable from the other to get a meaningful result, then you are dealing with a quantitative variable (this of course will not apply to rating scales/ranks).

Quantitative variables can be either discrete or continuous

Discrete variables are variables in which no values may be assumed between the two given values (e.g., number of lesions in each patient in a sample of patients with urticaria).

Continuous variables, on the other hand, can take any value in between the two given values (e.g., duration for which the weals last in the same sample of patients with urticaria). One way of differentiating between continuous and discrete variables is to use the “mid-way” test. If, for every pair of values of a variable, a value exactly mid-way between them is meaningful, the variable is continuous. For example, two values for the time taken for a weal to subside can be 10 and 13 min. The mid-way value would be 11.5 min which makes sense. However, for a number of weals, suppose you have a pair of values – 5 and 8 – the midway value would be 6.5 weals, which does not make sense.

Under the umbrella of qualitative variables, you can have nominal/categorical variables and ordinal variables

Nominal/categorical variables are, as the name suggests, variables which can be slotted into different categories (e.g., gender or type of psoriasis).

Ordinal variables or ranked variables are similar to categorical, but can be put into an order (e.g., a scale for severity of itching).

Dependent and independent variables

In the context of an experimental study, the dependent variable (also called outcome variable) is directly linked to the primary outcome of the study. For example, in a clinical trial on psoriasis, the PASI (psoriasis area severity index) would possibly be one dependent variable. The independent variable (sometime also called explanatory variable) is something which is not affected by the experiment itself but which can be manipulated to affect the dependent variable. Other terms sometimes used synonymously include blocking variable, covariate, or predictor variable. Confounding variables are extra variables, which can have an effect on the experiment. They are linked with dependent and independent variables and can cause spurious association. For example, in a clinical trial for a topical treatment in psoriasis, the concomitant use of moisturizers might be a confounding variable. A control variable is a variable that must be kept constant during the course of an experiment.

Descriptive Statistics

Statistics can be broadly divided into descriptive statistics and inferential statistics.[ 3 , 4 ] Descriptive statistics give a summary about the sample being studied without drawing any inferences based on probability theory. Even if the primary aim of a study involves inferential statistics, descriptive statistics are still used to give a general summary. When we describe the population using tools such as frequency distribution tables, percentages, and other measures of central tendency like the mean, for example, we are talking about descriptive statistics. When we use a specific statistical test (e.g., Mann–Whitney U-test) to compare the mean scores and express it in terms of statistical significance, we are talking about inferential statistics. Descriptive statistics can help in summarizing data in the form of simple quantitative measures such as percentages or means or in the form of visual summaries such as histograms and box plots.

Descriptive statistics can be used to describe a single variable (univariate analysis) or more than one variable (bivariate/multivariate analysis). In the case of more than one variable, descriptive statistics can help summarize relationships between variables using tools such as scatter plots.

Descriptive statistics can be broadly put under two categories:

  • Sorting/grouping and illustration/visual displays
  • Summary statistics.

Sorting and grouping

Sorting and grouping is most commonly done using frequency distribution tables. For continuous variables, it is generally better to use groups in the frequency table. Ideally, group sizes should be equal (except in extreme ends where open groups are used; e.g., age “greater than” or “less than”).

Another form of presenting frequency distributions is the “stem and leaf” diagram, which is considered to be a more accurate form of description.

Suppose the weight in kilograms of a group of 10 patients is as follows:

56, 34, 48, 43, 87, 78, 54, 62, 61, 59

The “stem” records the value of the “ten's” place (or higher) and the “leaf” records the value in the “one's” place [ Table 1 ].

Stem and leaf plot

0-
1-
2-
34
43 8
54 6 9
61 2
78
87
9-

Illustration/visual display of data

The most common tools used for visual display include frequency diagrams, bar charts (for noncontinuous variables) and histograms (for continuous variables). Composite bar charts can be used to compare variables. For example, the frequency distribution in a sample population of males and females can be illustrated as given in Figure 1 .

An external file that holds a picture, illustration, etc.
Object name is IDOJ-10-82-g001.jpg

Composite bar chart

A pie chart helps show how a total quantity is divided among its constituent variables. Scatter diagrams can be used to illustrate the relationship between two variables. For example, global scores given for improvement in a condition like acne by the patient and the doctor [ Figure 2 ].

An external file that holds a picture, illustration, etc.
Object name is IDOJ-10-82-g002.jpg

Scatter diagram

Summary statistics

The main tools used for summary statistics are broadly grouped into measures of central tendency (such as mean, median, and mode) and measures of dispersion or variation (such as range, standard deviation, and variance).

Imagine that the data below represent the weights of a sample of 15 pediatric patients arranged in ascending order:

30, 35, 37, 38, 38, 38, 42, 42, 44, 46, 47, 48, 51, 53, 86

Just having the raw data does not mean much to us, so we try to express it in terms of some values, which give a summary of the data.

The mean is basically the sum of all the values divided by the total number. In this case, we get a value of 45.

The problem is that some extreme values (outliers), like “'86,” in this case can skew the value of the mean. In this case, we consider other values like the median, which is the point that divides the distribution into two equal halves. It is also referred to as the 50 th percentile (50% of the values are above it and 50% are below it). In our previous example, since we have already arranged the values in ascending order we find that the point which divides it into two equal halves is the 8 th value – 42. In case of a total number of values being even, we choose the two middle points and take an average to reach the median.

The mode is the most common data point. In our example, this would be 38. The mode as in our case may not necessarily be in the center of the distribution.

The median is the best measure of central tendency from among the mean, median, and mode. In a “symmetric” distribution, all three are the same, whereas in skewed data the median and mean are not the same; lie more toward the skew, with the mean lying further to the skew compared with the median. For example, in Figure 3 , a right skewed distribution is seen (direction of skew is based on the tail); data values' distribution is longer on the right-hand (positive) side than on the left-hand side. The mean is typically greater than the median in such cases.

An external file that holds a picture, illustration, etc.
Object name is IDOJ-10-82-g003.jpg

Location of mode, median, and mean

Measures of dispersion

The range gives the spread between the lowest and highest values. In our previous example, this will be 86-30 = 56.

A more valuable measure is the interquartile range. A quartile is one of the values which break the distribution into four equal parts. The 25 th percentile is the data point which divides the group between the first one-fourth and the last three-fourth of the data. The first one-fourth will form the first quartile. The 75 th percentile is the data point which divides the distribution into a first three-fourth and last one-fourth (the last one-fourth being the fourth quartile). The range between the 25 th percentile and 75 th percentile is called the interquartile range.

Variance is also a measure of dispersion. The larger the variance, the further the individual units are from the mean. Let us consider the same example we used for calculating the mean. The mean was 45.

For the first value (30), the deviation from the mean will be 15; for the last value (86), the deviation will be 41. Similarly we can calculate the deviations for all values in a sample. Adding these deviations and averaging will give a clue to the total dispersion, but the problem is that since the deviations are a mix of negative and positive values, the final total becomes zero. To calculate the variance, this problem is overcome by adding squares of the deviations. So variance would be the sum of squares of the variation divided by the total number in the population (for a sample we use “n − 1”). To get a more realistic value of the average dispersion, we take the square root of the variance, which is called the “standard deviation.”

The box plot

The box plot is a composite representation that portrays the mean, median, range, and the outliers [ Figure 4 ].

An external file that holds a picture, illustration, etc.
Object name is IDOJ-10-82-g004.jpg

The concept of skewness and kurtosis

Skewness is a measure of the symmetry of distribution. Basically if the distribution curve is symmetric, it looks the same on either side of the central point. When this is not the case, it is said to be skewed. Kurtosis is a representation of outliers. Distributions with high kurtosis tend to have “heavy tails” indicating a larger number of outliers, whereas distributions with low kurtosis have light tails, indicating lesser outliers. There are formulas to calculate both skewness and kurtosis [Figures ​ [Figures5 5 – 8 ].

An external file that holds a picture, illustration, etc.
Object name is IDOJ-10-82-g005.jpg

Positive skew

An external file that holds a picture, illustration, etc.
Object name is IDOJ-10-82-g008.jpg

High kurtosis (positive kurtosis – also called leptokurtic)

An external file that holds a picture, illustration, etc.
Object name is IDOJ-10-82-g006.jpg

Negative skew

An external file that holds a picture, illustration, etc.
Object name is IDOJ-10-82-g007.jpg

Low kurtosis (negative kurtosis – also called “Platykurtic”)

Sample Size

In an ideal study, we should be able to include all units of a particular population under study, something that is referred to as a census.[ 5 , 6 ] This would remove the chances of sampling error (difference between the outcome characteristics in a random sample when compared with the true population values – something that is virtually unavoidable when you take a random sample). However, it is obvious that this would not be feasible in most situations. Hence, we have to study a subset of the population to reach to our conclusions. This representative subset is a sample and we need to have sufficient numbers in this sample to make meaningful and accurate conclusions and reduce the effect of sampling error.

We also need to know that broadly sampling can be divided into two types – probability sampling and nonprobability sampling. Examples of probability sampling include methods such as simple random sampling (each member in a population has an equal chance of being selected), stratified random sampling (in nonhomogeneous populations, the population is divided into subgroups – followed be random sampling in each subgroup), systematic (sampling is based on a systematic technique – e.g., every third person is selected for a survey), and cluster sampling (similar to stratified sampling except that the clusters here are preexisting clusters unlike stratified sampling where the researcher decides on the stratification criteria), whereas nonprobability sampling, where every unit in the population does not have an equal chance of inclusion into the sample, includes methods such as convenience sampling (e.g., sample selected based on ease of access) and purposive sampling (where only people who meet specific criteria are included in the sample).

An accurate calculation of sample size is an essential aspect of good study design. It is important to calculate the sample size much in advance, rather than have to go for post hoc analysis. A sample size that is too less may make the study underpowered, whereas a sample size which is more than necessary might lead to a wastage of resources.

We will first go through the sample size calculation for a hypothesis-based design (like a randomized control trial).

The important factors to consider for sample size calculation include study design, type of statistical test, level of significance, power and effect size, variance (standard deviation for quantitative data), and expected proportions in the case of qualitative data. This is based on previous data, either based on previous studies or based on the clinicians' experience. In case the study is something being conducted for the first time, a pilot study might be conducted which helps generate these data for further studies based on a larger sample size). It is also important to know whether the data follow a normal distribution or not.

Two essential aspects we must understand are the concept of Type I and Type II errors. In a study that compares two groups, a null hypothesis assumes that there is no significant difference between the two groups, and any observed difference being due to sampling or experimental error. When we reject a null hypothesis, when it is true, we label it as a Type I error (also denoted as “alpha,” correlating with significance levels). In a Type II error (also denoted as “beta”), we fail to reject a null hypothesis, when the alternate hypothesis is actually true. Type II errors are usually expressed as “1- β,” correlating with the power of the test. While there are no absolute rules, the minimal levels accepted are 0.05 for α (corresponding to a significance level of 5%) and 0.20 for β (corresponding to a minimum recommended power of “1 − 0.20,” or 80%).

Effect size and minimal clinically relevant difference

For a clinical trial, the investigator will have to decide in advance what clinically detectable change is significant (for numerical data, this is could be the anticipated outcome means in the two groups, whereas for categorical data, it could correlate with the proportions of successful outcomes in two groups.). While we will not go into details of the formula for sample size calculation, some important points are as follows:

In the context where effect size is involved, the sample size is inversely proportional to the square of the effect size. What this means in effect is that reducing the effect size will lead to an increase in the required sample size.

Reducing the level of significance (alpha) or increasing power (1-β) will lead to an increase in the calculated sample size.

An increase in variance of the outcome leads to an increase in the calculated sample size.

A note is that for estimation type of studies/surveys, sample size calculation needs to consider some other factors too. This includes an idea about total population size (this generally does not make a major difference when population size is above 20,000, so in situations where population size is not known we can assume a population of 20,000 or more). The other factor is the “margin of error” – the amount of deviation which the investigators find acceptable in terms of percentages. Regarding confidence levels, ideally, a 95% confidence level is the minimum recommended for surveys too. Finally, we need an idea of the expected/crude prevalence – either based on previous studies or based on estimates.

Sample size calculation also needs to add corrections for patient drop-outs/lost-to-follow-up patients and missing records. An important point is that in some studies dealing with rare diseases, it may be difficult to achieve desired sample size. In these cases, the investigators might have to rework outcomes or maybe pool data from multiple centers. Although post hoc power can be analyzed, a better approach suggested is to calculate 95% confidence intervals for the outcome and interpret the study results based on this.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Independent and Dependent Variables

This guide discusses how to identify independent and dependent variables effectively and incorporate their description within the body of a research paper.

A variable can be anything you might aim to measure in your study, whether in the form of numerical data or reflecting complex phenomena such as feelings or reactions. Dependent variables change due to the other factors measured, especially if a study employs an experimental or semi-experimental design. Independent variables are stable: they are both presumed causes and conditions in the environment or milieu being manipulated.

Identifying Independent and Dependent Variables

Even though the definitions of the terms independent and dependent variables may appear to be clear, in the process of analyzing data resulting from actual research, identifying the variables properly might be challenging. Here is a simple rule that you can apply at all times: the independent variable is what a researcher changes, whereas the dependent variable is affected by these changes. To illustrate the difference, a number of examples are provided below.

  • The purpose of Study 1 is to measure the impact of different plant fertilizers on how many fruits apple trees bear. Independent variable : plant fertilizers (chosen by researchers) Dependent variable : fruits that the trees bear (affected by choice of fertilizers)
  • The purpose of Study 2 is to find an association between living in close vicinity to hydraulic fracturing sites and respiratory diseases. Independent variable: proximity to hydraulic fracturing sites (a presumed cause and a condition of the environment) Dependent variable: the percentage/ likelihood of suffering from respiratory diseases

Confusion is possible in identifying independent and dependent variables in the social sciences. When considering psychological phenomena and human behavior, it can be difficult to distinguish between cause and effect. For example, the purpose of Study 3 is to establish how tactics for coping with stress are linked to the level of stress-resilience in college students. Even though it is feasible to speculate that these variables are interdependent, the following factors should be taken into account in order to clearly define which variable is dependent and which is interdependent.

  • The dependent variable is usually the objective of the research. In the study under examination, the levels of stress resilience are being investigated.
  • The independent variable precedes the dependent variable. The chosen stress-related coping techniques help to build resilience; thus, they occur earlier.

Writing Style and Structure

Usually, the variables are first described in the introduction of a research paper and then in the method section. No strict guidelines for approaching the subject exist; however, academic writing demands that the researcher make clear and concise statements. It is only reasonable not to leave readers guessing which of the variables is dependent and which is independent. The description should reflect the literature review, where both types of variables are identified in the context of the previous research. For instance, in the case of Study 3, a researcher would have to provide an explanation as to the meaning of stress resilience and coping tactics.

In properly organizing a research paper, it is essential to outline and operationalize the appropriate independent and dependent variables. Moreover, the paper should differentiate clearly between independent and dependent variables. Finding the dependent variable is typically the objective of a study, whereas independent variables reflect influencing factors that can be manipulated. Distinguishing between the two types of variables in social sciences may be somewhat challenging as it can be easy to confuse cause with effect. Academic format calls for the author to mention the variables in the introduction and then provide a detailed description in the method section.

Unfortunately, your browser is too old to work on this site.

For full functionality of this site it is necessary to enable JavaScript.

  • Privacy Policy

Research Method

Home » Dependent Variable – Definition, Types and Example

Dependent Variable – Definition, Types and Example

Table of Contents

Dependent Variable

Dependent Variable

Definition:

Dependent variable is a variable in a study or experiment that is being measured or observed and is affected by the independent variable. In other words, it is the variable that researchers are interested in understanding, predicting, or explaining based on the changes made to the independent variable.

Types of Dependent Variables

Types of Dependent Variables are as follows:

  • Continuous dependent variable : A continuous variable is a variable that can take on any value within a certain range. Examples include height, weight, and temperature.
  • Discrete dependent variable: A discrete variable is a variable that can only take on certain values within a certain range. Examples include the number of children in a family, the number of pets someone has, and the number of cars owned by a household.
  • Categorical dependent variable: A categorical variable is a variable that can take on values that belong to specific categories or groups. Examples include gender, race, and marital status.
  • Dichotomous dependent variable: A dichotomous variable is a categorical variable that can take on only two values. Examples include whether someone is a smoker or non-smoker, or whether someone has a certain medical condition or not.
  • Ordinal dependent variable: An ordinal variable is a categorical variable that has a specific order or ranking to its categories. Examples include education level (e.g., high school diploma, college degree, graduate degree), or socioeconomic status (e.g., low, middle, high).
  • Interval dependent variable: An interval variable is a continuous variable that has a specific measurement scale with equal intervals between the values. Examples include temperature measured in degrees Celsius or Fahrenheit.
  • Ratio dependent variable : A ratio variable is a continuous variable that has a true zero point and equal intervals between the values. Examples include height, weight, and income.
  • Count dependent variable: A count variable is a discrete variable that represents the number of times an event occurs within a specific time period. Examples include the number of times a customer visits a store, or the number of times a student misses a class.
  • Time-to-event dependent variable: A time-to-event variable is a type of continuous variable that measures the time it takes for an event to occur. Examples include the time until a customer makes a purchase, or the time until a patient recovers from an illness.
  • Latent dependent variable: A latent variable is a variable that cannot be directly observed or measured, but is inferred from other observable variables. Examples include intelligence, personality traits, and motivation.
  • Binary dependent variable: A binary variable is a dichotomous variable with only two possible outcomes, usually represented by 0 or 1. Examples include whether a customer will make a purchase or not, or whether a patient will respond to a treatment or not.
  • Multinomial dependent variable: A multinomial variable is a categorical variable with more than two possible outcomes. Examples include political affiliation, type of employment, or type of transportation used to commute.
  • Longitudinal dependent variable : A longitudinal variable is a type of continuous variable that measures change over time. Examples include academic performance, income, or health status.

Examples of Dependent Variable

Here are some examples of dependent variables in different fields:

  • In physics : The velocity of an object is a dependent variable as it changes in response to the force applied to it.
  • In psychology : The level of happiness or satisfaction of a person can be a dependent variable as it may change in response to different factors such as the level of stress or social support.
  • I n medicine: The effectiveness of a new drug can be a dependent variable as it may be measured in relation to the symptoms of a disease.
  • In education : The grades of a student can be a dependent variable as they may be influenced by factors such as teaching methods or amount of studying.
  • In economics : The demand for a product can be a dependent variable as it may change in response to factors such as the price or availability of the product.
  • In biology : The growth rate of a plant can be a dependent variable as it may change in response to factors such as sunlight, water, or soil nutrients.
  • In sociology: The level of social support for an individual can be a dependent variable as it may change in response to factors such as the availability of community resources or the strength of social networks.
  • In marketing : The sales of a product can be a dependent variable as they may change in response to factors such as advertising, pricing, or consumer trends.
  • In environmental science : The biodiversity of an ecosystem can be a dependent variable as it may change in response to factors such as climate change, pollution, or habitat destruction.
  • I n political science : The outcome of an election can be a dependent variable as it may change in response to factors such as campaign strategies, political advertising, or voter turnout.
  • I n criminology : The likelihood of a person committing a crime can be a dependent variable as it may change in response to factors such as poverty, education, or socialization.
  • In engineering : The efficiency of a machine can be a dependent variable as it may change in response to factors such as the materials used, the design of the machine, or the operating conditions.
  • In linguistics: The speed and accuracy of language processing can be a dependent variable as they may change in response to factors such as linguistic complexity, language experience, or cognitive ability.
  • In history : The outcome of a historical event, such as a battle or a revolution, can be a dependent variable as it may change in response to factors such as leadership, strategy, or external forces.
  • In sports science : The performance of an athlete can be a dependent variable as it may change in response to factors such as training methods, nutrition, or psychological factors.

Applications of Dependent Variable

  • Experimental studies: In experimental studies, the dependent variable is used to test the effect of one or more independent variables on the outcome variable. For example, in a study on the effect of a new drug on blood pressure, the dependent variable is the blood pressure.
  • Observational studies : In observational studies, the dependent variable is used to explore the relationship between two or more variables. For example, in a study on the relationship between physical activity and depression, the dependent variable is the level of depression.
  • Psychology : In psychology, dependent variables are used to measure the response or behavior of individuals in response to different experimental or natural conditions.
  • Predictive modeling : In predictive modeling, the dependent variable is used to predict the outcome of a future event or situation. For example, in financial modeling, the dependent variable can be used to predict the future value of a stock or currency.
  • Regression analysis : In regression analysis, the dependent variable is used to predict the value of one or more independent variables based on their relationship with the dependent variable. For example, in a study on the relationship between income and education, the dependent variable is income.
  • Machine learning : In machine learning, the dependent variable is used to train the model to predict the value of the dependent variable based on the values of one or more independent variables. For example, in image recognition, the dependent variable can be used to identify the object in an image.
  • Quality control : In quality control, the dependent variable is used to monitor the performance of a product or process. For example, in a manufacturing process, the dependent variable can be used to measure the quality of the product and identify any defects.
  • Marketing research : In marketing research, the dependent variable is used to understand consumer behavior and preferences. For example, in a study on the effectiveness of a new advertising campaign, the dependent variable can be used to measure consumer response to the ad.
  • Social sciences research : In social sciences research, the dependent variable is used to study human behavior and attitudes. For example, in a study on the impact of social media on mental health, the dependent variable can be used to measure the level of anxiety or depression.
  • Epidemiological studies: In epidemiological studies, the dependent variable is used to investigate the prevalence and incidence of diseases or health conditions. For example, in a study on the risk factors for heart disease, the dependent variable can be used to measure the occurrence of heart disease.
  • Environmental studies : In environmental studies, the dependent variable is used to assess the impact of environmental factors on ecosystems and natural resources. For example, in a study on the effect of pollution on aquatic life, the dependent variable can be used to measure the health and survival of aquatic organisms.
  • Educational research: In educational research, the dependent variable is used to study the effectiveness of different teaching methods and instructional strategies. For example, in a study on the impact of a new teaching program on student achievement, the dependent variable can be used to measure student performance.

Purpose of Dependent Variable

The purpose of the dependent variable is to help researchers understand the relationship between the independent variable and the outcome they are studying. By measuring the changes in the dependent variable, researchers can determine the effects of different variables on the outcome of interest.

When to use Dependent Variable

Following are some situations When to use Dependent Variable:

  • When conducting scientific research or experiments, the dependent variable is the factor that is being measured or observed to determine its relationship with other factors or variables.
  • In statistical analysis, the dependent variable is the outcome or response variable that is being predicted or explained by one or more independent variables.
  • When formulating hypotheses, the dependent variable is the variable that is being predicted or explained by the independent variable(s).
  • When writing a research paper or report, it is important to clearly define the dependent variable(s) in order to provide a clear understanding of the research question and methods used to answer it.
  • In social sciences, such as psychology or sociology, the dependent variable may refer to behaviors, attitudes, or other measurable aspects of individuals or groups.
  • In natural sciences, such as biology or physics, the dependent variable may refer to physical properties or characteristics, such as temperature, speed, or mass.
  • The dependent variable is often contrasted with the independent variable, which is the variable that is being manipulated or changed in order to observe its effects on the dependent variable.

Characteristics of Dependent Variable

Some Characteristics of Dependent Variable are as follows:

  • The dependent variable is the outcome or response variable in the study.
  • Its value depends on the values of one or more independent variables.
  • The dependent variable is typically measured or observed, rather than manipulated by the researcher.
  • It can be continuous (e.g., height, weight) or categorical (e.g., yes/no, red/green/blue).
  • The dependent variable should be relevant to the research question and meaningful to the study participants.
  • It should have a clear and consistent definition and be measured or observed consistently across all participants in the study.
  • The dependent variable should be valid and reliable, meaning that it measures what it is intended to measure and produces consistent results over time.

Advantages of Dependent Variable

Some Advantages of Dependent Variable are as follows:

  • Allows for the testing of hypotheses: By measuring the dependent variable in response to changes in the independent variable, researchers can test hypotheses and draw conclusions about cause-and-effect relationships.
  • Provides insight into the relationship between variables: The dependent variable can provide insight into how one variable is related to another, allowing researchers to identify patterns and make predictions about future outcomes.
  • Enables the evaluation of interventions : By measuring changes in the dependent variable over time, researchers can evaluate the effectiveness of interventions and determine whether they have a meaningful impact on the outcome being studied.
  • Enables the comparison of groups: The dependent variable can be used to compare groups of participants or populations, helping researchers to identify differences or similarities and draw conclusions about underlying factors that may be contributing to those differences.
  • Enables the calculation of statistical measures: By measuring the dependent variable, researchers can calculate statistical measures such as means, variances, and standard deviations, which are used to make statistical inferences about the population being studied.

Disadvantages of Dependent Variable

  • Limited in scope: The dependent variable is limited to the specific outcome being studied, which may not capture the full complexity of the system or phenomenon being investigated.
  • Vulnerable to confounding variables: Confounding variables, or factors that are not controlled for in the study, can influence the dependent variable and obscure the relationship between the independent and dependent variables.
  • Prone to measurement error: The dependent variable may be subject to measurement error due to issues with data collection methods or measurement instruments, which can lead to inaccurate or unreliable results.
  • Limited to observable variables : The dependent variable is typically limited to variables that can be measured or observed, which may not capture underlying or latent variables that may be important for understanding the phenomenon being studied.
  • Ethical concerns: In some cases, measuring the dependent variable may raise ethical concerns, such as in studies of sensitive topics or vulnerable populations.
  • Limited to specific time periods : The dependent variable is typically measured at specific time points or over specific time periods, which may not capture changes or fluctuations in the outcome over longer periods of time.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Interval Variable

Interval Variable – Definition, Purpose and...

Categorical Variable

Categorical Variable – Definition, Types and...

Composite Variable

Composite Variable – Definition, Types and...

Nominal Variable

Nominal Variable – Definition, Purpose and...

Extraneous Variable

Extraneous Variable – Types, Control and Examples

Variables in Research

Variables in Research – Definition, Types and...

Variables in Quantitative Research: A Beginner's Guide (COUN)

Quantitative variables.

Because quantitative methodology requires measurement, the concepts being investigated need to be defined in a way that can be measured. Organizational change, reading comprehension, emergency response, or depression are concepts, but they cannot be measured as such. Frequency of organizational change, reading comprehension scores, emergency response time, or types of depression can be measured. They are variables (concepts that can vary).

  • Independent variables (IV).
  • Dependent variables (DV).
  • Sample variables.
  • Extraneous variables.

Independent Variables (IV)

Independent variables (IV) are those that are suspected of being the cause in a causal relationship. If you are asking a cause and effect question, your IV will be the variable (or variables) that you suspect causes the effect.

There are two main sorts of IV—active independent variables and attribute independent variables:

  • Active IV are interventions or conditions that are being applied to the participants. A special tutorial for the third graders, a new therapy for clients, or a new training program being tested on employees would be active IVs.
  • Attribute IV are intrinsic characteristics of the participants that are suspected of causing a result. For example, if you are examining whether gender which is intrinsic to the participants results in higher or lower scores on some skill, gender is an attribute IV.
  • Both types of IV can have what are called levels. For example:
  • In the example above, the active IV special tutorial , receiving the tutorial is one level, and tutorial withheld (control) is a second level.
  • In the same example, being a third grader would be an attribute IV. It could be defined as only one level—being in third grade or you might wish to define it with more than one level, such as first half of third grade and second half of third grade. Indeed, that attribute IV could take many more, for example, if you wished to look at each month of third grade.

Independent variables are frequently called different things depending on the nature of the research question. In predictive questions, where a variable is thought to predict another but it is not yet appropriate to ask whether it causes the other, the IV is usually called a predictor or criterion variable rather than an independent variable.

Dependent Variables (DV)

  • Dependent variables are variables that depend on or are influenced by the independent variables.
  • They are outcomes or results of the influence of the independent variable.
  • Dependent variables answer the question, "What do I observe happening when I apply the intervention?"
  • The dependent variable receives the intervention.

In questions where full clausation is not assumed, such as a predictive question or a question about differences between groups but no manipulation of an IV, the dependent variables are usually called outcome variable s, and the independent variables are usually called the predictor or criterion variables.

Sample Variables

In some studies, some characteristic of the participants must be measured for some reason, but that characteristic is not the IV or the DV. In this case, these are called sample variables. For example, suppose you are investigating whether amount of sleep affects level of concentration in depressed people. In order to obtain a sample of depressed people, a standard test of depression will be given. So the presence or absence of depression will be a sample variable. That score is not used as an IV or a DV, but simply to get the appropriate people into the sample.

When there is no measure of a characteristic of the participants, the characteristic is called a sample characteristic . When the characteristic must be measured, it is called a sample variable .

Extraneous Variables

Extraneous variables are not of interest to the study, but may influence the dependent variable. For this reason, most quantitative studies attempt to control extraneous variables. The literature should inform you what extraneous variables to account for. For example, in the study of third graders' reading scores, variables such as noise levels in the testing room, the size or lighting or temperature of the room, and whether the children had had a good breakfast might be extraneous variables.

There is a special class of extraneous variables called confounding variables. These are variables that can cause the effect we are looking for if they are not controlled for, resulting in a false finding that the IV is effective when it is not. In a study of changes in skill levels in a group of caseworkers after a training program, if the follow-up measure is taken relatively late after the training, the simple effect of practicing the skills might explain improved scores, and the training might be mistakenly thought to be successful when it was not.

There are many details about variables not covered in this handout. Please consult any text on research methods for a more comprehensive review.

Doc. reference: phd_t2_coun_u02s2_h02_quantvar.html

defining variables in research

Transcription Service for Your Academic Paper

Start Transcription now

Editing & Proofreading for Your Research Paper

Get it proofread now

Online Printing & Binding with Free Express Delivery

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Master degree
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Example sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Frequency distribution
  • Measures of central tendency
  • Measures of variability
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Transcription Service for Your Paper

Printing & Binding with 3D Live Preview

Types of Variables in Research – Definition & Examples

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

types-of-variables-in-research-Definition

A fundamental component in statistical investigations is the methodology you employ in selecting your research variables. The careful selection of appropriate variable types can significantly enhance the robustness of your experimental design . This piece explores the diverse array of variable classifications within the field of statistical research. Additionally, understanding the different types of variables in research can greatly aid in shaping your experimental hypotheses and outcomes.

Inhaltsverzeichnis

  • 1 Types of Variables in Research – In a Nutshell
  • 2 Definition: Types of variables in research
  • 3 Types of variables in research – Quantitative vs. Categorical
  • 4 Types of variables in research – Independent vs. Dependent
  • 5 Other useful types of variables in research

Types of Variables in Research – In a Nutshell

  • A variable is an attribute of an item of analysis in research.
  • The types of variables in research can be categorized into: independent vs. dependent , or categorical vs. quantitative .
  • The types of variables in research (correlational) can be classified into predictor or outcome variables.
  • Other types of variables in research are confounding variables , latent variables , and composite variables.

Definition: Types of variables in research

A variable is a trait of an item of analysis in research. Types of variables in research are imperative, as they describe and measure places, people, ideas , or other research objects . There are many types of variables in research. Therefore, you must choose the right types of variables in research for your study.

Note that the correct variable will help with your research design , test selection, and result interpretation.

In a study testing whether some genders are more stress-tolerant than others, variables you can include are the level of stressors in the study setting, male and female subjects, and productivity levels in the presence of stressors.

Also, before choosing which types of variables in research to use, you should know how the various types work and the ideal statistical tests and result interpretations you will use for your study. The key is to determine the type of data the variable contains and the part of the experiment the variable represents.

Types of variables in research – Quantitative vs. Categorical

Data is the precise extent of a variable in statistical research that you record in a data sheet. It is generally divided into quantitative and categorical classes.

Quantitative or numerical data represents amounts, while categorical data represents collections or groupings.

The type of data contained in your variable will determine the types of variables in research. For instance, variables consisting of quantitative data are called quantitative variables, while those containing categorical data are called categorical variables. The section below explains these two types of variables in research better.

Quantitative variables

The scores you record when collecting quantitative data usually represent real values you can add, divide , subtract , or multiply . There are two types of quantitative variables: discrete variables and continuous variables .

The table below explains the elements that set apart discrete and continuous types of variables in research:

Discrete or integer variables Individual item counts or values • Number of employees in a company
• Number of students in a school district
Continuous or ratio variables Measurements of non-finite or continuous scores • Age
• Weight
• Volume
• Distance

Categorical variables

Categorical variables contain data representing groupings. Additionally, the data in categorical variables is sometimes recorded as numbers . However, the numbers represent categories instead of real amounts.

There are three categorical types of variables in research: nominal variables, ordinal variables , and binary variables . Here is a tabular summary.

Binary/dichotomous variables YES/NO outcomes • Win/lose in a game
• Pass/fail in an exam
Nominal variables No-rank groups or orders between groups • Colors
• Participant name
• Brand names
Ordinal variables Groups ranked in a particular order • Performance rankings in an exam
• Rating scales of survey responses

It is worth mentioning that some categorical variables can function as multiple types. For example, in some studies, you can use ordinal variables as quantitative variables if the scales are numerical and not discrete.

Data sheet of quantitative and categorical variables

A data sheet is where you record the data on the variables in your experiment.

In a study of the salt-tolerance levels of various plant species, you can record the data on salt addition and how the plant responds in your datasheet.

The key is to gather the information and draw a conclusion over a specific period and filling out a data sheet along the process.

Below is an example of a data sheet containing binary, nominal, continuous , and ordinal types of variables in research.

A 12 0 - - -
A 18 50 - - -
B 11 0 - - -
B 15 50 - - -
C 25 0 - - -
C 31 50 - - -

Types of variables in research – Independent vs. Dependent

types-of-variables-in-research-Dependent-independet-and-constant-variable

The purpose of experiments is to determine how the variables affect each other. As stated in our experiment above, the study aims to find out how the quantity of salt introduce in the water affects the plant’s growth and survival.

Therefore, the researcher manipulates the independent variables and measures the dependent variables . Additionally, you may have control variables that you hold constant.

The table below summarizes independent variables, dependent variables , and control variables .

Independent/ treatment variables The variables you manipulate to affect the experiment outcome The amount of salt added to the water
Dependent/ response variables The variable that represents the experiment outcomes The plant’s growth or survival
Control variables Variables held constant throughout the study Temperature or light in the experiment room

Data sheet of independent and dependent variables

In salt-tolerance research, there is one independent variable (salt amount) and three independent variables. All other variables are neither dependent nor independent.

Below is a data sheet based on our experiment:

Types of variables in correlational research

The types of variables in research may differ depending on the study.

In correlational research , dependent and independent variables do not apply because the study objective is not to determine the cause-and-effect link between variables.

However, in correlational research, one variable may precede the other, as illness leads to death, and not vice versa. In such an instance, the preceding variable, like illness, is the predictor variable, while the other one is the outcome variable.

Other useful types of variables in research

The key to conducting effective research is to define your types of variables as independent and dependent. Next, you must determine if they are categorical or numerical types of variables in research so you can choose the proper statistical tests for your study.

Below are other types of variables in research worth understanding.

Confounding variables Hides the actual impact of an alternative variable in your study Pot size and soil type
Latent variables Cannot be measured directly Salt tolerance
Composite variables Formed by combining multiple variables The health variables combined into a single health score

What is the definition for independent and dependent variables?

An autonomous or independent variable is the one you believe is the origin of the outcome, while the dependent variable is the one you believe affects the outcome of your study.

What are quantitative and categorical variables?

Knowing the types of variables in research that you can work with will help you choose the best statistical tests and result representation techniques. It will also help you with your study design.

Discrete and continuous variables: What is their difference?

Discrete variables are types of variables in research that represent counts, like the quantities of objects. In contrast, continuous variables are types of variables in research that represent measurable quantities like age, volume, and weight.

Bachelor Print is the most amazing company ever to print or bind academic work...

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Name
Anbieter Eigentümer dieser Website,
Zweck Speichert die Einstellungen der Besucher, die in der Cookie Box von Borlabs Cookie ausgewählt wurden.
Cookie Name borlabs-cookie
Cookie Laufzeit 1 Jahr
Name
Anbieter Bachelorprint
Zweck Erkennt das Herkunftsland und leitet zur entsprechenden Sprachversion um.
Datenschutzerklärung
Host(s) ip-api.com
Cookie Name georedirect
Cookie Laufzeit 1 Jahr
Name
Anbieter Playcanvas
Zweck Display our 3D product animations
Datenschutzerklärung
Host(s) playcanv.as, playcanvas.as, playcanvas.com
Cookie Laufzeit 1 Jahr

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Akzeptieren
Name
Anbieter Google Ireland Limited, Gordon House, Barrow Street, Dublin 4, Ireland
Zweck Cookie von Google zur Steuerung der erweiterten Script- und Ereignisbehandlung.
Datenschutzerklärung
Cookie Name _ga,_gat,_gid
Cookie Laufzeit 2 Jahre

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Akzeptieren
Name
Anbieter Meta Platforms Ireland Limited, 4 Grand Canal Square, Dublin 2, Ireland
Zweck Wird verwendet, um Facebook-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) .facebook.com
Akzeptieren
Name
Anbieter Google Ireland Limited, Gordon House, Barrow Street, Dublin 4, Ireland
Zweck Wird zum Entsperren von Google Maps-Inhalten verwendet.
Datenschutzerklärung
Host(s) .google.com
Cookie Name NID
Cookie Laufzeit 6 Monate
Akzeptieren
Name
Anbieter Meta Platforms Ireland Limited, 4 Grand Canal Square, Dublin 2, Ireland
Zweck Wird verwendet, um Instagram-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) .instagram.com
Cookie Name pigeon_state
Cookie Laufzeit Sitzung
Akzeptieren
Name
Anbieter Openstreetmap Foundation, St John’s Innovation Centre, Cowley Road, Cambridge CB4 0WS, United Kingdom
Zweck Wird verwendet, um OpenStreetMap-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) .openstreetmap.org
Cookie Name _osm_location, _osm_session, _osm_totp_token, _osm_welcome, _pk_id., _pk_ref., _pk_ses., qos_token
Cookie Laufzeit 1-10 Jahre
Akzeptieren
Name
Anbieter Twitter International Company, One Cumberland Place, Fenian Street, Dublin 2, D02 AX07, Ireland
Zweck Wird verwendet, um Twitter-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) .twimg.com, .twitter.com
Cookie Name __widgetsettings, local_storage_support_test
Cookie Laufzeit Unbegrenzt
Akzeptieren
Name
Anbieter Vimeo Inc., 555 West 18th Street, New York, New York 10011, USA
Zweck Wird verwendet, um Vimeo-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) player.vimeo.com
Cookie Name vuid
Cookie Laufzeit 2 Jahre
Akzeptieren
Name
Anbieter Google Ireland Limited, Gordon House, Barrow Street, Dublin 4, Ireland
Zweck Wird verwendet, um YouTube-Inhalte zu entsperren.
Datenschutzerklärung
Host(s) google.com
Cookie Name NID
Cookie Laufzeit 6 Monate

Privacy Policy Imprint

defining variables in research

PHILO-notes

Free Online Learning Materials

What are Variables and Why are They Important in Research?

In research, variables are crucial components that help to define and measure the concepts and phenomena under investigation. Variables are defined as any characteristic or attribute that can vary or change in some way. They can be measured, manipulated, or controlled to investigate the relationship between different factors and their impact on the research outcomes. In this essay, I will discuss the importance of variables in research, highlighting their role in defining research questions, designing studies, analyzing data, and drawing conclusions.

Defining Research Questions

Variables play a critical role in defining research questions. Research questions are formulated based on the variables that are under investigation. These questions guide the entire research process, including the selection of research methods, data collection procedures, and data analysis techniques. Variables help researchers to identify the key concepts and phenomena that they wish to investigate, and to formulate research questions that are specific, measurable, and relevant to the research objectives.

For example, in a study on the relationship between exercise and stress, the variables would be exercise and stress. The research question might be: “What is the relationship between the frequency of exercise and the level of perceived stress among young adults?”

Designing Studies

Variables also play a crucial role in the design of research studies. The selection of variables determines the type of research design that will be used, as well as the methods and procedures for collecting and analyzing data. Variables can be independent, dependent, or moderator variables, depending on their role in the research design.

Independent variables are the variables that are manipulated or controlled by the researcher. They are used to determine the effect of a particular factor on the dependent variable. Dependent variables are the variables that are measured or observed to determine the impact of the independent variable. Moderator variables are the variables that influence the relationship between the independent and dependent variables.

For example, in a study on the effect of caffeine on athletic performance, the independent variable would be caffeine, and the dependent variable would be athletic performance. The moderator variables could include factors such as age, gender, and fitness level.

Analyzing Data

Variables are also essential in the analysis of research data. Statistical methods are used to analyze the data and determine the relationships between the variables. The type of statistical analysis that is used depends on the nature of the variables, their level of measurement, and the research design.

For example, if the variables are categorical or nominal, chi-square tests or contingency tables can be used to determine the relationships between them. If the variables are continuous, correlation analysis or regression analysis can be used to determine the strength and direction of the relationship between them.

Drawing Conclusions

Finally, variables are crucial in drawing conclusions from research studies. The results of the study are based on the relationship between the variables and the conclusions drawn depend on the validity and reliability of the research methods and the accuracy of the statistical analysis. Variables help to establish the cause-and-effect relationships between different factors and to make predictions about the outcomes of future events.

For example, in a study on the effect of smoking on lung cancer, the independent variable would be smoking, and the dependent variable would be lung cancer. The conclusion would be that smoking is a risk factor for lung cancer, based on the strength and direction of the relationship between the variables.

In conclusion, variables play a crucial role in research across different fields and disciplines. They help to define research questions, design studies, analyze data, and draw conclusions. By understanding the importance of variables in research, researchers can design studies that are relevant, accurate, and reliable, and can provide valuable insights into the phenomena under investigation. Therefore, it is essential to consider variables carefully when designing, conducting, and interpreting research studies.

Logo for Pressbooks at Virginia Tech

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

4.1 Introduction to Probability and Random Variables

Learning Objectives

By the end of this chapter, the student should be able to:

  • Understand the terminology and basic rules of probability
  • Handle general discrete random variables
  • Recognize and apply the binomial distribution
  • Understand general continuous random variables
  • Recognize and apply special cases of continuous random variables (uniform, normal)
  • Use the normal distribution to approximate the binomial

This is a photo taken of the night sky. A meteor and its tail are shown entering the earth's atmosphere.

More than likely, you have used probability. In fact, you probably have an intuitive sense of probability. Probability deals with the chance of an event occurring. Whenever you weigh the odds of whether or not to do your homework or to study for an exam, you are using probability. In this chapter, you will learn how to solve probability problems using a systematic approach.

Probability

Probability is a measure that is associated with how certain we are of outcomes of a particular experiment or activity. An experiment is a planned operation carried out under controlled conditions. If the result is not predetermined, then the experiment is said to be a probability experiment . Flipping one fair coin twice is an example of an experiment.

A result of an experiment is called an outcome . The sample space of an experiment is the set of all possible outcomes. Three ways to represent a sample space are listing the possible outcomes, creating a tree diagram, or creating a Venn diagram. The uppercase letter S is used to denote the sample space. For example, if you flip one fair coin, S = { H , T } where H ( heads) and T (tails) are the outcomes.

An event is any combination of outcomes. Upper case letters like A and B represent events. For example, if the experiment is to flip one fair coin, event A might be getting at most one head. The probability of an event A is written P ( A ).

The probability of any outcome is the long-term relative frequency of that outcome. Probabilities are between zero and one, inclusive (that is, zero, one, and all numbers between these values). P ( A ) = 0 means that event A can never happen. P ( A ) = 1 means that event A always happens. P ( A ) = 0.5 means that event A is equally likely to occur or not to occur. For example, if you flip one fair coin repeatedly (from 20 to 2,000 to 20,000 times), the relative frequency of heads approaches 0.5 (the probability of heads).

A probability model is a mathematical representation of a random process that lists all possible outcomes and assigns probabilities to each of them. This type of model is our ultimately our goal when moving forward in our study of statistics.

The Law of Large Numbers

An important characteristic of probability experiments known as the law of large numbers states that, as the number of repetitions of an experiment increases, the relative frequency obtained in the experiment tends to become closer and closer to the theoretical probability. Even though the outcomes do not happen according to any set pattern or order, overall, the long-term observed relative frequency will approach the theoretical probability. (The word “empirical” is often used instead of the word “observed.”)

If you toss a coin and record the result, what is the probability that the result is heads? If you flip a coin two times, does probability tell you that these flips will result in one heads and one tail? You might toss a fair coin ten times and record nine heads. Probability does not describe the short-term results of an experiment; rather, it gives information about what can be expected in the long term. To demonstrate this, Karl Pearson once tossed a fair coin 24,000 times! He recorded the results of each toss, obtaining heads 12,012 times. In his experiment, Pearson illustrated the law of large numbers.

The Axioms of Probability

Finding probabilities in more complicated situations starts with the three axioms of probability:

  • 0 ≤ P(E) ≤ 1
  • For each two events E 1 and E 2 with E 1 ∩ E 2 = Ø, P(E 1 U E 2 ) = P(E 1 ) + P(E 2 )

The first two axioms should be fairly intuitive. Axiom 1 says that the probabilities of all outcomes in a sample space will always add up to 1. Axiom 2 says the probability of any event must be between 0 and 1. For now, the third axiom, called the disjoint addition rule, isn’t that important, but the upcoming ideas are based on the first two axioms.

The Complement

Suppose we know the probability of an event occurring but want to know the probability it does not occur, or vice versa? We can easily find this from the first two axioms of probability.

\overline{A}

There are several useful forms of the complement rule:

  • P ( A ) + P ( A′ ) = 1
  • 1 – P ( A ) = P ( A′ )
  • 1 – P ( A’ ) = P ( A )

\frac{4}{6}

Random Variables

Random variables (RVs) are probability models quantifying situations. A random variable describes the outcomes of a statistical experiment in words or as a function that assigns each element of a sample space a unique real number. Uppercase letters such as X or Y typically denote a random variable. Lowercase letters like x or y denote a specific value of that random variable. If X is a random variable, then X is written in words, and x is given as a number. For example, the probability of the random variable X being equal to 3 is denoted as P(X=3).

There are both continuous and discrete random variables depending on the type of data that situation would produce. We will begin with discrete random variables (DRVs) and revisit continuous random variables (CRVs) in the future.

Click here for more multimedia resources, including podcasts, videos, lecture notes, and worked examples.

Figure References

Figure 4.1: Ed Sweeney (2009). 2009 Leonid Meteor. CC BY 2.0. https://flic.kr/p/7girE8

The study of randomness; a number between zero and one, inclusive, that gives the likelihood that a specific event will occur

A random experiment where the result is not predetermined

A particular result of an experiment

The set of all possible outcomes of an experiment

An outcome or subset of outcomes of an experiment in which you are interested

A mathematical representation of a random process that lists all possible outcomes and assigns probabilities to each

As the number of trials in a probability experiment increases, the relative frequency of an event approaches the theoretical probability

The complement of an event consists of all outcomes in a sample space that are NOT in the event.

Significant Statistics Copyright © 2024 by John Morgan Russell, OpenStaxCollege, OpenIntro is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Research Variables: Types, Uses and Definition of Terms

Profile image of Olayemi J Abiodun-Oyebanji

The purpose of research is to describe and explain variance in the world, that is, variance that occurs naturally in the world or change that we create due to manipulation. Variables are therefore the names that are given to the variance we wish to explain and it is very critical to the research because the way the researcher uses or handles them in the research process could determine the nature and direction of the research (Nwankwo and Emunemu, 2014). Closely related to the understanding of what a variable is, is the idea of definition of terms. This chapter explores the use of variables in research, types of variables and the definition of terms, so as to help some of the students who have a problem identifying and clarifying the variables they are working on in their project work.

Related Papers

George Argyrous , Glyze Abella

This book aims to help people analyze quantitative information. Before detailing the 'hands-on' analysis we will explore in later chapters, this introductory chapter will discuss some of the background conceptual issues that are precursors to statistical analysis. The chapter begins where most research in fact begins; with research questions. A research question states the aim of a research project in terms of cases of interest and the variables upon which these cases are thought to differ. A few examples of research questions are: 'What is the age distribution of the students in my statistics class?' 'Is there a relationship between the health status of my statistics students and their sex?' 'Is any relationship between the health status and the sex of students in my statistics class affected by the age of the students?' We begin with very clear, precisely stated research questions such as these that will guide the way we conduct research and ensure that we do not end up with a jumble of information that does not create any real knowledge. We need a clear research question (or questions) in mind before undertaking statistical analysis to avoid the situation where huge amounts of data are gathered unnecessarily, and which do not lead to any meaningful results. I suspect that a great deal of the confusion associated with statistical analysis actually arises from imprecision in the research questions that are meant to guide it. It is very difficult to select the relevant type of analysis to undertake, given the many possible analyses we could employ on a given set of data, if we are uncertain of our objectives. If we don't know why we are undertaking research in the first place, then it follows we will not know what to do with research data once we have gathered them. Conversely, if we are clear about the research question(s) we are addressing the statistical techniques to apply follow almost as a matter of course. We can see that each of the research questions above identifies the entities that I wish to investigate. In each question these entities are students in my statistics class, who are thus the units of analysis – the cases of interest – to my study.

defining variables in research

Abimbola Awotedu

International Journal of Methodology

Akaawase Mchi

This paper discusses the importance of variable conceptualisation and measurement in environmental research. The paper explains how wrong application of concepts can mislead the researcher when conducting research, and the resultant effects on each stage of the environmental research process. The paper is motivated by the problems behind many research students pursuing their masters or doctoral degree programmes face, especially with change in dissertations or theses titles and methods to match the contents of their reports. In this paper, the authors demystify the challenges encountered by unskilful researchers and students when trying to make their readers have a clear understanding of their research reports (dissertations or theses). Therefore, the paper may serve as a guide in planning and conducting environmental research by university degree students and early career researchers.

Faith Musango

Symeou, L. & Lamprianou, J.

Loizos Symeou , Iasonas Lamprianou

Santo Di Nuovo

The article deals with the use of variables in quantitative psychological research. Topics as the choice of variables, their measurement and statistical analysis, the deductions based on data, are briefly reviewed. All variables can be misleading if used in a misleading way, but the Author contends that the psychology based on the variables has not the possibility to represent selected samples of inner processes and contents. Quantitative analyses based on linear causality and probabilistic inference pose many problems, but some alternative approaches devised to cope with these problems are indicated. An hermeneutic approach aware of the constructivist ground of the scientific knowledge is proposed.

Rahul Pilani

Environmental Policy Convergence in Europe

Stephan Heichel

International Journal of Religion

José Mario Ochoa-Pachas , Luis Pajuelo , JOSE MARIO OCHOA PACHAS

It is common to use Bloom's taxonomy to write research objectives; however, it is often forgotten that this Bloomian classification corresponds to the teaching-learning process. Likewise, is not usual to include the levels or scope of research since so many classifications have been proposed, suggesting that science can be fragmented and that qualitative studies have nothing to do with quantitative studies and vice versa. Regardless of the coincidences and discrepancies that may exist, researchers require a guideline that is based on the principles of science to be able to organize and structure their studies and that allows for growth and development, removing biases and partialities from analysis. It is necessary to remember that a taxonomy is valid if it adheres to the criteria that scientific knowledge itself indicates. This research is an exploratory and observational study whose purpose is to identify its objectives according to its levels with their respective study variables.

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

Journal of Consumer Psychology

Alice Tybout

zubair arians

Research about research, as a psychologist views it.

Elisabeta Rosca

Ridwan Osman

Wafae Barkani

Racidon Bernarte

Thabologo Motsamai

MD Ashikur Rahman

The Electronic Journal of Business Research Methods

Emmanuel Achor

Naveen Kumar

Saeed Anwar

khadidja Hammoudi

Bakhtawer Zain

Dr. J. M. Ashfaque (MInstP)

Dr. IBRAHIM YUSUF

Alexis Hernandez

caroline tobing

mark vince agacite

Durga Prasad

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

diagnostics-logo

Article Menu

defining variables in research

  • Subscribe SciFeed
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Prediction models for perioperative blood transfusion in patients undergoing gynecologic surgery: a systematic review.

defining variables in research

1. Introduction

2. materials and methods, 2.1. eligibility criteria, 2.1.1. population/participants, 2.1.2. interventions and comparators (models), 2.1.3. outcomes, 2.1.4. timing, 2.1.5. setting, 2.2. information sources and search strategy, 2.3. study selection, 2.4. data collection, 2.5. risk of bias assessment, 2.6. summary measures of the model’s predictive performance, 2.7. visualization, 3.1. results of the search, 3.2. included studies, 3.2.1. participants, 3.2.2. predictors, 3.2.3. outcome, 3.2.4. prediction model development and validation, 3.3. risk of bias and applicability concerns, 3.3.1. model development, participants, 3.3.2. model external validation, 3.4. models’ predictive performances ( table 2 ), 4. discussion, 4.1. summary of findings, 4.2. relevant literature, 4.3. strengths and limitations, 4.4. implications for research, 5. conclusions, supplementary materials, author contributions, institutional review board statement, informed consent statement, data availability statement, conflicts of interest.

  • Meara, J.G.; Leather, A.J.; Hagander, L.; Alkire, B.C.; Alonso, N.; Ameh, E.A.; Bickler, S.W.; Conteh, L.; Dare, A.J.; Davies, J.; et al. Global Surgery 2030: Evidence and solutions for achieving health, welfare, and economic development. Lancet 2015 , 386 , 569–624. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Swift, B.E.; Maeda, A.; Bouchard-Fortier, G. Adverse postoperative outcomes associated with perioperative blood transfusion in gynecologic oncology surgery. Int. J. Gynecol. Cancer 2023 , 33 , 585–591. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • World Health Organization. Global Status Report on Blood Safety and Availability 2021 ; World Health Organization: Geneva, Switzerland, 2022. [ Google Scholar ]
  • Bulle, E.B.; Klanderman, R.B.; Pendergrast, J.; Cserti-Gazdewich, C.; Callum, J.; Vlaar, A.P. The recipe for TACO: A narrative review on the pathophysiology and potential mitigation strategies of transfusion-associated circulatory overload. Blood Rev. 2022 , 52 , 100891. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kopko, P.M.; Marshall, C.S.; MacKenzie, M.R.; Holland, P.V.; Popovsky, M.A. Transfusion-related acute lung injury: Report of a clinical look-back investigation. JAMA 2002 , 287 , 1968–1971. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Hod, E.A.; Brittenham, G.M.; Billote, G.B.; Francis, R.O.; Ginzburg, Y.Z.; Hendrickson, J.E.; Jhang, J.; Schwartz, J.; Sharma, S.; Sheth, S.; et al. Transfusion of human volunteers with older, stored red blood cells produces extravascular hemolysis and circulating non-transferrin-bound iron. Blood 2011 , 118 , 6675–6682. [ Google Scholar ] [ CrossRef ]
  • Mazer, C.D.; Whitlock, R.P.; Fergusson, D.A.; Hall, J.; Belley-Cote, E.; Connolly, K.; Khanykin, B.; Gregory, A.J.; de Médicis, É.; McGuinness, S.; et al. Restrictive or Liberal Red-Cell Transfusion for Cardiac Surgery. N. Engl. J. Med. 2017 , 377 , 2133–2144. [ Google Scholar ] [ CrossRef ]
  • Mazer, C.D.; Whitlock, R.P.; Fergusson, D.A.; Belley-Cote, E.; Connolly, K.; Khanykin, B.; Gregory, A.J.; de Médicis, É.; Carrier, F.M.; McGuinness, S.; et al. Six-Month Outcomes after Restrictive or Liberal Transfusion for Cardiac Surgery. N. Engl. J. Med. 2018 , 379 , 1224–1233. [ Google Scholar ] [ CrossRef ]
  • White, M.J.; Hazard, S.W.; Frank, S.M.; Boyd, J.S.; Wick, E.C.; Ness, P.M.; Tobian, A.A.R. The evolution of perioperative transfusion testing and blood ordering. Anaesth. Analg. 2015 , 120 , 1196–1203. [ Google Scholar ] [ CrossRef ]
  • Ramspek, C.L.; Jager, K.J.; Dekker, F.W.; Zoccali, C.; van Diepen, M. External validation of prognostic models: What, why, how, when and where? Clin. Kidney J. 2021 , 14 , 49–58. [ Google Scholar ] [ CrossRef ]
  • Collins, G.S.; Moons, K.G. Reporting of artificial intelligence prediction models. Lancet 2019 , 393 , 1577–1579. [ Google Scholar ] [ CrossRef ]
  • Hare, G.M.T.; Freedman, J.; Mazer, C.D. Review article: Risks of anemia and related management strategies: Can perioperative blood management improve patient safety? Can. J. Anaesth. 2013 , 60 , 168–175. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Shah, A.; Palmer, A.J.R.; Klein, A.A. Strategies to minimize intraoperative blood loss during major surgery. Br. J. Surg. 2020 , 107 , e26–e38. [ Google Scholar ] [ CrossRef ]
  • Mueller, M.M.; Van Remoortel, H.; Meybohm, P.; Aranko, K.; Aubron, C.; Burger, R.; Carson, J.L.; Cichutek, K.; De Buck, E.; Devine, D.; et al. Patient Blood Management: Recommendations from the 2018 Frankfurt Consensus Conference. JAMA 2019 , 321 , 983–997. [ Google Scholar ] [ CrossRef ]
  • Alghamdi, A.A.; Davis, A.; Brister, S.; Corey, P.; Logan, A. Development and validation of Transfusion Risk Understanding Scoring Tool (TRUST) to stratify cardiac surgery patients according to their blood transfusion needs. Transfusion 2006 , 46 , 1120–1129. [ Google Scholar ] [ CrossRef ]
  • Cirasino, L.; Barosi, G.; Torre, M.; Crespi, S.; Colombo, P.; Belloni, P.A. Preoperative predictors of the need for allogeneic blood transfusion in lung cancer surgery. Transfusion 2000 , 40 , 1228–1234. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ranucci, M.; Castelvecchio, S.; Frigiola, A.; Scolletta, S.; Giomarelli, P.; Biagioli, B. Predicting transfusions in cardiac surgery: The easier, the better: The Transfusion Risk and Clinical Knowledge score. Vox Sang. 2009 , 96 , 324–332. [ Google Scholar ] [ CrossRef ]
  • To, J.; Sinha, R.; Kim, S.W.; Robinson, K.; Kearney, B.; Howie, D.; To, L.B. Predicting Perioperative Transfusion in Elective Hip and Knee Arthroplasty: A Validated Predictive Model. Anesthesiology 2017 , 127 , 317–325. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Debray, T.P.; Damen, J.A.; Snell, K.I.; Ensor, J.; Hooft, L.; Reitsma, J.B.; Riley, R.D.; Moons, K.G. A guide to systematic review and meta-analysis of prediction model performance. BMJ 2017 , 356 , i6460. [ Google Scholar ] [ CrossRef ]
  • Snell, K.I.; Levis, B.; Damen, J.A.; Dhiman, P.; Debray, T.P.; Hooft, L.; Reitsma, J.B.; Moons, K.G.; Collins, G.S.; Riley, R.D. Transparent reporting of multivariable prediction models for individual prognosis or diagnosis: Checklist for systematic reviews and meta-analyses (TRIPOD-SRMA). BMJ 2023 , 381 , e073538. [ Google Scholar ] [ CrossRef ]
  • The EndNote Team. EndNote , 21st ed.; Clarivate: Philadelphia, PA, USA, 2013. [ Google Scholar ]
  • Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009 , 6 , e1000100. [ Google Scholar ] [ CrossRef ]
  • ASReview LAB Developers. ASReview LAB—A Tool for AI-Assisted Systematic Reviews ; Zenodo: Geneva, Switzerland, 2024; Available online: https://zenodo.org/records/13629181 (accessed on 10 August 2024).
  • Moons, K.G.M.; de Groot, J.A.H.; Bouwmeester, W.; Vergouwe, Y.; Mallett, S.; Altman, D.G.; Reitsma, J.B.; Collins, G.S. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: The CHARMS checklist. PLoS Med. 2014 , 11 , e1001744. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Moons, K.G.; Wolff, R.F.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann. Intern. Med. 2019 , 170 , W1–W33. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Moons, K.G.; Wolff, R.F.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019 , 170 , 51–58. [ Google Scholar ] [ CrossRef ]
  • Fernandez-Felix, B.M.; López-Alcalde, J.; Roqué, M.; Muriel, A.; Zamora, J. CHARMS and PROBAST at your fingertips: A template for data extraction and risk of bias assessment in systematic reviews of predictive models. BMC Med. Res. Methodol. 2023 , 23 , 44. [ Google Scholar ] [ CrossRef ]
  • Debray, T.P.; Damen, J.A.; Riley, R.D.; Snell, K.; Reitsma, J.B.; Hooft, L.; Collins, G.S.; Moons, K.G. A framework for meta-analysis of prediction model studies with binary and time-to-event outcomes. Stat. Methods Med. Res. 2019 , 28 , 2768–2786. [ Google Scholar ] [ CrossRef ]
  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 10 August 2024).
  • Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 10 August 2024).
  • Wickham, H. Reshaping data with the reshape package. J. Stat. Softw. 2007 , 21 , 1–20. Available online: http://www.jstatsoft.org/v21/i12/ (accessed on 10 August 2024). [ CrossRef ]
  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis ; Springer: New York, NY, USA, 2016. [ Google Scholar ]
  • Stanhiser, J.; Chagin, K.; Jelovsek, J.E. A model to predict risk of blood transfusion after gynecologic surgery. Am. J. Obstet. Gynecol. 2017 , 216 , 506.e1–506.e14. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Ackroyd, S.A.; Brown, J.; Houck, K.; Chu, C.; Mantia-Smaldone, G.; Rubin, S.; Hernandez, E. A preoperative risk score to predict red blood cell transfusion in patients undergoing hysterectomy for ovarian cancer. Am. J. Obstet. Gynecol. 2018 , 219 , 598.e1–598.e10. [ Google Scholar ] [ CrossRef ]
  • Klebanoff, J.S.; Marfori, C.Q.; Sparks, A.D.; Barnes, W.A.; Ingraham, C.F.; Moawad, G.N. A Clinically Applicable Prediction Model for the Risk of Transfusion in Women Undergoing Myomectomy. J. Minim. Invasive Gynecol. 2021 , 28 , 1765–1773.e1. [ Google Scholar ] [ CrossRef ]
  • Walczak, S.; Mikhail, E. Predicting Estimated Blood Loss and Transfusions in Gynecologic Surgery Using Artificial Neural Networks. Int. J. Healthc. Inf. Syst. Inform. 2021 , 16 , 1–15. [ Google Scholar ] [ CrossRef ]
  • Hamilton, K.M.; Liao, C.; Levin, G.; Barnajian, M.; Nasseri, Y.; Bresee, C.; Truong, M.D.; Wright, K.N.; Siedhoff, M.T.; Meyer, R. Characteristics associated with blood transfusion among women undergoing laparoscopic myomectomy: A National Surgical Quality Improvement Program study. Am. J. Obstet. Gynecol. 2024 , 231 , P109E.1–P109E.9. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Dhiman, P.; Ma, J.; Gibbs, V.N.; Rampotas, A.; Kamal, H.; Arshad, S.S.; Kirtley, S.; Doree, C.; Murphy, M.F.; Collins, G.S.; et al. Systematic review highlights high risk of bias of clinical prediction models for blood transfusion in patients undergoing elective surgery. J. Clin. Epidemiol. 2023 , 159 , 10–30. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Collins, G.S.; Michaëlsson, K. Fracture risk assessment: State of the art, methodologically unsound, or poorly reported? Curr. Osteoporos. Rep. 2012 , 10 , 199–207. [ Google Scholar ] [ CrossRef ]
  • Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD statement. Ann. Intern. Med. 2015 , 162 , 55–63. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Harrell, J.F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis ; Springer International Publishing: Cham, Switzerland, 2015; Imprint. [ Google Scholar ]
  • Steyerberg, E.W. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating ; Springer: New York, NY, 2009; pp. xxviii + 500. [ Google Scholar ]
  • Carpenter, J.R. Multiple Imputation and Its Application ; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2023. [ Google Scholar ]
  • Janssen, K.J.; Donders, A.R.; Harrell, F.E., Jr.; Vergouwe, Y.; Chen, Q.; Grobbee, D.E.; Moons, K.G. Missing covariate data in medical research: To impute is better than to ignore. J. Clin. Epidemiol. 2010 , 63 , 721–727. [ Google Scholar ] [ CrossRef ]
  • Steyerberg, E.W. Validation in prediction research: The waste by data splitting. J. Clin. Epidemiol. 2018 , 103 , 131–133. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

Author, YearStudy DesignEnrollment PeriodStudy Setting/
Surgical Procedure
Study
Region
Participant Characteristics
AgeBMISurgical RouteGynecologic Oncology
Procedure
Transfusion Rate
Stanhiser,
2017 [ ]
Retrospective cohort1 January 2010–30 June 2014A single health system/
Various types of gynecological surgery
United States49.8 (12.7)30.7 (8.1)Open:MIS 2025 (16.6):2492 (20.4) (planned)454 (4.0)239 (2.0)
Ackroyd,
2018 [ ]
Retrospective cohort2014–2016The ACS-NSQIP database/
Hysterectomy for ovarian cancer
United StatesNo transfusion: 59 (17),
Transfusion: 62 (17)
No transfusion: overweight & obese 1806 (70.2),
Transfusion: overweight & obese 601 (67.6)
No transfusion: Open:MIS 2212 (85.8):367 (14.2),
Transfusion: Open:MIS 876 (98.3):15 (1.7)
3470 (100.0)891 (25.7)
Klebanoff,
2021 [ ]
Case-control (nested)2014–2017The ACS-NSQIP database/
Myomectomy
United StatesNo transfusion: 36.6 (6.5),
Transfusion: 36.5 (5.6)
No transfusion: 29.0 (6.9),
Transfusion: 29.8 (7.1)
No transfusion: Open:MIS 3123 (54.2):2641 (45.8),
Transfusion: Open:MIS 551 (88.4):72 (11.6)
0 (0)623 (9.8)
Walczak,
2021 [ ]
Retrospective cohort1 October 2011–1 October 2017A large urban nonprofit teaching hospital with over 1000 beds count/
Myomectomy
United States36 (4.96)28.26 (9.21)--7 (7.3)
Hamilton,
2024 [ ]
Retrospective cohort2012–2020The ACS-NSQIP database/
Laparoscopic myomectomy
United StatesNo transfusion: ≥40:<40 3910 (35.0):7255 (64.9), Transfusion: ≥40:<40 100 (30.2): 231 (69.8)No transfusion: 28.5 (7.4),
Transfusion: 29.0 (8.3)
-0 (0)331 (2.9)
Author,
Year
Modeling MethodSample SizeEvents
(%)
No Predictors
Cand. Final
EPV or EPPSelection of Candidate
Predictors
Selection of
Final
Predictors
Number (%) and Handling of Missing DataType of
Validation
Performance Measures
Stanhiser,
2017 [ ]
Logistic
regression
12,219
6100
239 (2.0)
Missing
221210.9Based on
univariable
associations
Backward eliminationN (%): Unknown
Method:
Multiple imputation
Int:
Bootstrapping
Ext: Temporal
Disc: C-Statistic
Internal validation: 0.906 (0.890–0.928)
External validation: 0.915 (0.872–0.954)
Cal: Calibration plot
The calibration curve of the model’s performance showed excellent predictions throughout the range of predicted risks and was accurate through a range of predicted probabilities of 0% to approximately 40% risk of transfusion.
Ov: Brier score: 0.017
Ackroyd,
2018 [ ]
Logistic
regression
2004
1466
Missing
Missing
25835.6Based on univariable associationsStepwise
selection
N (%): Unknown
Method: No information
Int: None (Apparent performance)
Ext: Temporal
Disc: C-Statistic
Development: 0.8 (0.78–0.83)
External validation: 0.69 (0.66–0.72)
Cal: Calibration plot / HL test
Calibration plot: High degree of agreement between predicted and actual probabilities
HL p-value: 0.81 (development) 0.56 (validation)
Klebanoff,
2021 [ ]
Logistic
regression
6387623 (9.8)36417.3Based on univariable associationsStepwise
selection
N (%): Unknown
Method: No information
Int:
Bootstrapping
Ext: None
Disc: AUC graph
AUC 0.792 (0.790–0.794)
Cal: Calibration plot / HL test
Calibration plot: Concordant relationship between the observed incidence and predicted probability of transfusion in the validated model
HL p-value: 0.68 (development)
Walczak,
2021 [ ]
Artificial
neural
networks
967 (7.3)10100.7Based on prior knowledgeOtherN (%): Unknown
Method: No
information
Int:
Cross-validation
Ext: None
Disc: Not evaluated
Cal: Not evaluated
Ov: sensitivity and overall accuracy
Hamilton,
2024 [ ]
Logistic
regression
11,498331 (2.9)164.620.7Based on
univariable
associations
UnclearN (%): Unknown
Method: No
information
Int:
Bootstrapping
Ext: None
Disc: AUC graph
4-parameter model:
AUC 0.69 (0.66–0.71)
6-parameter model: AUC 0.78 (0.76–0.80)
Cal: Not evaluated
Author, YearRisk of BiasApplicabilityOverall
1. Participants2. Predictors3. Outcome4. Analysis1. Participants2. Predictors3. OutcomeRisk of BiasApplicability
Stanhiser, 2017 [ ]++?++??
Ackroyd, 2018 [ ]++?++??
Klebanoff, 2021 [ ]+??++??
Walczak, 2021 [ ]+??++??
Hamilton, 2024 [ ]+??++??
Note+Low risk of biasHigh risk of bias?Unclear
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Pan, Z.; Charoenkwan, K. Prediction Models for Perioperative Blood Transfusion in Patients Undergoing Gynecologic Surgery: A Systematic Review. Diagnostics 2024 , 14 , 2018. https://doi.org/10.3390/diagnostics14182018

Pan Z, Charoenkwan K. Prediction Models for Perioperative Blood Transfusion in Patients Undergoing Gynecologic Surgery: A Systematic Review. Diagnostics . 2024; 14(18):2018. https://doi.org/10.3390/diagnostics14182018

Pan, Zhongmian, and Kittipat Charoenkwan. 2024. "Prediction Models for Perioperative Blood Transfusion in Patients Undergoing Gynecologic Surgery: A Systematic Review" Diagnostics 14, no. 18: 2018. https://doi.org/10.3390/diagnostics14182018

Article Metrics

Supplementary material.

ZIP-Document (ZIP, 183 KiB)

Further Information

Mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

--> AGU