Move assignment operator

A move assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T && , const T && , volatile T && , or const volatile T && . A type with a public move assignment operator is MoveAssignable .

[ edit ] Syntax

[ edit ] explanation.

  • Typical declaration of a move assignment operator
  • Forcing a move assignment operator to be generated by the compiler
  • Avoiding implicit move assignment

The move assignment operator is called whenever it is selected by overload resolution , e.g. when an object appears on the left side of an assignment expression, where the right-hand side is an rvalue of the same or implicitly convertible type.

Move assignment operators typically "steal" the resources held by the argument (e.g. pointers to dynamically-allocated objects, file descriptors, TCP sockets, I/O streams, running threads, etc), rather than make copies of them, and leave the argument in some valid but otherwise indeterminate state. For example, move-assigning from a std:: string or from a std:: vector leaves the right-hand side argument empty.

[ edit ] Implicitly-declared move assignment operator

If no user-defined move assignment operators are provided for a class type ( struct , class , or union ), and all of the following is true:

  • there are no user-declared copy constructors
  • there are no user-declared move constructors
  • there are no user-declared copy assignment operators
  • there are no user-declared destructors
  • the implicitly-declared move assignment operator would not be defined as deleted

then the compiler will declare a move assignment operator as an inline public member of its class with the signature T& T::operator= T(T&&)

A class can have multiple move assignment operators, e.g. both T & T :: operator = ( const T && ) and T & T :: operator = ( T && ) . If some user-defined move assignment operators are present, the user may still force the generation of the implicitly declared move assignment operator with the keyword default .

Because some assignment operator (move or copy) is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared move assignment operator

The implicitly-declared or defaulted move assignment operator for class T is defined as deleted in any of the following is true:

  • T has a non-static data member that is const
  • T has a non-static data member of a reference type.
  • T has a non-static data member that cannot be move-assigned (has deleted, inaccessible, or ambiguous move assignment operator)
  • T has direct or virtual base class that cannot be move-assigned (has deleted, inaccessible, or ambiguous move assignment operator)
  • T has a non-static data member or a direct or virtual base without a move assignment operator that is not trivially copyable.
  • T has a direct or indirect virtual base class

[ edit ] Trivial move assignment operator

The implicitly-declared move assignment operator for class T is trivial if all of the following is true:

  • T has no virtual member functions
  • T has no virtual base classes
  • The move assignment operator selected for every direct base of T is trivial
  • The move assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial

A trivial move assignment operator performs the same action as the trivial copy assignment operator, that is, makes a copy of the object representation as if by std:: memmove . All data types compatible with the C language (POD types) are trivially move-assignable.

[ edit ] Implicitly-defined move assignment operator

If the implicitly-declared move assignment operator is not deleted or trivial, it is defined (that is, a function body is generated and compiled) by the compiler. For union types, the implicitly-defined move assignment operator copies the object representation (as by std:: memmove ). For non-union class types ( class and struct ), the move assignment operator performs full member-wise move assignment of the object's bases and non-static members, in their initialization order, using built-in assignment for the scalars and move assignment operator for class types.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std:: move ), and selects the copy assignment if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

The copy-and-swap assignment operator

T & T :: operator = ( T arg ) {     swap ( arg ) ;     return * this ; }

performs an equivalent of move assignment for rvalue arguments at the cost of one additional call to the move constructor of T, which is often acceptable.

[ edit ] Example

cppreference.com

Search

Move constructors

A move constructor of class T is a non-template constructor whose first parameter is T && , const T && , volatile T && , or const volatile T && , and either there are no other parameters, or the rest of the parameters all have default values. A type with a public move constructor is MoveConstructible .

[ edit ] Syntax

[ edit ] explanation.

  • Typical declaration of a move constructor
  • Forcing a move constructor to be generated by the compiler
  • Avoiding implicit move constructor

The move constructor is called whenever an object is initialized from xvalue of the same type, which includes

  • initialization, T a = std:: move ( b ) ; or T a ( std:: move ( b ) ) ; , where b is of type T
  • function argument passing: f ( std:: move ( a ) ) ; , where a is of type T and f is void f ( T t )
  • function return: return a ; inside a function such as T f ( ) , where a is of type T which has a move constructor.

Move constructors typically "steal" the resources held by the argument (e.g. pointers to dynamically-allocated objects, file descriptors, TCP sockets, I/O streams, running threads, etc), rather than make copies of them, and leave the argument in some valid but otherwise indeterminate state. For example, moving from a std:: string or from a std:: vector turns the argument empty.

[ edit ] Implicitly-declared move constructor

If no user-defined move constructors are provided for a class type ( struct , class , or union ), and all of the following is true:

  • there are no user-declared copy constructors
  • there are no user-declared copy assignment operators
  • there are no user-declared move assignment operators
  • there are no user-declared destructurs
  • the implicitly-declared move constructor would not be defined as deleted

then the compiler will declare a move constructor as an inline public member of its class with the signature T::T(T&&)

A class can have multiple move constructors, e.g. both T :: T ( const T && ) and T :: T ( T && ) . If some user-defined move constructors are present, the user may still force the generation of the implicitly declared move constructor with the keyword default .

[ edit ] Deleted implicitly-declared move constructor

The implicitly-declared or defaulted move constructor for class T is defined as deleted in any of the following is true:

  • T has non-static data members that cannot be moved (have deleted, inaccessible, or ambiguous move constructors)
  • T has direct or virtual base class that cannot be moved (has deleted, inaccessible, or ambiguous move constructors)
  • T has direct or virtual base class with a deleted or inaccessible destructor
  • T has a user-defined move constructor or move assignment operator
  • T is a union and has a variant member with non-trivial copy constructor
  • T has a non-static data member or a direct or virtual base without a move constructor that is not trivially copyable.

[ edit ] Trivial move constructor

The implicitly-declared move constructor for class T is trivial if all of the following is true:

  • T has no virtual member functions
  • T has no virtual base classes
  • The move constructor selected for every direct base of T is trivial
  • The move constructor selected for every non-static class type (or array of class type) memeber of T is trivial

A trivial move constructor is a constructor that performs the same action as the trivial copy constructor, that is, makes a copy of the object representation as if by std:: memmove . All data types compatible with the C language (POD types) are trivially movable.

[ edit ] Implicitly-defined move constructor

If the implicitly-declared move constructor is not deleted or trivial, it is defined (that is, a function body is generated and compiled) by the compiler. For union types, the implicitly-defined move constructor copies the object representation (as by std:: memmove ). For non-union class types ( class and struct ), the move constructor performs full member-wise move of the object's bases and non-static members, in their initialization order, using direct initialization with an xvalue argument.

[ edit ] Notes

To make strong exception guarantee possible, user-defined move constructors should not throw exceptions. In fact, standard containers typically rely on std:: move_if_noexcept to choose between move and copy when container elements need to be relocated.

If both copy and move constructors are provided, overload resolution selects the move constructor if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std:: move ), and selects the copy constructor if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy constructor is provided, all argument categories select it (as long as it takes reference to const, since rvalues can bind to const references), which makes copying the fallback for moving, when moving is unavailable.

[ edit ] Example

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • This page was last modified on 15 June 2012, at 14:13.
  • This page has been accessed 46 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

Move assignment operator

A move assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T && , const T && , volatile T && , or const volatile T && .

Explanation

  • Typical declaration of a move assignment operator.
  • Forcing a move assignment operator to be generated by the compiler.
  • Avoiding implicit move assignment.

The move assignment operator is called whenever it is selected by overload resolution , e.g. when an object appears on the left-hand side of an assignment expression, where the right-hand side is an rvalue of the same or implicitly convertible type.

Move assignment operators typically "steal" the resources held by the argument (e.g. pointers to dynamically-allocated objects, file descriptors, TCP sockets, I/O streams, running threads, etc.), rather than make copies of them, and leave the argument in some valid but otherwise indeterminate state. For example, move-assigning from a std::string or from a std::vector may result in the argument being left empty. This is not, however, a guarantee. A move assignment is less, not more restrictively defined than ordinary assignment; where ordinary assignment must leave two copies of data at completion, move assignment is required to leave only one.

Implicitly-declared move assignment operator

If no user-defined move assignment operators are provided for a class type ( struct , class , or union ), and all of the following is true:

  • there are no user-declared copy constructors;
  • there are no user-declared move constructors;
  • there are no user-declared copy assignment operators;
  • there are no user-declared destructors;

then the compiler will declare a move assignment operator as an inline public member of its class with the signature T& T::operator=(T&&) .

A class can have multiple move assignment operators, e.g. both T & T :: operator = ( const T && ) and T & T :: operator = ( T && ) . If some user-defined move assignment operators are present, the user may still force the generation of the implicitly declared move assignment operator with the keyword default .

The implicitly-declared (or defaulted on its first declaration) move assignment operator has an exception specification as described in dynamic exception specification (until C++17) exception specification (since C++17)

Because some assignment operator (move or copy) is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

Deleted implicitly-declared move assignment operator

The implicitly-declared or defaulted move assignment operator for class T is defined as deleted if any of the following is true:

  • T has a non-static data member that is const ;
  • T has a non-static data member of a reference type;
  • T has a non-static data member that cannot be move-assigned (has deleted, inaccessible, or ambiguous move assignment operator);
  • T has direct or virtual base class that cannot be move-assigned (has deleted, inaccessible, or ambiguous move assignment operator);

Trivial move assignment operator

The move assignment operator for class T is trivial if all of the following is true:

  • It is not user-provided (meaning, it is implicitly-defined or defaulted);
  • T has no virtual member functions;
  • T has no virtual base classes;
  • the move assignment operator selected for every direct base of T is trivial;
  • the move assignment operator selected for every non-static class type (or array of class type) member of T is trivial;

A trivial move assignment operator performs the same action as the trivial copy assignment operator, that is, makes a copy of the object representation as if by std::memmove . All data types compatible with the C language (POD types) are trivially move-assignable.

Implicitly-defined move assignment operator

If the implicitly-declared move assignment operator is neither deleted nor trivial, it is defined (that is, a function body is generated and compiled) by the compiler if odr-used .

For union types, the implicitly-defined move assignment operator copies the object representation (as by std::memmove ).

For non-union class types ( class and struct ), the move assignment operator performs full member-wise move assignment of the object's direct bases and immediate non-static members, in their declaration order, using built-in assignment for the scalars, memberwise move-assignment for arrays, and move assignment operator for class types (called non-virtually).

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either a prvalue such as a nameless temporary or an xvalue such as the result of std::move ), and selects the copy assignment if the argument is an lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

It is unspecified whether virtual base class subobjects that are accessible through more than one path in the inheritance lattice, are assigned more than once by the implicitly-defined move assignment operator (same applies to copy assignment ).

See assignment operator overloading for additional detail on the expected behavior of a user-defined move-assignment operator.

Learn C++

21.12 — Overloading the assignment operator

The copy assignment operator (operator=) is used to copy values from one object to another already existing object .

Related content

As of C++11, C++ also supports “Move assignment”. We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

Copy assignment vs Copy constructor

The purpose of the copy constructor and the copy assignment operator are almost equivalent -- both copy one object to another. However, the copy constructor initializes new objects, whereas the assignment operator replaces the contents of existing objects.

The difference between the copy constructor and the copy assignment operator causes a lot of confusion for new programmers, but it’s really not all that difficult. Summarizing:

  • If a new object has to be created before the copying can occur, the copy constructor is used (note: this includes passing or returning objects by value).
  • If a new object does not have to be created before the copying can occur, the assignment operator is used.

Overloading the assignment operator

Overloading the copy assignment operator (operator=) is fairly straightforward, with one specific caveat that we’ll get to. The copy assignment operator must be overloaded as a member function.

This prints:

This should all be pretty straightforward by now. Our overloaded operator= returns *this, so that we can chain multiple assignments together:

Issues due to self-assignment

Here’s where things start to get a little more interesting. C++ allows self-assignment:

This will call f1.operator=(f1), and under the simplistic implementation above, all of the members will be assigned to themselves. In this particular example, the self-assignment causes each member to be assigned to itself, which has no overall impact, other than wasting time. In most cases, a self-assignment doesn’t need to do anything at all!

However, in cases where an assignment operator needs to dynamically assign memory, self-assignment can actually be dangerous:

First, run the program as it is. You’ll see that the program prints “Alex” as it should.

Now run the following program:

You’ll probably get garbage output. What happened?

Consider what happens in the overloaded operator= when the implicit object AND the passed in parameter (str) are both variable alex. In this case, m_data is the same as str.m_data. The first thing that happens is that the function checks to see if the implicit object already has a string. If so, it needs to delete it, so we don’t end up with a memory leak. In this case, m_data is allocated, so the function deletes m_data. But because str is the same as *this, the string that we wanted to copy has been deleted and m_data (and str.m_data) are dangling.

Later on, we allocate new memory to m_data (and str.m_data). So when we subsequently copy the data from str.m_data into m_data, we’re copying garbage, because str.m_data was never initialized.

Detecting and handling self-assignment

Fortunately, we can detect when self-assignment occurs. Here’s an updated implementation of our overloaded operator= for the MyString class:

By checking if the address of our implicit object is the same as the address of the object being passed in as a parameter, we can have our assignment operator just return immediately without doing any other work.

Because this is just a pointer comparison, it should be fast, and does not require operator== to be overloaded.

When not to handle self-assignment

Typically the self-assignment check is skipped for copy constructors. Because the object being copy constructed is newly created, the only case where the newly created object can be equal to the object being copied is when you try to initialize a newly defined object with itself:

In such cases, your compiler should warn you that c is an uninitialized variable.

Second, the self-assignment check may be omitted in classes that can naturally handle self-assignment. Consider this Fraction class assignment operator that has a self-assignment guard:

If the self-assignment guard did not exist, this function would still operate correctly during a self-assignment (because all of the operations done by the function can handle self-assignment properly).

Because self-assignment is a rare event, some prominent C++ gurus recommend omitting the self-assignment guard even in classes that would benefit from it. We do not recommend this, as we believe it’s a better practice to code defensively and then selectively optimize later.

The copy and swap idiom

A better way to handle self-assignment issues is via what’s called the copy and swap idiom. There’s a great writeup of how this idiom works on Stack Overflow .

The implicit copy assignment operator

Unlike other operators, the compiler will provide an implicit public copy assignment operator for your class if you do not provide a user-defined one. This assignment operator does memberwise assignment (which is essentially the same as the memberwise initialization that default copy constructors do).

Just like other constructors and operators, you can prevent assignments from being made by making your copy assignment operator private or using the delete keyword:

Note that if your class has const members, the compiler will instead define the implicit operator= as deleted. This is because const members can’t be assigned, so the compiler will assume your class should not be assignable.

If you want a class with const members to be assignable (for all members that aren’t const), you will need to explicitly overload operator= and manually assign each non-const member.

guest

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

Copy constructors and copy assignment operators (C++)

  • 8 contributors

Starting in C++11, two kinds of assignment are supported in the language: copy assignment and move assignment . In this article "assignment" means copy assignment unless explicitly stated otherwise. For information about move assignment, see Move Constructors and Move Assignment Operators (C++) .

Both the assignment operation and the initialization operation cause objects to be copied.

Assignment : When one object's value is assigned to another object, the first object is copied to the second object. So, this code copies the value of b into a :

Initialization : Initialization occurs when you declare a new object, when you pass function arguments by value, or when you return by value from a function.

You can define the semantics of "copy" for objects of class type. For example, consider this code:

The preceding code could mean "copy the contents of FILE1.DAT to FILE2.DAT" or it could mean "ignore FILE2.DAT and make b a second handle to FILE1.DAT." You must attach appropriate copying semantics to each class, as follows:

Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator=(const ClassName& x); .

Use the copy constructor.

If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you. Similarly, if you don't declare a copy assignment operator, the compiler generates a member-wise copy assignment operator for you. Declaring a copy constructor doesn't suppress the compiler-generated copy assignment operator, and vice-versa. If you implement either one, we recommend that you implement the other one, too. When you implement both, the meaning of the code is clear.

The copy constructor takes an argument of type ClassName& , where ClassName is the name of the class. For example:

Make the type of the copy constructor's argument const ClassName& whenever possible. This prevents the copy constructor from accidentally changing the copied object. It also lets you copy from const objects.

Compiler generated copy constructors

Compiler-generated copy constructors, like user-defined copy constructors, have a single argument of type "reference to class-name ." An exception is when all base classes and member classes have copy constructors declared as taking a single argument of type const class-name & . In such a case, the compiler-generated copy constructor's argument is also const .

When the argument type to the copy constructor isn't const , initialization by copying a const object generates an error. The reverse isn't true: If the argument is const , you can initialize by copying an object that's not const .

Compiler-generated assignment operators follow the same pattern for const . They take a single argument of type ClassName& unless the assignment operators in all base and member classes take arguments of type const ClassName& . In this case, the generated assignment operator for the class takes a const argument.

When virtual base classes are initialized by copy constructors, whether compiler-generated or user-defined, they're initialized only once: at the point when they are constructed.

The implications are similar to the copy constructor. When the argument type isn't const , assignment from a const object generates an error. The reverse isn't true: If a const value is assigned to a value that's not const , the assignment succeeds.

For more information about overloaded assignment operators, see Assignment .

Was this page helpful?

Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback .

Submit and view feedback for

Additional resources

  • C++ Data Types
  • C++ Input/Output
  • C++ Pointers
  • C++ Interview Questions
  • C++ Programs
  • C++ Cheatsheet
  • C++ Projects
  • C++ Exception Handling
  • C++ Memory Management

Copy Constructor vs Assignment Operator in C++

  • How to Create Custom Assignment Operator in C++?
  • Assignment Operators In C++
  • Why copy constructor argument should be const in C++?
  • Advanced C++ | Virtual Copy Constructor
  • Move Assignment Operator in C++ 11
  • Self assignment check in assignment operator
  • Is assignment operator inherited?
  • Copy Constructor in C++
  • How to Implement Move Assignment Operator in C++?
  • Default Assignment Operator and References in C++
  • Can a constructor be private in C++ ?
  • When is a Copy Constructor Called in C++?
  • C++ Assignment Operator Overloading
  • std::move in Utility in C++ | Move Semantics, Move Constructors and Move Assignment Operators
  • C++ Interview questions based on constructors/ Destructors.
  • Assignment Operators in C
  • Copy Constructor in Python
  • Copy Constructor in Java
  • Constructors in Objective-C

Copy constructor and Assignment operator are similar as they are both used to initialize one object using another object. But, there are some basic differences between them:

Consider the following C++ program. 

Explanation: Here, t2 = t1;  calls the assignment operator , same as t2.operator=(t1); and   Test t3 = t1;  calls the copy constructor , same as Test t3(t1);

Must Read: When is a Copy Constructor Called in C++?

Please Login to comment...

Similar reads, improve your coding skills with practice.

 alt=

What kind of Experience do you want to share?

COMMENTS

  1. Move Constructors and Move Assignment Operators (C++)

    This topic describes how to write a move constructor and a move assignment operator for a C++ class. A move constructor enables the resources owned by an rvalue object to be moved into an lvalue without copying. For more information about move semantics, see Rvalue Reference Declarator: &&. This topic builds upon the following C++ class ...

  2. Move assignment operator

    The move assignment operator is called whenever it is selected by overload resolution, e.g. when an object appears on the left-hand side of an assignment expression, where the right-hand side is an rvalue of the same or implicitly convertible type.. Move assignment operators typically "steal" the resources held by the argument (e.g. pointers to dynamically-allocated objects, file descriptors ...

  3. 22.3

    The move constructor and move assignment operator are simple. Instead of deep copying the source object (a) into the implicit object, we simply move (steal) the source object's resources. This involves shallow copying the source pointer into the implicit object, then setting the source pointer to null.

  4. Move constructors

    Triviality of eligible move constructors determines whether the class is an implicit-lifetime type, and whether the class is a trivially copyable type. [] NoteTo make the strong exception guarantee possible, user-defined move constructors should not throw exceptions. For example, std::vector relies on std::move_if_noexcept to choose between move and copy when the elements need to be relocated.

  5. c++

    A move constructor is executed only when you construct an object. A move assignment operator is executed on a previously constructed object. It is exactly the same scenario as in the copy case. Foo foo = std::move(bar); // construction, invokes move constructor. foo = std::move(other); // assignment, invokes move assignment operator.

  6. Move Constructors in C++ with Examples

    The above program shows the unnecessarily calling copy constructor and inefficiently using the memory by copying the same data several times as it new object upon each call to copy constructor. Syntax of the Move Constructor: : data{ obj.data } // Nulling out the pointer to the temporary data. obj.data = nullptr;

  7. Move assignment operator

    Forcing a move assignment operator to be generated by the compiler. Avoiding implicit move assignment. The move assignment operator is called whenever it is selected by overload resolution, e.g. when an object appears on the left side of an assignment expression, where the right-hand side is an rvalue of the same or implicitly convertible type.

  8. Move constructors

    Avoiding implicit move constructor. The move constructor is called whenever an object is initialized from xvalue of the same type, which includes. initialization, T a = std::move(b); or T a(std::move(b));, where b is of type T. function argument passing: f(std::move(a));, where a is of type T and f is void f(T t)

  9. Move constructors

    then the compiler will declare a move constructor as a non-explicit inline public member of its class with the signature T::T(T&&).A class can have multiple move constructors, e.g. both T:: T (const T &&) and T:: T (T &&).If some user-defined move constructors are present, the user may still force the generation of the implicitly declared move constructor with the keyword default.

  10. Move assignment operator

    then the compiler will declare a move assignment operator as an inline public member of its class with the signature T& T::operator=(T&&). A class can have multiple move assignment operators, e.g. both T& T::operator=(const T&&) and T& T::operator=(T&&). If some user-defined move assignment operators are present, the user may still force the ...

  11. Move Assignment Operator in C++ 11

    The move assignment operator was added in C++ 11 to further strengthen the move semantics in C++. It is like a copy assignment operator but instead of copying the data, this moves the ownership of the given data to the destination object without making any additional copies. The source object is left in a valid but unspecified state.

  12. Move assignment operator

    The move assignment operator, like most C++ operators, can be overloaded. Like the copy assignment operator it is a special member function . If the move assignment operator is not explicitly defined, the compiler generates an implicit move assignment operator ( C++11 and newer) provided that copy / move constructors , copy assignment operator ...

  13. std::move in Utility in C++

    In C++ programming, we have a feature called the move assignment operator, which was introduced in C++11. It helps us handle objects more efficiently, especially when it comes to managing resources like memory. In this article, we will discuss move assignment operators, when they are useful and called, and how to create user-defined move assignment

  14. C++11 Tutorial: Introducing the Move Constructor and the Move

    Designing a Move Assignment Operator. A move assignment operator has the following signature: C& C::operator= (C&& other);//C++11 move assignment operator. A move assignment operator is similar to a copy constructor except that before pilfering the source object, it releases any resources that its object may own.

  15. 21.12

    As of C++11, C++ also supports "Move assignment". We discuss move assignment in lesson 22.3 -- Move constructors and move assignment. Copy assignment vs Copy constructor. The purpose of the copy constructor and the copy assignment operator are almost equivalent -- both copy one object to another. However, the copy constructor initializes ...

  16. Copy constructors and copy assignment operators (C++)

    Use an assignment operator operator= that returns a reference to the class type and takes one parameter that's passed by const reference—for example ClassName& operator=(const ClassName& x);. Use the copy constructor. If you don't declare a copy constructor, the compiler generates a member-wise copy constructor for you.

  17. c++

    Thanks. I was a bit confused by this question, so for reference: you talk about "move assignment", but the c2 = c1 line is not a move assignment, it is a copy assignment (and thus the reference member is a problem). It should be c2 = std::move(c1), perhaps. You actually can make this work, but the problem is that there's no way to mark the ...

  18. c++11

    The fact that the first example is faster than the second, should be a given. And I would also point out that any efficient code prior to C++ 11 will do this. To my understanding, the idea was to bundle all of this behavior in a neat little operator move() in std library. When writing copy constructors and copy assignment operators, I simply do ...

  19. Copy Constructor vs Assignment Operator in C++

    C++ compiler implicitly provides a copy constructor, if no copy constructor is defined in the class. A bitwise copy gets created, if the Assignment operator is not overloaded. Consider the following C++ program. Explanation: Here, t2 = t1; calls the assignment operator, same as t2.operator= (t1); and Test t3 = t1; calls the copy constructor ...

  20. c++

    Example(move.cpp) of simulated move constructor & move assignment operator functionality with copy constructor & copy assignment operator #include <iostream> #include <algorithm> #include <vector> using namespace std; class MemoryBlock { public: // Simple constructor that initializes the resource.

  21. c++

    Copy constructor is called when a new object is created from an existing object, as a copy of the existing object. And assignment operator is called when an already initialized object is assigned a new value from another existing object. Example-. t2 = t1; // calls assignment operator, same as "t2.operator=(t1);"

  22. C++: if I do not declare move constructor, the copy one is called, but

    C++ move constructor, delete vs omission, when user defines copy ctor? 90 Is the default Move constructor defined as noexcept? 1 Why copy constructor is not called here? ... Why when user provides move constructor or move assignment, copy constructor and copy assignment will be deleted? 36