Banner

How to Write a Research Paper: Parts of the Paper

  • Choosing Your Topic
  • Citation & Style Guides This link opens in a new window
  • Critical Thinking
  • Evaluating Information
  • Parts of the Paper
  • Writing Tips from UNC-Chapel Hill
  • Librarian Contact

Parts of the Research Paper Papers should have a beginning, a middle, and an end. Your introductory paragraph should grab the reader's attention, state your main idea, and indicate how you will support it. The body of the paper should expand on what you have stated in the introduction. Finally, the conclusion restates the paper's thesis and should explain what you have learned, giving a wrap up of your main ideas.

1. The Title The title should be specific and indicate the theme of the research and what ideas it addresses. Use keywords that help explain your paper's topic to the reader. Try to avoid abbreviations and jargon. Think about keywords that people would use to search for your paper and include them in your title.

2. The Abstract The abstract is used by readers to get a quick overview of your paper. Typically, they are about 200 words in length (120 words minimum to  250 words maximum). The abstract should introduce the topic and thesis, and should provide a general statement about what you have found in your research. The abstract allows you to mention each major aspect of your topic and helps readers decide whether they want to read the rest of the paper. Because it is a summary of the entire research paper, it is often written last. 

3. The Introduction The introduction should be designed to attract the reader's attention and explain the focus of the research. You will introduce your overview of the topic,  your main points of information, and why this subject is important. You can introduce the current understanding and background information about the topic. Toward the end of the introduction, you add your thesis statement, and explain how you will provide information to support your research questions. This provides the purpose and focus for the rest of the paper.

4. Thesis Statement Most papers will have a thesis statement or main idea and supporting facts/ideas/arguments. State your main idea (something of interest or something to be proven or argued for or against) as your thesis statement, and then provide your supporting facts and arguments. A thesis statement is a declarative sentence that asserts the position a paper will be taking. It also points toward the paper's development. This statement should be both specific and arguable. Generally, the thesis statement will be placed at the end of the first paragraph of your paper. The remainder of your paper will support this thesis.

Students often learn to write a thesis as a first step in the writing process, but often, after research, a writer's viewpoint may change. Therefore a thesis statement may be one of the final steps in writing. 

Examples of Thesis Statements from Purdue OWL

5. The Literature Review The purpose of the literature review is to describe past important research and how it specifically relates to the research thesis. It should be a synthesis of the previous literature and the new idea being researched. The review should examine the major theories related to the topic to date and their contributors. It should include all relevant findings from credible sources, such as academic books and peer-reviewed journal articles. You will want  to:

  • Explain how the literature helps the researcher understand the topic.
  • Try to show connections and any disparities between the literature.
  • Identify new ways to interpret prior research.
  • Reveal any gaps that exist in the literature.

More about writing a literature review. . .

6. The Discussion ​The purpose of the discussion is to interpret and describe what you have learned from your research. Make the reader understand why your topic is important. The discussion should always demonstrate what you have learned from your readings (and viewings) and how that learning has made the topic evolve, especially from the short description of main points in the introduction.Explain any new understanding or insights you have had after reading your articles and/or books. Paragraphs should use transitioning sentences to develop how one paragraph idea leads to the next. The discussion will always connect to the introduction, your thesis statement, and the literature you reviewed, but it does not simply repeat or rearrange the introduction. You want to: 

  • Demonstrate critical thinking, not just reporting back facts that you gathered.
  • If possible, tell how the topic has evolved over the past and give it's implications for the future.
  • Fully explain your main ideas with supporting information.
  • Explain why your thesis is correct giving arguments to counter points.

7. The Conclusion A concluding paragraph is a brief summary of your main ideas and restates the paper's main thesis, giving the reader the sense that the stated goal of the paper has been accomplished. What have you learned by doing this research that you didn't know before? What conclusions have you drawn? You may also want to suggest further areas of study, improvement of research possibilities, etc. to demonstrate your critical thinking regarding your research.

  • << Previous: Evaluating Information
  • Next: Research >>
  • Last Updated: Feb 13, 2024 8:35 AM
  • URL: https://libguides.ucc.edu/research_paper

Apr 26, 2024

Everything You Need to Know about the Parts of a Research Paper

Not sure where to start with your research paper or how all the parts fit together? Don't worry! From crafting a compelling title page to compiling your references, we'll demystify each section of a research paper.

Learn how to write an attention-grabbing abstract, construct a powerful introduction, and confidently present your results and discussion. With this guide, you'll gain the tools to assemble a polished and impactful piece of work.

What Are Research Papers?

A research paper is a piece of academic writing that presents an original argument or analysis based on independent, in-depth investigation into a specific topic.

Key Characteristics:

Evidence-Driven: Research papers rely on data, analysis, and interpretation of credible sources.

Focused Argument: They develop a clear thesis that is defended with logical reasoning and evidence.

Structured: Research papers follow specific organizational formats and citation styles.

Contribution to Knowledge: They aim to add something new to the existing body of knowledge within a field.

Types of Research Papers

Research papers come in various forms across academic disciplines:

Argumentative Papers : Present a compelling claim and utilize evidence to persuade readers.

Analytical Papers : Break down complex subjects, ideas, or texts, examining their components and implications.

Empirical Studies: Involve collecting and analyzing original data (through experiments, surveys, etc.) to answer specific research questions.

Literature Reviews: Synthesize existing research on a topic, highlighting key findings, debates, and areas for future exploration.

And More! Depending on the field, you may encounter case studies, reports, theoretical proposals, etc.

Defining Research Papers

Here's how research papers stand apart from other forms of writing:

Originality vs. Summary: While essays might recap existing knowledge, research papers offer new insights, arguments, or data.

Depth of Inquiry: Research papers delve deeper, going beyond basic definitions or summaries into a systematic investigation.

Scholarly Audience: Research papers are often written with a specialized academic audience in mind, employing discipline-specific language and conventions.

Important Note: The specific requirements of research papers can vary depending on the subject area, level of study (undergraduate vs. graduate), and the instructor's instructions.

Importance of Research Paper Structure

Think of structure as the backbone of your research paper. Here's why it matters for academic success:

Clarity for the Reader: A logical structure guides the reader through your research journey. They understand your thought process, easily follow your arguments, and grasp the significance of your findings.

Author's Roadmap: Structure serves as your blueprint. It helps you maintain focus, ensures you address all essential elements, and prevents you from veering off-topic.

Enhanced Persuasion: A well-structured paper builds a convincing case. Your ideas flow logically, evidence supports your claims, and your conclusion feels grounded and impactful.

Demonstration of Competence: A clear structure signals to your instructor or peers that you have a thorough understanding of research practices and scholarly writing conventions.

Is a Structured Approach Critical for the Success of Research Papers?

Yes! It's difficult to overstate the importance of structure. Here's why:

Lost in Chaos: Rambling or disorganized papers leave the reader confused and frustrated. Even the most insightful findings risk being overlooked if presented poorly.

Missed Components: Without structure, you might forget to include critical aspects, like a clear methodology section or a thorough literature review, weakening your research.

Hindered Peer Review: Reviewers rely on a standard structure to quickly assess the research's merits. A deviation can make their job harder and might negatively affect how your work is evaluated.

Benefits of a Clear Structure

Enhanced Understanding: Readers can easily follow your chain of reasoning, grasp the connection between your evidence and claims, and critically evaluate your findings.

Efficient Peer Review: A standard structure makes peer review more efficient and focused. Reviewers can easily identify strong points, areas for improvement, and contributions to the field.

Streamlined Writing: Having a structure offers clarity and direction, preventing you from getting stuck mid-flow or overlooking important elements.

Variations of Research Papers

Here's a breakdown of some common types of research papers:

Analytical Papers

Focus: Dissect a complex subject, text, or phenomenon to understand its parts, implications, or underlying meanings.

Structure: Emphasizes a clear thesis statement, systematic analysis, and in-depth exploration of different perspectives.

Example: Examining the symbolism in a literary work or analyzing the economic impact of a policy change.

Argumentative Papers

Focus: Present and defend a specific claim using evidence and logical reasoning.

Structure: Emphasizes a well-defined thesis, persuasive examples, and the anticipation and refutation of counterarguments.

Example: Arguing for the superiority of a particular scientific theory or advocating for a specific social policy.

Experimental Studies (Empirical Research)

Focus: Collect and analyze original data through a designed experiment or methodology.

Structure: Follows scientific practices, including hypothesis, methods, results, discussion, and acknowledgment of limitations.

Example: Measuring the effects of a new drug or conducting psychological experiments on behavior patterns.

Survey-Based Research

Focus: Gather information from a sample population through surveys, questionnaires, or interviews.

Structure: Emphasizes sampling methods, data collection tools, statistical analysis, and cautious interpretation of results.

Example: Investigating public opinion on a political issue or studying consumer preferences for a product.

Do All Research Papers Fit Into Standard Categories?

No. Research is fluid and dynamic. Here's why categorization can get tricky:

Hybrids Exist: Many papers mix elements. An analytical paper might also incorporate arguments to strengthen its interpretation, or an experimental paper might include a review of existing literature to contextualize its findings.

Disciplinary Differences: Fields have specific conventions. A research paper in history differs vastly in style and structure from one in biology.

Innovation: Researchers sometimes develop new structures or methodologies best suited to their unique research questions.

Comparing Research Paper Types

Each type prioritizes different aspects of the research process:

parts of the common research paper

An abstract is like a snapshot of your entire paper, providing a brief but informative overview of your research. It's often the first (and sometimes the only) section readers will engage with.

Key Functions: An effective abstract should:

Briefly state the research problem or topic

Outline your methods (briefly)

Summarize the main findings or results

Highlight the significance or implications of your work

Writing a Compelling Abstract

Here are some guidelines to make your abstract shine:

Concise and Clear: Aim for around 150-250 words. Use direct language and avoid unnecessary jargon.

Structured Approach: Even in its brevity, follow a logical flow (problem, methods, results, significance).

Keywords: Include keywords that accurately describe your research, aiding in discoverability within databases.

Self-Contained: The abstract should make sense on its own, without needing the reader to have read the full paper.

Engaging: While focused, pique the reader's interest and make them want to explore your research further.

Write it Last: Often, it's easiest to write your abstract once the rest of your paper is complete, as you can then distill the most essential elements.

Get Feedback: Ask a peer or instructor to read your abstract to ensure it's clear and accurately represents your research.

Introduction

Think of your introduction as the welcome mat for your research. Here's what it should accomplish:

Establish Context: Provide background information relevant to your specific research question. Orient the reader to the broader field or current debates surrounding the topic.

Define the Problem: Clearly outline the gap in knowledge, issue, or question your research aims to address.

State the Hypothesis: Concisely declare your research hypothesis or thesis statement – the central claim you aim to prove.

Significance: Briefly explain why your research matters. What potential contributions or implications does it hold?

Is the Introduction More Important Than Other Sections?

No. While the introduction plays a big role in initially capturing your reader's attention and setting the stage, it is just one piece of the puzzle. Here's why all sections matter:

Methodology Matters: A sound methodology section is essential for establishing the credibility of your findings. Readers need to trust your process.

Results are Key: The results section presents your hard-earned data. Without it, your research doesn't have a foundation to support your claims.

Discussion is Vital: Here's where you interpret your results, connect them back to your hypothesis, and explore the broader implications of your work.

Conclusion is the Culmination: Your conclusion reinforces your key findings, acknowledges limitations, and leaves the reader with a lasting understanding of your research contribution.

Engaging Your Audience Early

Here are some strategies to capture attention from the start:

Open with a Question: Pose a thought-provoking question directly related to your research.

Surprising Statistic: Share a relevant and eye-opening statistic that highlights the significance of your topic.

Brief anecdote: An illustrative anecdote or a vivid example can provide a compelling hook.

Challenge Assumptions: Question a common belief or assumption within your field to signal that your research offers fresh insights.

Tip: Your opening should be relevant and directly connected to your research topic. Avoid gimmicks that don't authentically lead into your core argument.

Literature Review

A literature review goes beyond simply listing past studies on a topic. It synthesizes existing knowledge, laying the foundation for your own research contribution.

Goals of a Strong Literature Review:

Demonstrate your understanding of the field and its key scholarly conversations.

Identify gaps in current knowledge that your research can address.

Position your research in relation to existing work, showing how it builds upon or challenges previous findings.

Provide theoretical context or support for your chosen methodological approach.

Synthesizing Relevant Studies

Don't just summarize – analyze! Here's how to engage with the literature critically:

Identify Trends: Look for patterns or themes across multiple studies. Are there consistent results or ongoing debates?

Note Inconsistencies: Highlight any contradictions or conflicting findings within the existing research.

Assess Methodology: Consider the strengths and limitations of different research methods used in prior studies. Can you improve upon them in your research?

Connections to Your Work: Show how each source directly relates to your research question. Explain how it supports, challenges, or informs your own study.

Tips for Effective Synthesis:

Organization is Key: Structure your literature review thematically or chronologically to present findings in a logical way.

Your Voice Matters: Avoid stringing together quotes. Analyze the literature and offer your own interpretation of the collective insights.

Cite Accurately: Follow the citation style required by your discipline to give credit and avoid plagiarism.

Methodology

Your methodology section details the step-by-step process of how you conducted your research. It allows others to understand and potentially replicate your study.

Components: A methodology section typically includes:

Research Design: The overall approach (experimental, survey-based, qualitative, etc.)

Data Collection: Description of the tools, procedures, and sources used (experiments, surveys, interviews, archival documents).

Sample Selection: Details on participants (if applicable) and how they were chosen.

Data Analysis: Methods used (statistical tests, qualitative analysis techniques).

Ethical considerations: Explain how you safeguarded participants or addressed any ethical concerns related to your research.

Designing a Robust Methodology

Here's how to make your methodology section shine:

Alignment with Research Question: Your methods should be directly chosen to answer your research question in the most effective and appropriate way.

Rigor: Demonstrate a meticulous approach, considering potential sources of bias or error and outlining steps taken to mitigate them.

Transparency: Provide enough detail for replication. Another researcher should be able to follow your method.

Justification: Explain why you chose specific methods. Connect them to established practices within your field or defend their suitability for your unique research.

Does Methodology Determine the Quality of Research Outcomes?

Absolutely! Here's why a robust methodology is important:

Reliability: A sound methodology ensures your results are consistent. If your study was repeated using your methods, similar results should be attainable.

Validity: Validity ensures you're measuring what you intend to. A strong methodology helps you draw accurate conclusions from your data that address your research question.

Credibility: Your paper will be evaluated based on the thoroughness of your procedures. A clear and rigorous methodology enhances trust in your findings.

Your results section is where you present the data collected from your research. This includes raw data, statistical analyses, summaries of observations, etc.

Key Considerations:

Clarity: Organize results logically. Use tables, graphs, or figures to enhance visual clarity when appropriate.

Objectivity: Present data without bias. Even if findings don't support your initial hypothesis, report them accurately.

Don't Interpret (Yet): Avoid discussing implications here. Focus on a clear presentation of your findings.

Interpreting Data Effectively

Your discussion or analysis section is where you make sense of your results. Here's how to ensure your interpretation is persuasive:

Connect Back to the Hypothesis: State whether your results support, refute, or partially support your hypothesis.

Use Evidence: Reference specific data points, statistics, or observations to back up your claims.

Explanatory Power: Don't merely describe what happened. Explain why you believe your data led to these results.

Context is Key: Relate your findings to the existing literature. Do they align with previous research, or do they raise new questions?

Be Transparent: Acknowledge any limitations of your data or unexpected findings, providing potential explanations.

Tips for Effective Data Discussion:

Visuals as Support: Continue using graphs or figures to illustrate trends or comparisons that reinforce your analysis.

Highlight What Matters: Don't over-discuss insignificant data points. Focus on the results that are most relevant to your research question and contribute to your overall argument.

Tell a Story: Data shouldn't feel disjointed. Weave it into a narrative that addresses your research problem and positions your findings within the broader field.

Your discussion section elevates your findings, moving from simply reporting what you discovered to exploring its significance and potential impact.

Interpret the results in relation to your research question and hypothesis.

Consider alternative explanations for unexpected findings and discuss limitations of the research.

Place your findings in the context of the broader field, connecting them to theories and the existing body of research.

Suggest implications for future research or practical applications.

Linking Results to Theory

Here's how to make your discussion section shine:

Return to the Literature Review: Did your results support a specific theory from your literature review? Challenge it? Offer a nuanced modification?

Contradictions Offer Insights: If your results contradict existing theories, don't dismiss them. Explain possible reasons for the discrepancies and how that pushes your field's understanding further.

Conceptual Contribution: How does your research add to the theoretical frameworks within your area of study?

Building Blocks: Frame your research as one piece of a larger puzzle. Explain how your work contributes to the ongoing scholarly conversation.

Tips for a Strong Discussion:

Avoid Overstating Significance: Maintain a scholarly tone and acknowledge the scope of your research. Don't claim your results revolutionize the field if it's not genuinely warranted.

Consider Future Directions: Responsible research isn't just about the past. Discuss what new questions arise based on your findings and offer avenues for potential future study.

Clarity Remains Key: Even when discussing complex ideas, use accessible language. Make your discussion meaningful to a wider audience within the field.

Conclusions

Your conclusion brings your research full circle. It's your chance to re-emphasize the most important takeaways of your work.

A Strong Conclusion Should:

Concisely restate the key research question or problem you sought to address.

Summarize your major findings and the most compelling evidence.

Briefly discuss the broader implications or contributions of your research.

Acknowledge limitations in the study (briefly).

Propose potential avenues for future research.

Can Conclusions Introduce New Research Questions?

Absolutely! Here's why this is valuable:

Sparking Curiosity: Ending with new questions emphasizes the ongoing nature of research and encourages further exploration beyond your own study.

Identifying Limitations: By highlighting where your work fell short, you guide future researchers toward filling those gaps.

Signaling Progress: Research is a continuous process of evolving knowledge. Your conclusion can be a springboard for others to expand upon your findings.

Crafting a Persuasive Conclusion

Here's how to make your conclusion impactful:

Reiterate, Don't Repeat: Remind the reader of your most significant findings, but avoid restating your thesis verbatim.

Confidence: Project a sense of conviction about the value of your work, without overstating its significance.

Clarity: Even in your conclusion, use direct language free of jargon. Leave the reader with a clear and lasting impression.

The Ripple Effect: Briefly highlight the broader relevance of your research. Why should readers beyond your niche field care?

Important: Your conclusion shouldn't introduce entirely new information or analyses. Rather, it should leave the reader pondering the implications of what you've already presented.

Giving Credit Where It's Due: Your references section lists the full details of every source you cited within your paper. This allows readers to locate those sources and acknowledges the intellectual work of others that you built upon.

Supporting Your Arguments: Credible references add weight to your claims, showing that your analysis is informed by established knowledge or reliable data.

Upholding Academic Standards: Accurate citations signal your commitment to scholarly practices and protect you from accusations of plagiarism.

Maintaining Citation Integrity

Here are the main practices to uphold:

Choose the Right Style: Follow the citation style mandated by your discipline (APA, MLA, Chicago, etc.). They have strict rules on formatting and which elements to include.

Consistency is Key: Use your chosen citation style uniformly throughout your paper. Mixed styles look sloppy and unprofessional.

Accuracy Matters: Double-check the details of each citation (authors, title, publication year, page numbers, etc.). Errors undermine your credibility.

Citation Tools: Use reliable resources like:

Online citation generators

Reference management software (Zotero, EndNote, etc..)

University library guides for your required style

Important Notes:

In-Text vs. References: In-text citations (within your writing) point the reader to the full citation in your references list. Both are needed.

Citation ≠ Bibliography: A bibliography may include sources you consulted but didn't directly cite, while the references list is specifically for cited works.

Writing Effective Research Papers: A Guide

Research papers aren't merely about having brilliant ideas – they're about effectively communicating those ideas. Strong writing allows you to showcase the value and rigor of your work.

Is Effective Writing Alone Sufficient for a Successful Research Paper?

No. Strong writing is vital but not a substitute for the core components of research. Consider this:

Even brilliant findings get lost in poor writing: Disorganized papers, unclear sentences, or misuse of discipline-specific terms hinder the reader from grasping your insights.

Writing is intertwined with research: The process of writing helps you clarify your own thinking, refine your arguments, and identify potential weaknesses in your logic.

Tips for Academic Writing

Here's how to elevate your research paper writing:

Define Your Terms: especially if using specialized jargon or complex concepts.

Favor Active Voice: Use strong verbs and keep the subject of your sentences clear. (Example: "The study demonstrates..." rather than "It is demonstrated...")

Avoid Ambiguity: Choose precise language to leave no room for misinterpretation.

Transitions Are Your Friend: Guide the reader smoothly between ideas and sections using signpost words and phrases.

Logical Structure: Your paper's organization (introduction, methods, etc.) should have an intuitive flow.

One Idea per Paragraph: Avoid overly dense paragraphs. Break down complex points for readability.

Strong Argumentation

Thesis as Roadmap: Your central thesis should be apparent throughout the paper. Each section should clearly connect back to it.

Strong Evidence: Use reliable data and examples to support your claims.

Anticipate Counterarguments: Show you've considered alternative viewpoints by respectfully addressing and refuting them.

Additional Tips

Read widely in your field: Analyze how successful papers are structured and how arguments are developed.

Revise relentlessly: Give yourself time to step away from your draft and return with fresh eyes.

Seek Feedback: Ask peers, instructors, or a writing center tutor to review your work for clarity and logic.

Conclusion: Integrating the Components of Research Papers for Academic Excellence

The journey of writing a research paper is truly transformative. By mastering each component, from a rigorously crafted hypothesis to a meticulously compiled reference list, you develop the essential skills of critical thinking, communication, and scholarly inquiry. It's important to remember that these components are not isolated; they form a powerful, synergistic whole.

Let the process of writing research papers empower you. Embrace the challenge of synthesizing information, developing strong arguments, and communicating your findings with clarity and precision. Celebrate your dedication to the pursuit of knowledge and the contributions you make to your academic community and your own intellectual growth.

Try Jenni for free today

Create your first piece of content with Jenni today and never look back

Scientific and Scholarly Writing

  • Literature Searches
  • Tracking and Citing References

Parts of a Scientific & Scholarly Paper

Introduction.

  • Writing Effectively
  • Where to Publish?
  • Capstone Resources

Different sections are needed in different types of scientific papers (lab reports, literature reviews, systematic reviews, methods papers, research papers, etc.). Projects that overlap with the social sciences or humanities may have different requirements. Generally, however, you'll need to include:

INTRODUCTION (Background)

METHODS SECTION (Materials and Methods)

What is a title

Titles have two functions: to identify the main topic or the message of the paper and to attract readers.

The title will be read by many people. Only a few will read the entire paper, therefore all words in the title should be chosen with care. Too short a title is not helpful to the potential reader. Too long a title can sometimes be even less meaningful. Remember a title is not an abstract. Neither is a title a sentence.

What makes a good title?

A good title is accurate, complete, and specific. Imagine searching for your paper in PubMed. What words would you use?

  • Use the fewest possible words that describe the contents of the paper.
  • Avoid waste words like "Studies on", or "Investigations on".
  • Use specific terms rather than general.
  • Use the same key terms in the title as the paper.
  • Watch your word order and syntax.

The abstract is a miniature version of your paper. It should present the main story and a few essential details of the paper for readers who only look at the abstract and should serve as a clear preview for readers who read your whole paper. They are usually short (250 words or less).

The goal is to communicate:

  •  What was done?
  •  Why was it done?
  •  How was it done?
  •  What was found?

A good abstract is specific and selective. Try summarizing each of the sections of your paper in a sentence two. Do the abstract last, so you know exactly what you want to write.

  • Use 1 or more well developed paragraphs.
  • Use introduction/body/conclusion structure.
  • Present purpose, results, conclusions and recommendations in that order.
  • Make it understandable to a wide audience.
  • << Previous: Tracking and Citing References
  • Next: Writing Effectively >>
  • Last Updated: May 30, 2024 11:19 AM
  • URL: https://libraryguides.umassmed.edu/scientific-writing
  • Search This Site All UCSD Sites Faculty/Staff Search Term
  • Contact & Directions
  • Climate Statement
  • Cognitive Behavioral Neuroscience
  • Cognitive Psychology
  • Developmental Psychology
  • Social Psychology
  • Adjunct Faculty
  • Non-Senate Instructors
  • Researchers
  • Psychology Grads
  • Affiliated Grads
  • New and Prospective Students
  • Honors Program
  • Experiential Learning
  • Programs & Events
  • Psi Chi / Psychology Club
  • Prospective PhD Students
  • Current PhD Students
  • Area Brown Bags
  • Colloquium Series
  • Anderson Distinguished Lecture Series
  • Speaker Videos
  • Undergraduate Program
  • Academic and Writing Resources

Writing Research Papers

  • Research Paper Structure

Whether you are writing a B.S. Degree Research Paper or completing a research report for a Psychology course, it is highly likely that you will need to organize your research paper in accordance with American Psychological Association (APA) guidelines.  Here we discuss the structure of research papers according to APA style.

Major Sections of a Research Paper in APA Style

A complete research paper in APA style that is reporting on experimental research will typically contain a Title page, Abstract, Introduction, Methods, Results, Discussion, and References sections. 1  Many will also contain Figures and Tables and some will have an Appendix or Appendices.  These sections are detailed as follows (for a more in-depth guide, please refer to " How to Write a Research Paper in APA Style ”, a comprehensive guide developed by Prof. Emma Geller). 2

What is this paper called and who wrote it? – the first page of the paper; this includes the name of the paper, a “running head”, authors, and institutional affiliation of the authors.  The institutional affiliation is usually listed in an Author Note that is placed towards the bottom of the title page.  In some cases, the Author Note also contains an acknowledgment of any funding support and of any individuals that assisted with the research project.

One-paragraph summary of the entire study – typically no more than 250 words in length (and in many cases it is well shorter than that), the Abstract provides an overview of the study.

Introduction

What is the topic and why is it worth studying? – the first major section of text in the paper, the Introduction commonly describes the topic under investigation, summarizes or discusses relevant prior research (for related details, please see the Writing Literature Reviews section of this website), identifies unresolved issues that the current research will address, and provides an overview of the research that is to be described in greater detail in the sections to follow.

What did you do? – a section which details how the research was performed.  It typically features a description of the participants/subjects that were involved, the study design, the materials that were used, and the study procedure.  If there were multiple experiments, then each experiment may require a separate Methods section.  A rule of thumb is that the Methods section should be sufficiently detailed for another researcher to duplicate your research.

What did you find? – a section which describes the data that was collected and the results of any statistical tests that were performed.  It may also be prefaced by a description of the analysis procedure that was used. If there were multiple experiments, then each experiment may require a separate Results section.

What is the significance of your results? – the final major section of text in the paper.  The Discussion commonly features a summary of the results that were obtained in the study, describes how those results address the topic under investigation and/or the issues that the research was designed to address, and may expand upon the implications of those findings.  Limitations and directions for future research are also commonly addressed.

List of articles and any books cited – an alphabetized list of the sources that are cited in the paper (by last name of the first author of each source).  Each reference should follow specific APA guidelines regarding author names, dates, article titles, journal titles, journal volume numbers, page numbers, book publishers, publisher locations, websites, and so on (for more information, please see the Citing References in APA Style page of this website).

Tables and Figures

Graphs and data (optional in some cases) – depending on the type of research being performed, there may be Tables and/or Figures (however, in some cases, there may be neither).  In APA style, each Table and each Figure is placed on a separate page and all Tables and Figures are included after the References.   Tables are included first, followed by Figures.   However, for some journals and undergraduate research papers (such as the B.S. Research Paper or Honors Thesis), Tables and Figures may be embedded in the text (depending on the instructor’s or editor’s policies; for more details, see "Deviations from APA Style" below).

Supplementary information (optional) – in some cases, additional information that is not critical to understanding the research paper, such as a list of experiment stimuli, details of a secondary analysis, or programming code, is provided.  This is often placed in an Appendix.

Variations of Research Papers in APA Style

Although the major sections described above are common to most research papers written in APA style, there are variations on that pattern.  These variations include: 

  • Literature reviews – when a paper is reviewing prior published research and not presenting new empirical research itself (such as in a review article, and particularly a qualitative review), then the authors may forgo any Methods and Results sections. Instead, there is a different structure such as an Introduction section followed by sections for each of the different aspects of the body of research being reviewed, and then perhaps a Discussion section. 
  • Multi-experiment papers – when there are multiple experiments, it is common to follow the Introduction with an Experiment 1 section, itself containing Methods, Results, and Discussion subsections. Then there is an Experiment 2 section with a similar structure, an Experiment 3 section with a similar structure, and so on until all experiments are covered.  Towards the end of the paper there is a General Discussion section followed by References.  Additionally, in multi-experiment papers, it is common for the Results and Discussion subsections for individual experiments to be combined into single “Results and Discussion” sections.

Departures from APA Style

In some cases, official APA style might not be followed (however, be sure to check with your editor, instructor, or other sources before deviating from standards of the Publication Manual of the American Psychological Association).  Such deviations may include:

  • Placement of Tables and Figures  – in some cases, to make reading through the paper easier, Tables and/or Figures are embedded in the text (for example, having a bar graph placed in the relevant Results section). The embedding of Tables and/or Figures in the text is one of the most common deviations from APA style (and is commonly allowed in B.S. Degree Research Papers and Honors Theses; however you should check with your instructor, supervisor, or editor first). 
  • Incomplete research – sometimes a B.S. Degree Research Paper in this department is written about research that is currently being planned or is in progress. In those circumstances, sometimes only an Introduction and Methods section, followed by References, is included (that is, in cases where the research itself has not formally begun).  In other cases, preliminary results are presented and noted as such in the Results section (such as in cases where the study is underway but not complete), and the Discussion section includes caveats about the in-progress nature of the research.  Again, you should check with your instructor, supervisor, or editor first.
  • Class assignments – in some classes in this department, an assignment must be written in APA style but is not exactly a traditional research paper (for instance, a student asked to write about an article that they read, and to write that report in APA style). In that case, the structure of the paper might approximate the typical sections of a research paper in APA style, but not entirely.  You should check with your instructor for further guidelines.

Workshops and Downloadable Resources

  • For in-person discussion of the process of writing research papers, please consider attending this department’s “Writing Research Papers” workshop (for dates and times, please check the undergraduate workshops calendar).

Downloadable Resources

  • How to Write APA Style Research Papers (a comprehensive guide) [ PDF ]
  • Tips for Writing APA Style Research Papers (a brief summary) [ PDF ]
  • Example APA Style Research Paper (for B.S. Degree – empirical research) [ PDF ]
  • Example APA Style Research Paper (for B.S. Degree – literature review) [ PDF ]

Further Resources

How-To Videos     

  • Writing Research Paper Videos

APA Journal Article Reporting Guidelines

  • Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. (2018). Journal article reporting standards for quantitative research in psychology: The APA Publications and Communications Board task force report . American Psychologist , 73 (1), 3.
  • Levitt, H. M., Bamberg, M., Creswell, J. W., Frost, D. M., Josselson, R., & Suárez-Orozco, C. (2018). Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA Publications and Communications Board task force report . American Psychologist , 73 (1), 26.  

External Resources

  • Formatting APA Style Papers in Microsoft Word
  • How to Write an APA Style Research Paper from Hamilton University
  • WikiHow Guide to Writing APA Research Papers
  • Sample APA Formatted Paper with Comments
  • Sample APA Formatted Paper
  • Tips for Writing a Paper in APA Style

1 VandenBos, G. R. (Ed). (2010). Publication manual of the American Psychological Association (6th ed.) (pp. 41-60).  Washington, DC: American Psychological Association.

2 geller, e. (2018).  how to write an apa-style research report . [instructional materials]. , prepared by s. c. pan for ucsd psychology.

Back to top  

  • Formatting Research Papers
  • Using Databases and Finding References
  • What Types of References Are Appropriate?
  • Evaluating References and Taking Notes
  • Citing References
  • Writing a Literature Review
  • Writing Process and Revising
  • Improving Scientific Writing
  • Academic Integrity and Avoiding Plagiarism
  • Writing Research Papers Videos
  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Survey Instruments

Survey Instruments – List and Their Uses

Context of the Study

Context of the Study – Writing Guide and Examples

Background of The Study

Background of The Study – Examples and Writing...

Implications in Research

Implications in Research – Types, Examples and...

Research Techniques

Research Techniques – Methods, Types and Examples

Research Design

Research Design – Types, Methods and Examples

Boston College Libraries homepage

  • Research guides

Writing an Educational Research Paper

Research paper sections, customary parts of an education research paper.

There is no one right style or manner for writing an education paper. Content aside, the writing style and presentation of papers in different educational fields vary greatly. Nevertheless, certain parts are common to most papers, for example:

Title/Cover Page

Contains the paper's title, the author's name, address, phone number, e-mail, and the day's date.

Not every education paper requires an abstract. However, for longer, more complex papers abstracts are particularly useful. Often only 100 to 300 words, the abstract generally provides a broad overview and is never more than a page. It describes the essence, the main theme of the paper. It includes the research question posed, its significance, the methodology, and the main results or findings. Footnotes or cited works are never listed in an abstract. Remember to take great care in composing the abstract. It's the first part of the paper the instructor reads. It must impress with a strong content, good style, and general aesthetic appeal. Never write it hastily or carelessly.

Introduction and Statement of the Problem

A good introduction states the main research problem and thesis argument. What precisely are you studying and why is it important? How original is it? Will it fill a gap in other studies? Never provide a lengthy justification for your topic before it has been explicitly stated.

Limitations of Study

Indicate as soon as possible what you intend to do, and what you are not going to attempt. You may limit the scope of your paper by any number of factors, for example, time, personnel, gender, age, geographic location, nationality, and so on.

Methodology

Discuss your research methodology. Did you employ qualitative or quantitative research methods? Did you administer a questionnaire or interview people? Any field research conducted? How did you collect data? Did you utilize other libraries or archives? And so on.

Literature Review

The research process uncovers what other writers have written about your topic. Your education paper should include a discussion or review of what is known about the subject and how that knowledge was acquired. Once you provide the general and specific context of the existing knowledge, then you yourself can build on others' research. The guide Writing a Literature Review will be helpful here.

Main Body of Paper/Argument

This is generally the longest part of the paper. It's where the author supports the thesis and builds the argument. It contains most of the citations and analysis. This section should focus on a rational development of the thesis with clear reasoning and solid argumentation at all points. A clear focus, avoiding meaningless digressions, provides the essential unity that characterizes a strong education paper.

After spending a great deal of time and energy introducing and arguing the points in the main body of the paper, the conclusion brings everything together and underscores what it all means. A stimulating and informative conclusion leaves the reader informed and well-satisfied. A conclusion that makes sense, when read independently from the rest of the paper, will win praise.

Works Cited/Bibliography

See the Citation guide .

Education research papers often contain one or more appendices. An appendix contains material that is appropriate for enlarging the reader's understanding, but that does not fit very well into the main body of the paper. Such material might include tables, charts, summaries, questionnaires, interview questions, lengthy statistics, maps, pictures, photographs, lists of terms, glossaries, survey instruments, letters, copies of historical documents, and many other types of supplementary material. A paper may have several appendices. They are usually placed after the main body of the paper but before the bibliography or works cited section. They are usually designated by such headings as Appendix A, Appendix B, and so on.

  • << Previous: Choosing a Topic
  • Next: Find Books >>
  • Last Updated: May 22, 2024 6:23 PM
  • Subjects: Education
  • Tags: education , education_paper , education_research_paper

Structure of a Research Paper

Phillips-Wangensteen Building.

Structure of a Research Paper: IMRaD Format

I. The Title Page

  • Title: Tells the reader what to expect in the paper.
  • Author(s): Most papers are written by one or two primary authors. The remaining authors have reviewed the work and/or aided in study design or data analysis (International Committee of Medical Editors, 1997). Check the Instructions to Authors for the target journal for specifics about authorship.
  • Keywords [according to the journal]
  • Corresponding Author: Full name and affiliation for the primary contact author for persons who have questions about the research.
  • Financial & Equipment Support [if needed]: Specific information about organizations, agencies, or companies that supported the research.
  • Conflicts of Interest [if needed]: List and explain any conflicts of interest.

II. Abstract: “Structured abstract” has become the standard for research papers (introduction, objective, methods, results and conclusions), while reviews, case reports and other articles have non-structured abstracts. The abstract should be a summary/synopsis of the paper.

III. Introduction: The “why did you do the study”; setting the scene or laying the foundation or background for the paper.

IV. Methods: The “how did you do the study.” Describe the --

  • Context and setting of the study
  • Specify the study design
  • Population (patients, etc. if applicable)
  • Sampling strategy
  • Intervention (if applicable)
  • Identify the main study variables
  • Data collection instruments and procedures
  • Outline analysis methods

V. Results: The “what did you find” --

  • Report on data collection and/or recruitment
  • Participants (demographic, clinical condition, etc.)
  • Present key findings with respect to the central research question
  • Secondary findings (secondary outcomes, subgroup analyses, etc.)

VI. Discussion: Place for interpreting the results

  • Main findings of the study
  • Discuss the main results with reference to previous research
  • Policy and practice implications of the results
  • Strengths and limitations of the study

VII. Conclusions: [occasionally optional or not required]. Do not reiterate the data or discussion. Can state hunches, inferences or speculations. Offer perspectives for future work.

VIII. Acknowledgements: Names people who contributed to the work, but did not contribute sufficiently to earn authorship. You must have permission from any individuals mentioned in the acknowledgements sections. 

IX. References:  Complete citations for any articles or other materials referenced in the text of the article.

  • IMRD Cheatsheet (Carnegie Mellon) pdf.
  • Adewasi, D. (2021 June 14).  What Is IMRaD? IMRaD Format in Simple Terms! . Scientific-editing.info. 
  • Nair, P.K.R., Nair, V.D. (2014). Organization of a Research Paper: The IMRAD Format. In: Scientific Writing and Communication in Agriculture and Natural Resources. Springer, Cham. https://doi.org/10.1007/978-3-319-03101-9_2
  • Sollaci, L. B., & Pereira, M. G. (2004). The introduction, methods, results, and discussion (IMRAD) structure: a fifty-year survey.   Journal of the Medical Library Association : JMLA ,  92 (3), 364–367.
  • Cuschieri, S., Grech, V., & Savona-Ventura, C. (2019). WASP (Write a Scientific Paper): Structuring a scientific paper.   Early human development ,  128 , 114–117. https://doi.org/10.1016/j.earlhumdev.2018.09.011

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

parts of the common research paper

  • Research Paper >

Parts of a Research Paper

One of the most important aspects of science is ensuring that you get all the parts of the written research paper in the right order.

This article is a part of the guide:

  • Outline Examples
  • Example of a Paper
  • Write a Hypothesis
  • Introduction

Browse Full Outline

  • 1 Write a Research Paper
  • 2 Writing a Paper
  • 3.1 Write an Outline
  • 3.2 Outline Examples
  • 4.1 Thesis Statement
  • 4.2 Write a Hypothesis
  • 5.2 Abstract
  • 5.3 Introduction
  • 5.4 Methods
  • 5.5 Results
  • 5.6 Discussion
  • 5.7 Conclusion
  • 5.8 Bibliography
  • 6.1 Table of Contents
  • 6.2 Acknowledgements
  • 6.3 Appendix
  • 7.1 In Text Citations
  • 7.2 Footnotes
  • 7.3.1 Floating Blocks
  • 7.4 Example of a Paper
  • 7.5 Example of a Paper 2
  • 7.6.1 Citations
  • 7.7.1 Writing Style
  • 7.7.2 Citations
  • 8.1.1 Sham Peer Review
  • 8.1.2 Advantages
  • 8.1.3 Disadvantages
  • 8.2 Publication Bias
  • 8.3.1 Journal Rejection
  • 9.1 Article Writing
  • 9.2 Ideas for Topics

You may have finished the best research project on earth but, if you do not write an interesting and well laid out paper, then nobody is going to take your findings seriously.

The main thing to remember with any research paper is that it is based on an hourglass structure. It begins with general information and undertaking a literature review , and becomes more specific as you nail down a research problem and hypothesis .

Finally, it again becomes more general as you try to apply your findings to the world at general.

Whilst there are a few differences between the various disciplines, with some fields placing more emphasis on certain parts than others, there is a basic underlying structure.

These steps are the building blocks of constructing a good research paper. This section outline how to lay out the parts of a research paper, including the various experimental methods and designs.

The principles for literature review and essays of all types follow the same basic principles.

Reference List

parts of the common research paper

For many students, writing the introduction is the first part of the process, setting down the direction of the paper and laying out exactly what the research paper is trying to achieve.

For others, the introduction is the last thing written, acting as a quick summary of the paper. As long as you have planned a good structure for the parts of a research paper, both approaches are acceptable and it is a matter of preference.

A good introduction generally consists of three distinct parts:

  • You should first give a general presentation of the research problem.
  • You should then lay out exactly what you are trying to achieve with this particular research project.
  • You should then state your own position.

Ideally, you should try to give each section its own paragraph, but this will vary given the overall length of the paper.

1) General Presentation

Look at the benefits to be gained by the research or why the problem has not been solved yet. Perhaps nobody has thought about it, or maybe previous research threw up some interesting leads that the previous researchers did not follow up.

Another researcher may have uncovered some interesting trends, but did not manage to reach the significance level , due to experimental error or small sample sizes .

2) Purpose of the Paper

The research problem does not have to be a statement, but must at least imply what you are trying to find.

Many writers prefer to place the thesis statement or hypothesis here, which is perfectly acceptable, but most include it in the last sentences of the introduction, to give the reader a fuller picture.

3) A Statement of Intent From the Writer

The idea is that somebody will be able to gain an overall view of the paper without needing to read the whole thing. Literature reviews are time-consuming enough, so give the reader a concise idea of your intention before they commit to wading through pages of background.

In this section, you look to give a context to the research, including any relevant information learned during your literature review. You are also trying to explain why you chose this area of research, attempting to highlight why it is necessary. The second part should state the purpose of the experiment and should include the research problem. The third part should give the reader a quick summary of the form that the parts of the research paper is going to take and should include a condensed version of the discussion.

parts of the common research paper

This should be the easiest part of the paper to write, as it is a run-down of the exact design and methodology used to perform the research. Obviously, the exact methodology varies depending upon the exact field and type of experiment .

There is a big methodological difference between the apparatus based research of the physical sciences and the methods and observation methods of social sciences. However, the key is to ensure that another researcher would be able to replicate the experiment to match yours as closely as possible, but still keeping the section concise.

You can assume that anybody reading your paper is familiar with the basic methods, so try not to explain every last detail. For example, an organic chemist or biochemist will be familiar with chromatography, so you only need to highlight the type of equipment used rather than explaining the whole process in detail.

In the case of a survey , if you have too many questions to cover in the method, you can always include a copy of the questionnaire in the appendix . In this case, make sure that you refer to it.

This is probably the most variable part of any research paper, and depends on the results and aims of the experiment.

For quantitative research , it is a presentation of the numerical results and data, whereas for qualitative research it should be a broader discussion of trends, without going into too much detail.

For research generating a lot of results , then it is better to include tables or graphs of the analyzed data and leave the raw data in the appendix, so that a researcher can follow up and check your calculations.

A commentary is essential to linking the results together, rather than just displaying isolated and unconnected charts and figures.

It can be quite difficult to find a good balance between the results and the discussion section, because some findings, especially in a quantitative or descriptive experiment , will fall into a grey area. Try to avoid repeating yourself too often.

It is best to try to find a middle path, where you give a general overview of the data and then expand on it in the discussion - you should try to keep your own opinions and interpretations out of the results section, saving that for the discussion later on.

This is where you elaborate on your findings, and explain what you found, adding your own personal interpretations.

Ideally, you should link the discussion back to the introduction, addressing each point individually.

It’s important to make sure that every piece of information in your discussion is directly related to the thesis statement , or you risk cluttering your findings. In keeping with the hourglass principle, you can expand on the topic later in the conclusion .

The conclusion is where you build on your discussion and try to relate your findings to other research and to the world at large.

In a short research paper, it may be a paragraph or two, or even a few lines.

In a dissertation, it may well be the most important part of the entire paper - not only does it describe the results and discussion in detail, it emphasizes the importance of the results in the field, and ties it in with the previous research.

Some research papers require a recommendations section, postulating the further directions of the research, as well as highlighting how any flaws affected the results. In this case, you should suggest any improvements that could be made to the research design .

No paper is complete without a reference list , documenting all the sources that you used for your research. This should be laid out according to APA , MLA or other specified format, allowing any interested researcher to follow up on the research.

One habit that is becoming more common, especially with online papers, is to include a reference to your own paper on the final page. Lay this out in MLA, APA and Chicago format, allowing anybody referencing your paper to copy and paste it.

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (Jun 5, 2009). Parts of a Research Paper. Retrieved Jun 07, 2024 from Explorable.com: https://explorable.com/parts-of-a-research-paper

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Check out the official book.

Learn how to construct, style and format an Academic paper and take your skills to the next level.

parts of the common research paper

(also available as ebook )

Save this course for later

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

parts of the common research paper

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter

parts of the common research paper

How to Write a Research Paper

Use the links below to jump directly to any section of this guide:

Research Paper Fundamentals

How to choose a topic or question, how to create a working hypothesis or thesis, common research paper methodologies, how to gather and organize evidence , how to write an outline for your research paper, how to write a rough draft, how to revise your draft, how to produce a final draft, resources for teachers .

It is not fair to say that no one writes anymore. Just about everyone writes text messages, brief emails, or social media posts every single day. Yet, most people don't have a lot of practice with the formal, organized writing required for a good academic research paper. This guide contains links to a variety of resources that can help demystify the process. Some of these resources are intended for teachers; they contain exercises, activities, and teaching strategies. Other resources are intended for direct use by students who are struggling to write papers, or are looking for tips to make the process go more smoothly.

The resources in this section are designed to help students understand the different types of research papers, the general research process, and how to manage their time. Below, you'll find links from university writing centers, the trusted Purdue Online Writing Lab, and more.

What is an Academic Research Paper?

"Genre and the Research Paper" (Purdue OWL)

There are different types of research papers. Different types of scholarly questions will lend themselves to one format or another. This is a brief introduction to the two main genres of research paper: analytic and argumentative. 

"7 Most Popular Types of Research Papers" (Personal-writer.com)

This resource discusses formats that high school students commonly encounter, such as the compare and contrast essay and the definitional essay. Please note that the inclusion of this link is not an endorsement of this company's paid service.

How to Prepare and Plan Out Writing a Research Paper

Teachers can give their students a step-by-step guide like these to help them understand the different steps of the research paper process. These guides can be combined with the time management tools in the next subsection to help students come up with customized calendars for completing their papers.

"Ten Steps for Writing Research Papers" (American University)  

This resource from American University is a comprehensive guide to the research paper writing process, and includes examples of proper research questions and thesis topics.

"Steps in Writing a Research Paper" (SUNY Empire State College)

This guide breaks the research paper process into 11 steps. Each "step" links to a separate page, which describes the work entailed in completing it.

How to Manage Time Effectively

The links below will help students determine how much time is necessary to complete a paper. If your sources are not available online or at your local library, you'll need to leave extra time for the Interlibrary Loan process. Remember that, even if you do not need to consult secondary sources, you'll still need to leave yourself ample time to organize your thoughts.

"Research Paper Planner: Timeline" (Baylor University)

This interactive resource from Baylor University creates a suggested writing schedule based on how much time a student has to work on the assignment.

"Research Paper Planner" (UCLA)

UCLA's library offers this step-by-step guide to the research paper writing process, which also includes a suggested planning calendar.

There's a reason teachers spend a long time talking about choosing a good topic. Without a good topic and a well-formulated research question, it is almost impossible to write a clear and organized paper. The resources below will help you generate ideas and formulate precise questions.

"How to Select a Research Topic" (Univ. of Michigan-Flint)

This resource is designed for college students who are struggling to come up with an appropriate topic. A student who uses this resource and still feels unsure about his or her topic should consult the course instructor for further personalized assistance.

"25 Interesting Research Paper Topics to Get You Started" (Kibin)

This resource, which is probably most appropriate for high school students, provides a list of specific topics to help get students started. It is broken into subsections, such as "paper topics on local issues."

"Writing a Good Research Question" (Grand Canyon University)

This introduction to research questions includes some embedded videos, as well as links to scholarly articles on research questions. This resource would be most appropriate for teachers who are planning lessons on research paper fundamentals.

"How to Write a Research Question the Right Way" (Kibin)

This student-focused resource provides more detail on writing research questions. The language is accessible, and there are embedded videos and examples of good and bad questions.

It is important to have a rough hypothesis or thesis in mind at the beginning of the research process. People who have a sense of what they want to say will have an easier time sorting through scholarly sources and other information. The key, of course, is not to become too wedded to the draft hypothesis or thesis. Just about every working thesis gets changed during the research process.

CrashCourse Video: "Sociology Research Methods" (YouTube)

Although this video is tailored to sociology students, it is applicable to students in a variety of social science disciplines. This video does a good job demonstrating the connection between the brainstorming that goes into selecting a research question and the formulation of a working hypothesis.

"How to Write a Thesis Statement for an Analytical Essay" (YouTube)

Students writing analytical essays will not develop the same type of working hypothesis as students who are writing research papers in other disciplines. For these students, developing the working thesis may happen as a part of the rough draft (see the relevant section below). 

"Research Hypothesis" (Oakland Univ.)

This resource provides some examples of hypotheses in social science disciplines like Political Science and Criminal Justice. These sample hypotheses may also be useful for students in other soft social sciences and humanities disciplines like History.

When grading a research paper, instructors look for a consistent methodology. This section will help you understand different methodological approaches used in research papers. Students will get the most out of these resources if they use them to help prepare for conversations with teachers or discussions in class.

"Types of Research Designs" (USC)

A "research design," used for complex papers, is related to the paper's method. This resource contains introductions to a variety of popular research designs in the social sciences. Although it is not the most intuitive site to read, the information here is very valuable. 

"Major Research Methods" (YouTube)

Although this video is a bit on the dry side, it provides a comprehensive overview of the major research methodologies in a format that might be more accessible to students who have struggled with textbooks or other written resources.

"Humanities Research Strategies" (USC)

This is a portal where students can learn about four methodological approaches for humanities papers: Historical Methodologies, Textual Criticism, Conceptual Analysis, and the Synoptic method.

"Selected Major Social Science Research Methods: Overview" (National Academies Press)

This appendix from the book  Using Science as Evidence in Public Policy , printed by National Academies Press, introduces some methods used in social science papers.

"Organizing Your Social Sciences Research Paper: 6. The Methodology" (USC)

This resource from the University of Southern California's library contains tips for writing a methodology section in a research paper.

How to Determine the Best Methodology for You

Anyone who is new to writing research papers should be sure to select a method in consultation with their instructor. These resources can be used to help prepare for that discussion. They may also be used on their own by more advanced students.

"Choosing Appropriate Research Methodologies" (Palgrave Study Skills)

This friendly and approachable resource from Palgrave Macmillan can be used by students who are just starting to think about appropriate methodologies.

"How to Choose Your Research Methods" (NFER (UK))

This is another approachable resource students can use to help narrow down the most appropriate methods for their research projects.

The resources in this section introduce the process of gathering scholarly sources and collecting evidence. You'll find a range of material here, from introductory guides to advanced explications best suited to college students. Please consult the LitCharts  How to Do Academic Research guide for a more comprehensive list of resources devoted to finding scholarly literature.

Google Scholar

Students who have access to library websites with detailed research guides should start there, but people who do not have access to those resources can begin their search for secondary literature here.

"Gathering Appropriate Information" (Texas Gateway)

This resource from the Texas Gateway for online resources introduces students to the research process, and contains interactive exercises. The level of complexity is suitable for middle school, high school, and introductory college classrooms.

"An Overview of Quantitative and Qualitative Data Collection Methods" (NSF)

This PDF from the National Science Foundation goes into detail about best practices and pitfalls in data collection across multiple types of methodologies.

"Social Science Methods for Data Collection and Analysis" (Swiss FIT)

This resource is appropriate for advanced undergraduates or teachers looking to create lessons on research design and data collection. It covers techniques for gathering data via interviews, observations, and other methods.

"Collecting Data by In-depth Interviewing" (Leeds Univ.)

This resource contains enough information about conducting interviews to make it useful for teachers who want to create a lesson plan, but is also accessible enough for college juniors or seniors to make use of it on their own.

There is no "one size fits all" outlining technique. Some students might devote all their energy and attention to the outline in order to avoid the paper. Other students may benefit from being made to sit down and organize their thoughts into a lengthy sentence outline. The resources in this section include strategies and templates for multiple types of outlines. 

"Topic vs. Sentence Outlines" (UC Berkeley)

This resource introduces two basic approaches to outlining: the shorter topic-based approach, and the longer, more detailed sentence-based approach. This resource also contains videos on how to develop paper paragraphs from the sentence-based outline.

"Types of Outlines and Samples" (Purdue OWL)

The Purdue Online Writing Lab's guide is a slightly less detailed discussion of different types of outlines. It contains several sample outlines.

"Writing An Outline" (Austin C.C.)

This resource from a community college contains sample outlines from an American history class that students can use as models.

"How to Structure an Outline for a College Paper" (YouTube)

This brief (sub-2 minute) video from the ExpertVillage YouTube channel provides a model of outline writing for students who are struggling with the idea.

"Outlining" (Harvard)

This is a good resource to consult after completing a draft outline. It offers suggestions for making sure your outline avoids things like unnecessary repetition.

As with outlines, rough drafts can take on many different forms. These resources introduce teachers and students to the various approaches to writing a rough draft. This section also includes resources that will help you cite your sources appropriately according to the MLA, Chicago, and APA style manuals.

"Creating a Rough Draft for a Research Paper" (Univ. of Minnesota)

This resource is useful for teachers in particular, as it provides some suggested exercises to help students with writing a basic rough draft. 

Rough Draft Assignment (Duke of Definition)

This sample assignment, with a brief list of tips, was developed by a high school teacher who runs a very successful and well-reviewed page of educational resources.

"Creating the First Draft of Your Research Paper" (Concordia Univ.)

This resource will be helpful for perfectionists or procrastinators, as it opens by discussing the problem of avoiding writing. It also provides a short list of suggestions meant to get students writing.

Using Proper Citations

There is no such thing as a rough draft of a scholarly citation. These links to the three major citation guides will ensure that your citations follow the correct format. Please consult the LitCharts How to Cite Your Sources guide for more resources.

Chicago Manual of Style Citation Guide

Some call  The Chicago Manual of Style , which was first published in 1906, "the editors' Bible." The manual is now in its 17th edition, and is popular in the social sciences, historical journals, and some other fields in the humanities.

APA Citation Guide

According to the American Psychological Association, this guide was developed to aid reading comprehension, clarity of communication, and to reduce bias in language in the social and behavioral sciences. Its first full edition was published in 1952, and it is now in its sixth edition.

MLA Citation Guide

The Modern Language Association style is used most commonly within the liberal arts and humanities. The  MLA Style Manual and Guide to Scholarly Publishing  was first published in 1985 and (as of 2008) is in its third edition.

Any professional scholar will tell you that the best research papers are made in the revision stage. No matter how strong your research question or working thesis, it is not possible to write a truly outstanding paper without devoting energy to revision. These resources provide examples of revision exercises for the classroom, as well as tips for students working independently.

"The Art of Revision" (Univ. of Arizona)

This resource provides a wealth of information and suggestions for both students and teachers. There is a list of suggested exercises that teachers might use in class, along with a revision checklist that is useful for teachers and students alike.

"Script for Workshop on Revision" (Vanderbilt University)

Vanderbilt's guide for leading a 50-minute revision workshop can serve as a model for teachers who wish to guide students through the revision process during classtime. 

"Revising Your Paper" (Univ. of Washington)

This detailed handout was designed for students who are beginning the revision process. It discusses different approaches and methods for revision, and also includes a detailed list of things students should look for while they revise.

"Revising Drafts" (UNC Writing Center)

This resource is designed for students and suggests things to look for during the revision process. It provides steps for the process and has a FAQ for students who have questions about why it is important to revise.

Conferencing with Writing Tutors and Instructors

No writer is so good that he or she can't benefit from meeting with instructors or peer tutors. These resources from university writing, learning, and communication centers provide suggestions for how to get the most out of these one-on-one meetings.

"Getting Feedback" (UNC Writing Center)

This very helpful resource talks about how to ask for feedback during the entire writing process. It contains possible questions that students might ask when developing an outline, during the revision process, and after the final draft has been graded.

"Prepare for Your Tutoring Session" (Otis College of Art and Design)

This guide from a university's student learning center contains a lot of helpful tips for getting the most out of working with a writing tutor.

"The Importance of Asking Your Professor" (Univ. of Waterloo)

This article from the university's Writing and Communication Centre's blog contains some suggestions for how and when to get help from professors and Teaching Assistants.

Once you've revised your first draft, you're well on your way to handing in a polished paper. These resources—each of them produced by writing professionals at colleges and universities—outline the steps required in order to produce a final draft. You'll find proofreading tips and checklists in text and video form.

"Developing a Final Draft of a Research Paper" (Univ. of Minnesota)

While this resource contains suggestions for revision, it also features a couple of helpful checklists for the last stages of completing a final draft.

Basic Final Draft Tips and Checklist (Univ. of Maryland-University College)

This short and accessible resource, part of UMUC's very thorough online guide to writing and research, contains a very basic checklist for students who are getting ready to turn in their final drafts.

Final Draft Checklist (Everett C.C.)

This is another accessible final draft checklist, appropriate for both high school and college students. It suggests reading your essay aloud at least once.

"How to Proofread Your Final Draft" (YouTube)

This video (approximately 5 minutes), produced by Eastern Washington University, gives students tips on proofreading final drafts.

"Proofreading Tips" (Georgia Southern-Armstrong)

This guide will help students learn how to spot common errors in their papers. It suggests focusing on content and editing for grammar and mechanics.

This final set of resources is intended specifically for high school and college instructors. It provides links to unit plans and classroom exercises that can help improve students' research and writing skills. You'll find resources that give an overview of the process, along with activities that focus on how to begin and how to carry out research. 

"Research Paper Complete Resources Pack" (Teachers Pay Teachers)

This packet of assignments, rubrics, and other resources is designed for high school students. The resources in this packet are aligned to Common Core standards.

"Research Paper—Complete Unit" (Teachers Pay Teachers)

This packet of assignments, notes, PowerPoints, and other resources has a 4/4 rating with over 700 ratings. It is designed for high school teachers, but might also be useful to college instructors who work with freshmen.

"Teaching Students to Write Good Papers" (Yale)

This resource from Yale's Center for Teaching and Learning is designed for college instructors, and it includes links to appropriate activities and exercises.

"Research Paper Writing: An Overview" (CUNY Brooklyn)

CUNY Brooklyn offers this complete lesson plan for introducing students to research papers. It includes an accompanying set of PowerPoint slides.

"Lesson Plan: How to Begin Writing a Research Paper" (San Jose State Univ.)

This lesson plan is designed for students in the health sciences, so teachers will have to modify it for their own needs. It includes a breakdown of the brainstorming, topic selection, and research question process. 

"Quantitative Techniques for Social Science Research" (Univ. of Pittsburgh)

This is a set of PowerPoint slides that can be used to introduce students to a variety of quantitative methods used in the social sciences.

  • PDFs for all 136 Lit Terms we cover
  • Downloads of 1939 LitCharts Lit Guides
  • Teacher Editions for every Lit Guide
  • Explanations and citation info for 40,890 quotes across 1939 books
  • Downloadable (PDF) line-by-line translations of every Shakespeare play

Need something? Request a new guide .

How can we improve? Share feedback .

LitCharts is hiring!

The LitCharts.com logo.

8 Key Elements of a Research Paper Structure + Free Template (2024)

8 Key Elements of a Research Paper Structure + Free Template (2024)

Table of contents

parts of the common research paper

Brinda Gulati

Welcome to the twilight zone of research writing. You’ve got your thesis statement and research evidence, and before you write the first draft, you need a wireframe — a structure on which your research paper can stand tall. 

When you’re looking to share your research with the wider scientific community, your discoveries and breakthroughs are important, yes. But what’s more important is that you’re able to communicate your research in an accessible format. For this, you need to publish your paper in journals. And to have your research published in a journal, you need to know how to structure a research paper.

Here, you’ll find a template of a research paper structure, a section-by-section breakdown of the eight structural elements, and actionable insights from three published researchers.

Let’s begin!

Why is the Structure of a Research Paper Important?

A research paper built on a solid structure is the literary equivalent of calcium supplements for weak bones.

Richard Smith of BMJ says, “...no amount of clever language can compensate for a weak structure."

There’s space for your voice and creativity in your research, but without a structure, your paper is as good as a beached whale — stranded and bloated.

A well-structured research paper:

  • Communicates your credibility as a student scholar in the wider academic community.
  • Facilitates accessibility for readers who may not be in your field but are interested in your research.
  • Promotes clear communication between disciplines, thereby eliminating “concept transfer” as a rate-limiting step in scientific cross-pollination.
  • Increases your chances of getting published!

Research Paper Structure Template

parts of the common research paper

Why Was My Research Paper Rejected?

A desk rejection hurts — sometimes more than stubbing your pinky toe against a table.

Oftentimes, journals will reject your research paper before sending it off for peer review if the architecture of your manuscript is shoddy. 

The JAMA Internal Medicine , for example, rejected 78% of the manuscripts it received in 2017 without review. Among the top 10 reasons? Poor presentation and poor English . (We’ve got fixes for both here, don’t you worry.)

5 Common Mistakes in a Research Paper Structure

  • Choppy transitions : Missing or abrupt transitions between sections disrupt the flow of your paper. Read our guide on transition words here. 
  • Long headings : Long headings can take away from your main points. Be concise and informative, using parallel structure throughout.
  • Disjointed thoughts : Make sure your paragraphs flow logically from one another and support your central point.
  • Misformatting : An inconsistent or incorrect layout can make your paper look unprofessional and hard to read. For font, spacing, margins, and section headings, strictly follow your target journal's guidelines.
  • Disordered floating elements : Ill-placed and unlabeled tables, figures, and appendices can disrupt your paper's structure. Label, caption, and reference all floating elements in the main text.

What Is the Structure of a Research Paper? 

The structure of a research paper closely resembles the shape of a diamond flowing from the general ➞ specific ➞ general. 

We’ll follow the IMRaD ( I ntroduction , M ethods , R esults , and D iscussion) format within the overarching “context-content-conclusion” approach:

➞ The context sets the stage for the paper where you tell your readers, “This is what we already know, and here’s why my research matters.”

➞ The content is the meat of the paper where you present your methods, results, and discussion. This is the IMRad (Introduction, Methods, Results, and Discussion) format — the most popular way to organize the body of a research paper. 

➞ The conclusion is where you bring it home — “Here’s what we’ve learned, and here’s where it plays out in the grand scheme of things.”

Now, let’s see what this means section by section.

1. Research Paper Title

A research paper title is read first, and read the most. 

The title serves two purposes: informing readers and attracting attention . Therefore, your research paper title should be clear, descriptive, and concise . If you can, avoid technical jargon and abbreviations. Your goal is to get as many readers as possible.

In fact, research articles with shorter titles describing the results are cited more often . 

An impactful title is usually 10 words long, plus or minus three words. 

For example:

  • "Mortality in Puerto Rico after Hurricane Maria" (word count = 7)
  • “A Review of Practical Techniques For the Diagnosis of Malaria” (word count = 10)

2. Research Paper Abstract

In an abstract, you have to answer the two whats :

  • What has been done?
  • What are the main findings?

The abstract is the elevator pitch for your research. Is your paper worth reading? Convince the reader here. 

Example page of how to structure the abstract section of a research paper with a sentence by sentence breakdown.

✏️ NOTE : According to different journals’ guidelines, sometimes the title page and abstract section are on the same page. 

An abstract ranges from 200-300 words and doubles down on the relevance and significance of your research. Succinctly.  

This is your chance to make a second first impression. 

If you’re stuck with a blob of text and can’t seem to cut it down, a smart AI elf like Wordtune can help you write a concise abstract! The AI research assistant also offers suggestions for improved clarity and grammar so your elevator pitch doesn’t fall by the wayside. 

Sample abstract text in Wordtune with suggestions under "Editor's Notes" for better writing.

Get Wordtune for free > Get Wordtune for free >

3. Introduction Section

What does it do.

Asks the central research question.

Pre-Writing Questions For the Introduction Section

The introduction section of your research paper explains the scope, context, and importance of your project. 

I talked to Swagatama Mukherjee , a published researcher and graduate student in Neuro-Oncology studying Glioblastoma Progression. For the Introduction, she says, focus on answering three key questions:

  • What isn’t known in the field? 
  • How is that knowledge gap holding us back?
  • How does your research focus on answering this problem?

When Should You Write It?

Write it last. As you go along filling in the body of your research paper, you may find that the writing is evolving in a different direction than when you first started. 

Organizing the Introduction

Visualize the introduction as an upside-down triangle when considering the overall outline of this section. You'll need to give a broad introduction to the topic, provide background information, and then narrow it down to specific research. Finally, you'll need a focused research question, hypothesis, or thesis statement. The move is from general ➞ specific.

✨️ BONUS TIP: Use the famous CARS model by John Swales to nail this upside-down triangle. 

4. methods section.

Describes what was done to answer the research question, and how.

Write it first . Just list everything you’ve done, and go from there. How did you assign participants into groups? What kind of questionnaires have you used? How did you analyze your data? 

Write as if the reader were following an instruction manual on how to duplicate your research methodology to the letter. 

Organizing the Methods Section

Here, you’re telling the story of your research. 

Write in as much detail as possible, and in the chronological order of the experiments. Follow the order of the results, so your readers can track the gradual development of your research. Use headings and subheadings to visually format the section.

parts of the common research paper

This skeleton isn’t set in stone. The exact headings will be determined by your field of study and the journal you’re submitting to. 

✨️ BONUS TIP : Drowning in research? Ask Wordtune to summarize your PDFs for you!

5. results section .

Reports the findings of your study in connection to your research question.

Write the section only after you've written a draft of your Methods section, and before the Discussion.

This section is the star of your research paper. But don't get carried away just yet. Focus on factual, unbiased information only. Tell the reader how you're going to change the world in the next section. The Results section is strictly a no-opinions zone.

How To Organize Your Results 

A tried-and-true structure for presenting your findings is to outline your results based on the research questions outlined in the figures.

Whenever you address a research question, include the data that directly relates to that question.

What does this mean? Let’s look at an example:

Here's a sample research question:

How does the use of social media affect the academic performance of college students?

Make a statement based on the data:

College students who spent more than 3 hours per day on social media had significantly lower GPAs compared to those who spent less than 1 hour per day (M=2.8 vs. M=3.4; see Fig. 2).

You can elaborate on this finding with secondary information:

The negative impact of social media use on academic performance was more pronounced among freshmen and sophomores compared to juniors and seniors ((F>25), (S>20), (J>15), and (Sr>10); see Fig. 4).

Finally, caption your figures in the same way — use the data and your research question to construct contextual phrases. The phrases should give your readers a framework for understanding the data: 

Figure 4. Percentage of college students reporting a negative impact of social media on academic performance, by year in school.

Dos and Don’ts For The Results Section

parts of the common research paper

✔️ Related : How to Write a Research Paper (+ Free AI Research Paper Writer)

6. discussion section.

Explains the importance and implications of your findings, both in your specific area of research, as well as in a broader context. 

Pre-Writing Questions For the Discussion Section

  • What is the relationship between these results and the original question in the Introduction section?
  • How do your results compare with those of previous research? Are they supportive, extending, or contradictory to existing knowledge?
  • What is the potential impact of your findings on theory, practice, or policy in your field?
  • Are there any strengths or weaknesses in your study design, methods, or analysis? Can these factors affect how you interpret your results?
  • Based on your findings, what are the next steps or directions for research? Have you got any new questions or hypotheses?

Before the Introduction section, and after the Results section. 

Based on the pre-writing questions, five main elements can help you structure your Discussion section paragraph by paragraph:

  • Summary : Restate your research question/problem and summarize your major findings.
  • Interpretations : Identify patterns, contextualize your findings, explain unexpected results, and discuss if and how your results satisfied your hypotheses.
  • Implications: Explore if your findings challenge or support existing research, share new insights, and discuss the consequences in theory or practice.
  • Limitations : Acknowledge what your results couldn’t achieve because of research design or methodological choices.
  • Recommendations : Give concrete ideas about how further research can be conducted to explore new avenues in your field of study. 

Dos and Don’ts For the Discussion Section

parts of the common research paper

Aritra Chatterjee , a licensed clinical psychologist and published mental health researcher, advises, “If your findings are not what you expected, disclose this honestly. That’s what good research is about.”

7. Acknowledgments

Expresses gratitude to mentors, colleagues, and funding sources who’ve helped your research.

Write this section after all the parts of IMRaD are done to reflect on your research journey without getting distracted midway. 

After a lot of scientific writing, you might get stumped trying to write a few lines to say thanks. Don’t let this be the reason for a late or no-submission.

Wordtune can make a rough draft for you. 

Write a research paper draft section with AI. Prompt "Please write an Acknowledgments section" with placeholder text.

All you then have to do is edit the AI-generated content to suit your voice, and replace any text placeholders as needed:

Wordtune's AI generation in purple text, placeholder text annotated for easy reference.

8. References

Lists all the works/sources used in your research with proper citations. 

The two most important aspects of referencing are: 

  • Following the correct format; and 
  • Properly citing the sources. 

Keep a working document of the works you’ve referenced as you go along, but leave the finishing touches for last after you’ve completed the body of your research paper — the IMRaD.

Tips For Writing the References Section

The error rate of references in several scientific disciplines is 25%-54% . 

Don’t want to be a part of this statistic? We got you.

  • Choose quality over quantity : While it's tempting to pad your bibliography to seem more scholarly, this is a rookie mistake.   Samantha Summers , a museum professional based in Canada, is a published researcher in Medieval History and Critical Philanthropy studies. According to her, “Adding in a citation just to lengthen your bibliography and without engaging deeply with the cited work doesn’t make for good writing.” We ought to listen to her advice — she has three Master’s degrees to her name for a reason. 
  • Select the correct referencing guide : Always cross-check with your chosen journal’s or institution’s preference for either Harvard, MLA, APA, Chicago, or IEEE. 
  • Include recent studies and research : Aim to cite academically ripe sources — not overripe. Research from the past half-decade or so is ideal, whereas studies from the 80s or 90s run a higher risk of being stale. 
  • Use a reliable reference manager software : Swagatama recommends several free resources that have helped her get her research organized and published — Zotero and Mendeley are top contenders, followed by EndNote . 

By the end, your References section will look something like this:

References section example from a research paper with correctly numbered, cited sources, and live links.

Ready, Get, Set, Publish!

Dust yourself off, we've made it out of the twilight zone. You’ve now got the diamond of the structure of a research paper — the IMRaD format within the “context-content-conclusion” model. 

Keep this structure handy as you fill in the bones of your research paper. And if you’re stuck staring at a blinking cursor, fresh out of brain juice? 

An AI-powered writing assistant like Wordtune can help you polish your diamond, craft great abstracts, and speed through drafts! 

You've got this.

Share This Article:

How to Craft Your Ideal Thesis Research Topic

How to Craft Your Ideal Thesis Research Topic

How to Craft an Engaging Elevator Pitch that Gets Results

How to Craft an Engaging Elevator Pitch that Gets Results

Eight Steps to Craft an Irresistible LinkedIn Profile

Eight Steps to Craft an Irresistible LinkedIn Profile

Looking for fresh content, thank you your submission has been received.

UNH Library home

CPS Online Graduate Studies Research Paper (UNH Manchester Library): 7 Parts of the Research Paper

  • Overview of the Research Process for Capstone Projects
  • Types of Research Design
  • Selecting a Research Problem
  • The Title of Your Research Paper
  • Before You Begin Writing
  • 7 Parts of the Research Paper
  • Background Information
  • Quanitative and Qualitative Methods
  • Qualitative Methods
  • Quanitative Methods
  • Resources to Help You With the Literature Review
  • Non-Textual Elements
  • Limitations of the Study
  • Format of Capstone Research Projects at GSC
  • Editing and Proofreading Your Paper
  • Acknowledgements
  • UNH Scholar's Repository

Parts of a Research Paper

There is no one right style or manner for writing an education paper. Content aside, the writing style and presentation of papers in different  fields vary greatly. Nevertheless, certain parts are common to most papers, below are outlined the 7 most common parts. Links are provided to more information about each section.

After spending a great deal of time and energy introducing and arguing the points in the main body of the paper, the conclusion brings everything together and underscores what it all means. A stimulating and informative conclusion leaves the reader informed and well-satisfied.

This link will take you to the Library's citation tools page. The key resources include: Ebsco's citation generator (part of  GSC's Discovery Service), the citation generator from UNC's Library, and the OWL APA Resources page.

Appendices Research papers often contain one or more appendices. An appendix contains material that is appropriate for enlarging the reader's understanding, but that does not fit very well into the main body of the paper. Such material might include tables, charts, summaries, questionnaires, interview questions, lengthy statistics, maps, pictures, photographs, lists of terms, glossaries, survey instruments, letters, copies of historical documents, and many other types of supplementary material. A paper may have several appendices. They are usually designated by such headings as Appendix A, Appendix B, etc.

  • << Previous: Before You Begin Writing
  • Next: Abstract >>
  • Last Updated: Nov 6, 2023 1:43 PM
  • URL: https://libraryguides.unh.edu/cpsonlinegradpaper

parts of the common research paper

The Plagiarism Checker Online For Your Academic Work

Start Plagiarism Check

Editing & Proofreading for Your Research Paper

Get it proofread now

Online Printing & Binding with Free Express Delivery

Configure binding now

  • Academic essay overview
  • The writing process
  • Structuring academic essays
  • Types of academic essays
  • Academic writing overview
  • Sentence structure
  • Academic writing process
  • Improving your academic writing
  • Titles and headings
  • APA style overview
  • APA citation & referencing
  • APA structure & sections
  • Citation & referencing
  • Structure and sections
  • APA examples overview
  • Commonly used citations
  • Other examples
  • British English vs. American English
  • Chicago style overview
  • Chicago citation & referencing
  • Chicago structure & sections
  • Chicago style examples
  • Citing sources overview
  • Citation format
  • Citation examples
  • College essay overview
  • Application
  • How to write a college essay
  • Types of college essays
  • Commonly confused words
  • Definitions
  • Dissertation overview
  • Dissertation structure & sections
  • Dissertation writing process
  • Graduate school overview
  • Application & admission
  • Study abroad
  • Master degree
  • Harvard referencing overview
  • Language rules overview
  • Grammatical rules & structures
  • Parts of speech
  • Punctuation
  • Methodology overview
  • Analyzing data
  • Experiments
  • Observations
  • Inductive vs. Deductive
  • Qualitative vs. Quantitative
  • Types of validity
  • Types of reliability
  • Sampling methods
  • Theories & Concepts
  • Types of research studies
  • Types of variables
  • MLA style overview
  • MLA examples
  • MLA citation & referencing
  • MLA structure & sections
  • Plagiarism overview
  • Plagiarism checker
  • Types of plagiarism
  • Printing production overview
  • Research bias overview
  • Types of research bias
  • Example sections
  • Types of research papers
  • Research process overview
  • Problem statement
  • Research proposal
  • Research topic
  • Statistics overview
  • Levels of measurment
  • Frequency distribution
  • Measures of central tendency
  • Measures of variability
  • Hypothesis testing
  • Parameters & test statistics
  • Types of distributions
  • Correlation
  • Effect size
  • Hypothesis testing assumptions
  • Types of ANOVAs
  • Types of chi-square
  • Statistical data
  • Statistical models
  • Spelling mistakes
  • Tips overview
  • Academic writing tips
  • Dissertation tips
  • Sources tips
  • Working with sources overview
  • Evaluating sources
  • Finding sources
  • Including sources
  • Types of sources

Your Step to Success

Plagiarism Check within 10min

Printing & Binding with 3D Live Preview

Parts of a Research Paper

How do you like this article cancel reply.

Save my name, email, and website in this browser for the next time I comment.

Parts-of-a-Research-Paper-3-350x233-1

Inhaltsverzeichnis

  • 1 Parts of a Research Paper: Definition
  • 3 Research Paper Structure
  • 4 Research Paper Examples
  • 5 Research Paper APA Formatting
  • 6 In a Nutshell

Parts of a Research Paper: Definition

The point of having specifically defined parts of a research paper is not to make your life as a student harder. In fact, it’s very much the opposite. The different parts of a research paper have been established to provide a structure that can be consistently used to make your research projects easier, as well as helping you follow the proper scientific methodology.

This will help guide your writing process so you can focus on key elements one at a time. It will also provide a valuable outline that you can rely on to effectively structure your assignment. Having a solid structure will make your research paper easier to understand, and it will also prepare you for a possible future as a researcher, since all modern science is created around similar precepts.

Have you been struggling with your academic homework lately, especially where it concerns all the different parts of a research paper? This is actually a very common situation, so we have prepared this article to outline all the key parts of a research paper and explain what you must focus as you go through each one of the various parts of a research paper; read the following sections and you should have a clearer idea of how to tackle your next research paper effectively.

  • ✓ Post a picture on Instagram
  • ✓ Get the most likes on your picture
  • ✓ Receive up to $300 cash back

What are the main parts of a research paper?

There are eight main parts in a research paper :

  • Title (cover page)

Introduction

  • Literature review
  • Research methodology
  • Data analysis
  • Reference page

If you stick to this structure, your end product will be a concise, well-organized research paper.

Do you have to follow the exact research paper structure?

Yes, and failing to do so will likely impact your grade very negatively. It’s very important to write your research paper according to the structure given on this article. Follow your research paper outline   to avoid a messy structure. Different types of academic papers have very particular structures. For example, the structure required for a literature review is very different to the structure required for a scientific research paper.

What if I'm having trouble with certain parts of a research paper?

If you’re having problems with some parts of a research paper, it will be useful to look at some examples of finished research papers in a similar field of study, so you will have a better idea of the elements you need to include. Read a step-by-step guide for writing a research paper, or take a look at the section towards the end of this article for some research paper examples. Perhaps you’re just lacking inspiration!

Is there a special formatting you need to use when citing sources?

Making adequate citations to back up your research is a key consideration in almost every part of a research paper. There are various formatting conventions and referencing styles that should be followed as specified in your assignment. The most common is APA formatting, but you could also be required to use MLA formatting. Your professor or supervisor should tell you which one you need to use.

What should I do once I have my research paper outlined?

If you have created your research paper outline, then you’re ready to start writing. Remember, the first copy will be a draft, so don’t leave it until the last minute to begin writing. Check out some tips for overcoming writer’s block if you’re having trouble getting started.

Research Paper Structure

There are 8 parts of a research paper that you should go through in this order:

The very first page in your research paper should be used to identify its title, along with your name, the date of your assignment, and your learning institution. Additional elements may be required according to the specifications of your instructors, so it’s a good idea to check with them to make sure you feature all the required information in the right order. You will usually be provided with a template or checklist of some kind that you can refer to when writing your cover page .

This is the very beginning of your research paper, where you are expected to provide your thesis statement ; this is simply a summary of what you’re setting out to accomplish with your research project, including the problems you’re looking to scrutinize and any solutions or recommendations that you anticipate beforehand.

Literature Review

This part of a research paper is supposed to provide the theoretical framework that you elaborated during your research. You will be expected to present the sources you have studied while preparing for the work ahead, and these sources should be credible from an academic standpoint (including educational books, peer-reviewed journals, and other relevant publications). You must make sure to include the name of the relevant authors you’ve studied and add a properly formatted citation that explicitly points to their works you have analyzed, including the publication year (see the section below on APA style citations ).

Research Methodology

Different parts of a research paper have different aims, and here you need to point out the exact methods you have used in the course of your research work. Typical methods can range from direct observation to laboratory experiments, or statistical evaluations. Whatever your chosen methods are, you will need to explicitly point them out in this section.

Data Analysis

While all the parts of a research paper are important, this section is probably the most crucial from a practical standpoint. Out of all the parts of a research paper, here you will be expected to analyze the data you have obtained in the course of your research. This is where you get your chance to really shine, by introducing new data that may contribute to building up on the collective understanding of the topics you have researched. At this point, you’re not expected to analyze your data yet (that will be done in the subsequent parts of a research paper), but simply to present it objectively.

From all the parts of a research paper, this is the one where you’re expected to actually analyze the data you have gathered while researching. This analysis should align with your previously stated methodology, and it should both point out any implications suggested by your data that might be relevant to different fields of study, as well as any shortcomings in your approach that would allow you to improve you results if you were to repeat the same type of research.

As you conclude your research paper, you should succinctly reiterate your thesis statement along with your methodology and analyzed data – by drawing all these elements together you will reach the purpose of your research, so all that is left is to point out your conclusions in a clear manner.

Reference Page

The very last section of your research paper is a reference page where you should collect the academic sources along with all the publications you consulted, while fleshing out your research project. You should make sure to list all these references according to the citation format specified by your instructor; there are various formats now in use, such as MLA, Harvard and APA, which although similar rely on different citation styles that must be consistently and carefully observed.

how-to-write-a-research-paper-printing-binding

Paper printing & binding

You are already done writing your research paper and need a high quality printing & binding service? Then you are right to choose BachelorPrint! Check out our 24-hour online printing service. For more information click the button below :

Research Paper Examples

When you’re still learning about the various parts that make up a research paper, it can be useful to go through some examples of actual research papers from your exact field of study. This is probably the best way to fully grasp what is the purpose of all the different parts.

We can’t provide you universal examples of all the parts of a research paper, since some of these parts can be very different depending on your field of study.

To get a clear sense of what you should cover in each part of your paper, we recommend you to find some successful research papers in a similar field of study. Often, you may be able to refer to studies you have gathered during the initial literature review.

There are also some templates online that may be useful to look at when you’re just getting started, and trying to grasp the exact requirements for each part in your research paper:

Research Paper APA Formatting

When you write a research paper for college, you will have to make sure to add relevant citation to back up your major claims. Only by building up on the work of established authors will you be able to reach valuable conclusions that can be taken seriously on a academic context. This process may seem burdensome at first, but it’s one of the essential parts of a research paper.

The essence of a citation is simply to point out where you learned about the concepts and ideas that make up all the parts of a research paper. This is absolutely essential, both to substantiate your points and to allow other researchers to look into those sources in cause they want to learn more about some aspects of your assignment, or dig deeper into specific parts of a research paper.

There are several citation styles in modern use, and APA citation is probably the most common and widespread; you must follow this convention precisely when adding citations to the relevant part of a research paper. Here is how you should format a citation according to the APA style.

In a Nutshell

  • There are eight different parts of a research paper that you will have to go through in this specific order.
  • Make sure to focus on the different parts of a research paper one at a time, and you’ll find it can actually make the writing process much easier.
  • Producing a research paper can be a very daunting task unless you have a solid plan of action; that is exactly why most modern learning institutions now demand students to observe all these parts of a research paper.
  • These guidelines are not meant to make student’s lives harder, but actually to help them stay focused and produce articulate and thoughtful research that could make an impact in their fields of study.

We use cookies on our website. Some of them are essential, while others help us to improve this website and your experience.

  • External Media

Individual Privacy Preferences

Cookie Details Privacy Policy Imprint

Here you will find an overview of all cookies used. You can give your consent to whole categories or display further information and select certain cookies.

Accept all Save

Essential cookies enable basic functions and are necessary for the proper function of the website.

Show Cookie Information Hide Cookie Information

Statistics cookies collect information anonymously. This information helps us to understand how our visitors use our website.

Content from video platforms and social media platforms is blocked by default. If External Media cookies are accepted, access to those contents no longer requires manual consent.

Privacy Policy Imprint

  • U.S. Locations
  • UMGC Europe
  • Learn Online
  • Find Answers
  • 855-655-8682
  • Current Students

Online Guide to Writing and Research

The research process, explore more of umgc.

  • Online Guide to Writing

Structuring the Research Paper

Formal research structure.

These are the primary purposes for formal research:

enter the discourse, or conversation, of other writers and scholars in your field

learn how others in your field use primary and secondary resources

find and understand raw data and information

Top view of textured wooden desk prepared for work and exploration - wooden pegs, domino, cubes and puzzles with blank notepads,  paper and colourful pencils lying on it.

For the formal academic research assignment, consider an organizational pattern typically used for primary academic research.  The pattern includes the following: introduction, methods, results, discussion, and conclusions/recommendations.

Usually, research papers flow from the general to the specific and back to the general in their organization. The introduction uses a general-to-specific movement in its organization, establishing the thesis and setting the context for the conversation. The methods and results sections are more detailed and specific, providing support for the generalizations made in the introduction. The discussion section moves toward an increasingly more general discussion of the subject, leading to the conclusions and recommendations, which then generalize the conversation again.

Sections of a Formal Structure

The introduction section.

Many students will find that writing a structured  introduction  gets them started and gives them the focus needed to significantly improve their entire paper. 

Introductions usually have three parts:

presentation of the problem statement, the topic, or the research inquiry

purpose and focus of your paper

summary or overview of the writer’s position or arguments

In the first part of the introduction—the presentation of the problem or the research inquiry—state the problem or express it so that the question is implied. Then, sketch the background on the problem and review the literature on it to give your readers a context that shows them how your research inquiry fits into the conversation currently ongoing in your subject area. 

In the second part of the introduction, state your purpose and focus. Here, you may even present your actual thesis. Sometimes your purpose statement can take the place of the thesis by letting your reader know your intentions. 

The third part of the introduction, the summary or overview of the paper, briefly leads readers through the discussion, forecasting the main ideas and giving readers a blueprint for the paper. 

The following example provides a blueprint for a well-organized introduction.

Example of an Introduction

Entrepreneurial Marketing: The Critical Difference

In an article in the Harvard Business Review, John A. Welsh and Jerry F. White remind us that “a small business is not a little big business.” An entrepreneur is not a multinational conglomerate but a profit-seeking individual. To survive, he must have a different outlook and must apply different principles to his endeavors than does the president of a large or even medium-sized corporation. Not only does the scale of small and big businesses differ, but small businesses also suffer from what the Harvard Business Review article calls “resource poverty.” This is a problem and opportunity that requires an entirely different approach to marketing. Where large ad budgets are not necessary or feasible, where expensive ad production squanders limited capital, where every marketing dollar must do the work of two dollars, if not five dollars or even ten, where a person’s company, capital, and material well-being are all on the line—that is, where guerrilla marketing can save the day and secure the bottom line (Levinson, 1984, p. 9).

By reviewing the introductions to research articles in the discipline in which you are writing your research paper, you can get an idea of what is considered the norm for that discipline. Study several of these before you begin your paper so that you know what may be expected. If you are unsure of the kind of introduction your paper needs, ask your professor for more information.  The introduction is normally written in present tense.

THE METHODS SECTION

The methods section of your research paper should describe in detail what methodology and special materials if any, you used to think through or perform your research. You should include any materials you used or designed for yourself, such as questionnaires or interview questions, to generate data or information for your research paper. You want to include any methodologies that are specific to your particular field of study, such as lab procedures for a lab experiment or data-gathering instruments for field research. The methods section is usually written in the past tense.

THE RESULTS SECTION

How you present the results of your research depends on what kind of research you did, your subject matter, and your readers’ expectations. 

Quantitative information —data that can be measured—can be presented systematically and economically in tables, charts, and graphs. Quantitative information includes quantities and comparisons of sets of data. 

Qualitative information , which includes brief descriptions, explanations, or instructions, can also be presented in prose tables. This kind of descriptive or explanatory information, however, is often presented in essay-like prose or even lists.

There are specific conventions for creating tables, charts, and graphs and organizing the information they contain. In general, you should use them only when you are sure they will enlighten your readers rather than confuse them. In the accompanying explanation and discussion, always refer to the graphic by number and explain specifically what you are referring to; you can also provide a caption for the graphic. The rule of thumb for presenting a graphic is first to introduce it by name, show it, and then interpret it. The results section is usually written in the past tense.

THE DISCUSSION SECTION

Your discussion section should generalize what you have learned from your research. One way to generalize is to explain the consequences or meaning of your results and then make your points that support and refer back to the statements you made in your introduction. Your discussion should be organized so that it relates directly to your thesis. You want to avoid introducing new ideas here or discussing tangential issues not directly related to the exploration and discovery of your thesis. The discussion section, along with the introduction, is usually written in the present tense.

THE CONCLUSIONS AND RECOMMENDATIONS SECTION

Your conclusion ties your research to your thesis, binding together all the main ideas in your thinking and writing. By presenting the logical outcome of your research and thinking, your conclusion answers your research inquiry for your reader. Your conclusions should relate directly to the ideas presented in your introduction section and should not present any new ideas.

You may be asked to present your recommendations separately in your research assignment. If so, you will want to add some elements to your conclusion section. For example, you may be asked to recommend a course of action, make a prediction, propose a solution to a problem, offer a judgment, or speculate on the implications and consequences of your ideas. The conclusions and recommendations section is usually written in the present tense.

Key Takeaways

  • For the formal academic research assignment, consider an organizational pattern typically used for primary academic research. 
  •  The pattern includes the following: introduction, methods, results, discussion, and conclusions/recommendations.

Mailing Address: 3501 University Blvd. East, Adelphi, MD 20783 This work is licensed under a  Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License . © 2022 UMGC. All links to external sites were verified at the time of publication. UMGC is not responsible for the validity or integrity of information located at external sites.

Table of Contents: Online Guide to Writing

Chapter 1: College Writing

How Does College Writing Differ from Workplace Writing?

What Is College Writing?

Why So Much Emphasis on Writing?

Chapter 2: The Writing Process

Doing Exploratory Research

Getting from Notes to Your Draft

Introduction

Prewriting - Techniques to Get Started - Mining Your Intuition

Prewriting: Targeting Your Audience

Prewriting: Techniques to Get Started

Prewriting: Understanding Your Assignment

Rewriting: Being Your Own Critic

Rewriting: Creating a Revision Strategy

Rewriting: Getting Feedback

Rewriting: The Final Draft

Techniques to Get Started - Outlining

Techniques to Get Started - Using Systematic Techniques

Thesis Statement and Controlling Idea

Writing: Getting from Notes to Your Draft - Freewriting

Writing: Getting from Notes to Your Draft - Summarizing Your Ideas

Writing: Outlining What You Will Write

Chapter 3: Thinking Strategies

A Word About Style, Voice, and Tone

A Word About Style, Voice, and Tone: Style Through Vocabulary and Diction

Critical Strategies and Writing

Critical Strategies and Writing: Analysis

Critical Strategies and Writing: Evaluation

Critical Strategies and Writing: Persuasion

Critical Strategies and Writing: Synthesis

Developing a Paper Using Strategies

Kinds of Assignments You Will Write

Patterns for Presenting Information

Patterns for Presenting Information: Critiques

Patterns for Presenting Information: Discussing Raw Data

Patterns for Presenting Information: General-to-Specific Pattern

Patterns for Presenting Information: Problem-Cause-Solution Pattern

Patterns for Presenting Information: Specific-to-General Pattern

Patterns for Presenting Information: Summaries and Abstracts

Supporting with Research and Examples

Writing Essay Examinations

Writing Essay Examinations: Make Your Answer Relevant and Complete

Writing Essay Examinations: Organize Thinking Before Writing

Writing Essay Examinations: Read and Understand the Question

Chapter 4: The Research Process

Planning and Writing a Research Paper

Planning and Writing a Research Paper: Ask a Research Question

Planning and Writing a Research Paper: Cite Sources

Planning and Writing a Research Paper: Collect Evidence

Planning and Writing a Research Paper: Decide Your Point of View, or Role, for Your Research

Planning and Writing a Research Paper: Draw Conclusions

Planning and Writing a Research Paper: Find a Topic and Get an Overview

Planning and Writing a Research Paper: Manage Your Resources

Planning and Writing a Research Paper: Outline

Planning and Writing a Research Paper: Survey the Literature

Planning and Writing a Research Paper: Work Your Sources into Your Research Writing

Research Resources: Where Are Research Resources Found? - Human Resources

Research Resources: What Are Research Resources?

Research Resources: Where Are Research Resources Found?

Research Resources: Where Are Research Resources Found? - Electronic Resources

Research Resources: Where Are Research Resources Found? - Print Resources

Structuring the Research Paper: Formal Research Structure

Structuring the Research Paper: Informal Research Structure

The Nature of Research

The Research Assignment: How Should Research Sources Be Evaluated?

The Research Assignment: When Is Research Needed?

The Research Assignment: Why Perform Research?

Chapter 5: Academic Integrity

Academic Integrity

Giving Credit to Sources

Giving Credit to Sources: Copyright Laws

Giving Credit to Sources: Documentation

Giving Credit to Sources: Style Guides

Integrating Sources

Practicing Academic Integrity

Practicing Academic Integrity: Keeping Accurate Records

Practicing Academic Integrity: Managing Source Material

Practicing Academic Integrity: Managing Source Material - Paraphrasing Your Source

Practicing Academic Integrity: Managing Source Material - Quoting Your Source

Practicing Academic Integrity: Managing Source Material - Summarizing Your Sources

Types of Documentation

Types of Documentation: Bibliographies and Source Lists

Types of Documentation: Citing World Wide Web Sources

Types of Documentation: In-Text or Parenthetical Citations

Types of Documentation: In-Text or Parenthetical Citations - APA Style

Types of Documentation: In-Text or Parenthetical Citations - CSE/CBE Style

Types of Documentation: In-Text or Parenthetical Citations - Chicago Style

Types of Documentation: In-Text or Parenthetical Citations - MLA Style

Types of Documentation: Note Citations

Chapter 6: Using Library Resources

Finding Library Resources

Chapter 7: Assessing Your Writing

How Is Writing Graded?

How Is Writing Graded?: A General Assessment Tool

The Draft Stage

The Draft Stage: The First Draft

The Draft Stage: The Revision Process and the Final Draft

The Draft Stage: Using Feedback

The Research Stage

Using Assessment to Improve Your Writing

Chapter 8: Other Frequently Assigned Papers

Reviews and Reaction Papers: Article and Book Reviews

Reviews and Reaction Papers: Reaction Papers

Writing Arguments

Writing Arguments: Adapting the Argument Structure

Writing Arguments: Purposes of Argument

Writing Arguments: References to Consult for Writing Arguments

Writing Arguments: Steps to Writing an Argument - Anticipate Active Opposition

Writing Arguments: Steps to Writing an Argument - Determine Your Organization

Writing Arguments: Steps to Writing an Argument - Develop Your Argument

Writing Arguments: Steps to Writing an Argument - Introduce Your Argument

Writing Arguments: Steps to Writing an Argument - State Your Thesis or Proposition

Writing Arguments: Steps to Writing an Argument - Write Your Conclusion

Writing Arguments: Types of Argument

Appendix A: Books to Help Improve Your Writing

Dictionaries

General Style Manuals

Researching on the Internet

Special Style Manuals

Writing Handbooks

Appendix B: Collaborative Writing and Peer Reviewing

Collaborative Writing: Assignments to Accompany the Group Project

Collaborative Writing: Informal Progress Report

Collaborative Writing: Issues to Resolve

Collaborative Writing: Methodology

Collaborative Writing: Peer Evaluation

Collaborative Writing: Tasks of Collaborative Writing Group Members

Collaborative Writing: Writing Plan

General Introduction

Peer Reviewing

Appendix C: Developing an Improvement Plan

Working with Your Instructor’s Comments and Grades

Appendix D: Writing Plan and Project Schedule

Devising a Writing Project Plan and Schedule

Reviewing Your Plan with Others

By using our website you agree to our use of cookies. Learn more about how we use cookies by reading our  Privacy Policy .

  • Research Guides

BSCI 1510L Literature and Stats Guide: 3.2 Components of a scientific paper

  • 1 What is a scientific paper?
  • 2 Referencing and accessing papers
  • 2.1 Literature Cited
  • 2.2 Accessing Scientific Papers
  • 2.3 Traversing the web of citations
  • 2.4 Keyword Searches
  • 3 Style of scientific writing
  • 3.1 Specific details regarding scientific writing

3.2 Components of a scientific paper

  • 4 For further information
  • Appendix A: Calculation Final Concentrations
  • 1 Formulas in Excel
  • 2 Basic operations in Excel
  • 3 Measurement and Variation
  • 3.1 Describing Quantities and Their Variation
  • 3.2 Samples Versus Populations
  • 3.3 Calculating Descriptive Statistics using Excel
  • 4 Variation and differences
  • 5 Differences in Experimental Science
  • 5.1 Aside: Commuting to Nashville
  • 5.2 P and Detecting Differences in Variable Quantities
  • 5.3 Statistical significance
  • 5.4 A test for differences of sample means: 95% Confidence Intervals
  • 5.5 Error bars in figures
  • 5.6 Discussing statistics in your scientific writing
  • 6 Scatter plot, trendline, and linear regression
  • 7 The t-test of Means
  • 8 Paired t-test
  • 9 Two-Tailed and One-Tailed Tests
  • 10 Variation on t-tests: ANOVA
  • 11 Reporting the Results of a Statistical Test
  • 12 Summary of statistical tests
  • 1 Objectives
  • 2 Project timeline
  • 3 Background
  • 4 Previous work in the BSCI 111 class
  • 5 General notes about the project
  • 6 About the paper
  • 7 References

Nearly all journal articles are divided into the following major sections: abstract, introduction, methods, results, discussion, and references.  Usually the sections are labeled as such, although often the introduction (and sometimes the abstract) is not labeled.  Sometimes alternative section titles are used.  The abstract is sometimes called the "summary", the methods are sometimes called "materials and methods", and the discussion is sometimes called "conclusions".   Some journals also include the minor sections of "key words" following the abstract, and "acknowledgments" following the discussion.  In some journals, the sections may be divided into subsections that are given descriptive titles.  However, the general division into the six major sections is nearly universal.

3.2.1 Abstract

The abstract is a short summary (150-200 words or less) of the important points of the paper.  It does not generally include background information.  There may be a very brief statement of the rationale for conducting the study.  It describes what was done, but without details.  It also describes the results in a summarized way that usually includes whether or not the statistical tests were significant.  It usually concludes with a brief statement of the importance of the results.  Abstracts do not include references.  When writing a paper, the abstract is always the last part to be written.

The purpose of the abstract is to allow potential readers of a paper to find out the important points of the paper without having to actually read the paper.  It should be a self-contained unit capable of being understood without the benefit of the text of the article . It essentially serves as an "advertisement" for the paper that readers use to determine whether or not they actually want to wade through the entire paper or not.  Abstracts are generally freely available in electronic form and are often presented in the results of an electronic search.  If searchers do not have electronic access to the journal in which the article is published, the abstract is the only means that they have to decide whether to go through the effort (going to the library to look up the paper journal, requesting a reprint from the author, buying a copy of the article from a service, requesting the article by Interlibrary Loan) of acquiring the article.  Therefore it is important that the abstract accurately and succinctly presents the most important information in the article.

3.2.2 Introduction

The introduction provides the background information necessary to understand why the described experiment was conducted.  The introduction should describe previous research on the topic that has led to the unanswered questions being addressed by the experiment and should cite important previous papers that form the background for the experiment.  The introduction should also state in an organized fashion the goals of the research, i.e. the particular, specific questions that will be tested in the experiments.  There should be a one-to-one correspondence between questions raised in the introduction and points discussed in the conclusion section of the paper.  In other words, do not raise questions in the introduction unless you are going to have some kind of answer to the question that you intend to discuss at the end of the paper. 

You may have been told that every paper must have a hypothesis that can be clearly stated.  That is often true, but not always.  If your experiment involves a manipulation which tests a specific hypothesis, then you should clearly state that hypothesis.  On the other hand, if your experiment was primarily exploratory, descriptive, or measurative, then you probably did not have an a priori hypothesis, so don't pretend that you did and make one up.  (See the discussion in the introduction to Experiment 4 for more on this.)  If you state a hypothesis in the introduction, it should be a general hypothesis and not a null or alternative hypothesis for a statistical test.  If it is necessary to explain how a statistical test will help you evaluate your general hypothesis, explain that in the methods section. 

A good introduction should be fairly heavy with citations.  This indicates to the reader that the authors are informed about previous work on the topic and are not working in a vacuum.  Citations also provide jumping-off points to allow the reader to explore other tangents to the subject that are not directly addressed in the paper.  If the paper supports or refutes previous work, readers can look up the citations and make a comparison for themselves. 

"Do not get lost in reviewing background information. Remember that the Introduction is meant to introduce the reader to your research, not summarize and evaluate all past literature on the subject (which is the purpose of a review paper). Many of the other studies you may be tempted to discuss in your Introduction are better saved for the Discussion, where they become a powerful tool for comparing and interpreting your results. Include only enough background information to allow your reader to understand why you are asking the questions you are and why your hyptheses are reasonable ones. Often, a brief explanation of the theory involved is sufficient. …

Write this section in the past or present tense, never in the future. " (Steingraber et al. 1985)

3.2.3 Methods (taken verbatim from Steingraber et al. 1985)

The function of this section is to describe all experimental procedures, including controls. The description should be complete enough to enable someone else to repeat your work. If there is more than one part to the experiment, it is a good idea to describe your methods and present your results in the same order in each section. This may not be the same order in which the experiments were performed -it is up to you to decide what order of presentation will make the most sense to your reader.

1. Explain why each procedure was done, i.e., what variable were you measuring and why? Example:

Difficult to understand : First, I removed the frog muscle and then I poured Ringer’s solution on it. Next, I attached it to the kymograph.

Improved: I removed the frog muscle and poured Ringer’s solution on it to prevent it from drying out. I then attached the muscle to the kymograph in order to determine the minimum voltage required for contraction.

2. Experimental procedures and results are narrated in the past tense (what you did, what you found, etc.) whereas conclusions from your results are given in the present tense.

3. Mathematical equations and statistical tests are considered mathematical methods and should be described in this section along with the actual experimental work.

4. Use active rather than passive voice when possible.  [Note: see Section 3.1.4 for more about this.]  Always use the singular "I" rather than the plural "we" when you are the only author of the paper.  Throughout the paper, avoid contractions, e.g. did not vs. didn’t.

5. If any of your methods is fully described in a previous publication (yours or someone else’s), you can cite that instead of describing the procedure again.

Example: The chromosomes were counted at meiosis in the anthers with the standard acetocarmine technique of Snow (1955).

3.2.4 Results (with excerpts from Steingraber et al. 1985)

The function of this section is to summarize general trends in the data without comment, bias, or interpretation. The results of statistical tests applied to your data are reported in this section although conclusions about your original hypotheses are saved for the Discussion section.

Tables and figures should be used when they are a more efficient way to convey information than verbal description. They must be independent units, accompanied by explanatory captions that allow them to be understood by someone who has not read the text. Do not repeat in the text the information in tables and figures, but do cite them, with a summary statement when that is appropriate.  Example:

Incorrect: The results are given in Figure 1.

Correct: Temperature was directly proportional to metabolic rate (Fig. 1).

Please note that the entire word "Figure" is almost never written in an article.  It is nearly always abbreviated as "Fig." and capitalized.  Tables are cited in the same way, although Table is not abbreviated.

Whenever possible, use a figure instead of a table. Relationships between numbers are more readily grasped when they are presented graphically rather than as columns in a table.

Data may be presented in figures and tables, but this may not substitute for a verbal summary of the findings. The text should be understandable by someone who has not seen your figures and tables.

1. All results should be presented, including those that do not support the hypothesis.

2. Statements made in the text must be supported by the results contained in figures and tables.

3. The results of statistical tests can be presented in parentheses following a verbal description.

Example: Fruit size was significantly greater in trees growing alone (t = 3.65, df = 2, p < 0.05).

Simple results of statistical tests may be reported in the text as shown in the preceding example.  The results of multiple tests may be reported in a table if that increases clarity. (See Section 11 of the Statistics Manual for more details about reporting the results of statistical tests.)  It is not necessary to provide a citation for a simple t-test of means, paired t-test, or linear regression.  If you use other tests, you should cite the text or reference you followed to do the test.  In your materials and methods section, you should report how you did the test (e.g. using the statistical analysis package of Excel). 

It is NEVER appropriate to simply paste the results from statistical software into the results section of your paper.  The output generally reports more information than is required and it is not in an appropriate format for a paper.

3.2.4.1 Tables

  • Do not repeat information in a table that you are depicting in a graph or histogram; include a table only if it presents new information.
  • It is easier to compare numbers by reading down a column rather than across a row. Therefore, list sets of data you want your reader to compare in vertical form.
  • Provide each table with a number (Table 1, Table 2, etc.) and a title. The numbered title is placed above the table .
  • Please see Section 11 of the Excel Reference and Statistics Manual for further information on reporting the results of statistical tests.

3.2.4.2. Figures

  • These comprise graphs, histograms, and illustrations, both drawings and photographs. Provide each figure with a number (Fig. 1, Fig. 2, etc.) and a caption (or "legend") that explains what the figure shows. The numbered caption is placed below the figure .  Figure legend = Figure caption.
  • Figures submitted for publication must be "photo ready," i.e., they will appear just as you submit them, or photographically reduced. Therefore, when you graduate from student papers to publishable manuscripts, you must learn to prepare figures that will not embarrass you. At the present time, virtually all journals require manuscripts to be submitted electronically and it is generally assumed that all graphs and maps will be created using software rather than being created by hand.  Nearly all journals have specific guidelines for the file types, resolution, and physical widths required for figures.  Only in a few cases (e.g. sketched diagrams) would figures still be created by hand using ink and those figures would be scanned and labeled using graphics software.  Proportions must be the same as those of the page in the journal to which the paper will be submitted. 
  • Graphs and Histograms: Both can be used to compare two variables. However, graphs show continuous change, whereas histograms show discrete variables only.  You can compare groups of data by plotting two or even three lines on one graph, but avoid cluttered graphs that are hard to read, and do not plot unrelated trends on the same graph. For both graphs, and histograms, plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Label both axes, including units of measurement except in the few cases where variables are unitless, such as absorbance.
  • Drawings and Photographs: These are used to illustrate organisms, experimental apparatus, models of structures, cellular and subcellular structure, and results of procedures like electrophoresis. Preparing such figures well is a lot of work and can be very expensive, so each figure must add enough to justify its preparation and publication, but good figures can greatly enhance a professional article, as your reading in biological journals has already shown.

3.2.5 Discussion (taken from Steingraber et al. 1985)

The function of this section is to analyze the data and relate them to other studies. To "analyze" means to evaluate the meaning of your results in terms of the original question or hypothesis and point out their biological significance.

1. The Discussion should contain at least:

  • the relationship between the results and the original hypothesis, i.e., whether they support the hypothesis, or cause it to be rejected or modified
  • an integration of your results with those of previous studies in order to arrive at explanations for the observed phenomena
  • possible explanations for unexpected results and observations, phrased as hypotheses that can be tested by realistic experimental procedures, which you should describe

2. Trends that are not statistically significant can still be discussed if they are suggestive or interesting, but cannot be made the basis for conclusions as if they were significant.

3. Avoid redundancy between the Results and the Discussion section. Do not repeat detailed descriptions of the data and results in the Discussion. In some journals, Results and Discussions are joined in a single section, in order to permit a single integrated treatment with minimal repetition. This is more appropriate for short, simple articles than for longer, more complicated ones.

4. End the Discussion with a summary of the principal points you want the reader to remember. This is also the appropriate place to propose specific further study if that will serve some purpose, but do not end with the tired cliché that "this problem needs more study." All problems in biology need more study. Do not close on what you wish you had done, rather finish stating your conclusions and contributions.

3.2.6 Title

The title of the paper should be the last thing that you write.  That is because it should distill the essence of the paper even more than the abstract (the next to last thing that you write). 

The title should contain three elements:

1. the name of the organism studied;

2. the particular aspect or system studied;

3. the variable(s) manipulated.

Do not be afraid to be grammatically creative. Here are some variations on a theme, all suitable as titles:

THE EFFECT OF TEMPERATURE ON GERMINATION OF ZEA MAYS

DOES TEMPERATURE AFFECT GERMINATION OF ZEA MAYS?

TEMPERATURE AND ZEA MAYS GERMINATION: IMPLICATIONS FOR AGRICULTURE

Sometimes it is possible to include the principal result or conclusion in the title:

HIGH TEMPERATURES REDUCE GERMINATION OF ZEA MAYS

Note for the BSCI 1510L class: to make your paper look more like a real paper, you can list all of the other group members as co-authors.  However, if you do that, you should list you name first so that we know that you wrote it.

3.2.7 Literature Cited

Please refer to section 2.1 of this guide.

  • << Previous: 3.1 Specific details regarding scientific writing
  • Next: 4 For further information >>
  • Last Updated: Apr 22, 2024 12:50 PM
  • URL: https://researchguides.library.vanderbilt.edu/bsci1510L

Creative Commons License

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

13.1 Formatting a Research Paper

Learning objectives.

  • Identify the major components of a research paper written using American Psychological Association (APA) style.
  • Apply general APA style and formatting conventions in a research paper.

In this chapter, you will learn how to use APA style , the documentation and formatting style followed by the American Psychological Association, as well as MLA style , from the Modern Language Association. There are a few major formatting styles used in academic texts, including AMA, Chicago, and Turabian:

  • AMA (American Medical Association) for medicine, health, and biological sciences
  • APA (American Psychological Association) for education, psychology, and the social sciences
  • Chicago—a common style used in everyday publications like magazines, newspapers, and books
  • MLA (Modern Language Association) for English, literature, arts, and humanities
  • Turabian—another common style designed for its universal application across all subjects and disciplines

While all the formatting and citation styles have their own use and applications, in this chapter we focus our attention on the two styles you are most likely to use in your academic studies: APA and MLA.

If you find that the rules of proper source documentation are difficult to keep straight, you are not alone. Writing a good research paper is, in and of itself, a major intellectual challenge. Having to follow detailed citation and formatting guidelines as well may seem like just one more task to add to an already-too-long list of requirements.

Following these guidelines, however, serves several important purposes. First, it signals to your readers that your paper should be taken seriously as a student’s contribution to a given academic or professional field; it is the literary equivalent of wearing a tailored suit to a job interview. Second, it shows that you respect other people’s work enough to give them proper credit for it. Finally, it helps your reader find additional materials if he or she wishes to learn more about your topic.

Furthermore, producing a letter-perfect APA-style paper need not be burdensome. Yes, it requires careful attention to detail. However, you can simplify the process if you keep these broad guidelines in mind:

  • Work ahead whenever you can. Chapter 11 “Writing from Research: What Will I Learn?” includes tips for keeping track of your sources early in the research process, which will save time later on.
  • Get it right the first time. Apply APA guidelines as you write, so you will not have much to correct during the editing stage. Again, putting in a little extra time early on can save time later.
  • Use the resources available to you. In addition to the guidelines provided in this chapter, you may wish to consult the APA website at http://www.apa.org or the Purdue University Online Writing lab at http://owl.english.purdue.edu , which regularly updates its online style guidelines.

General Formatting Guidelines

This chapter provides detailed guidelines for using the citation and formatting conventions developed by the American Psychological Association, or APA. Writers in disciplines as diverse as astrophysics, biology, psychology, and education follow APA style. The major components of a paper written in APA style are listed in the following box.

These are the major components of an APA-style paper:

Body, which includes the following:

  • Headings and, if necessary, subheadings to organize the content
  • In-text citations of research sources
  • References page

All these components must be saved in one document, not as separate documents.

The title page of your paper includes the following information:

  • Title of the paper
  • Author’s name
  • Name of the institution with which the author is affiliated
  • Header at the top of the page with the paper title (in capital letters) and the page number (If the title is lengthy, you may use a shortened form of it in the header.)

List the first three elements in the order given in the previous list, centered about one third of the way down from the top of the page. Use the headers and footers tool of your word-processing program to add the header, with the title text at the left and the page number in the upper-right corner. Your title page should look like the following example.

Beyond the Hype: Evaluating Low-Carb Diets cover page

The next page of your paper provides an abstract , or brief summary of your findings. An abstract does not need to be provided in every paper, but an abstract should be used in papers that include a hypothesis. A good abstract is concise—about one hundred fifty to two hundred fifty words—and is written in an objective, impersonal style. Your writing voice will not be as apparent here as in the body of your paper. When writing the abstract, take a just-the-facts approach, and summarize your research question and your findings in a few sentences.

In Chapter 12 “Writing a Research Paper” , you read a paper written by a student named Jorge, who researched the effectiveness of low-carbohydrate diets. Read Jorge’s abstract. Note how it sums up the major ideas in his paper without going into excessive detail.

Beyond the Hype: Abstract

Write an abstract summarizing your paper. Briefly introduce the topic, state your findings, and sum up what conclusions you can draw from your research. Use the word count feature of your word-processing program to make sure your abstract does not exceed one hundred fifty words.

Depending on your field of study, you may sometimes write research papers that present extensive primary research, such as your own experiment or survey. In your abstract, summarize your research question and your findings, and briefly indicate how your study relates to prior research in the field.

Margins, Pagination, and Headings

APA style requirements also address specific formatting concerns, such as margins, pagination, and heading styles, within the body of the paper. Review the following APA guidelines.

Use these general guidelines to format the paper:

  • Set the top, bottom, and side margins of your paper at 1 inch.
  • Use double-spaced text throughout your paper.
  • Use a standard font, such as Times New Roman or Arial, in a legible size (10- to 12-point).
  • Use continuous pagination throughout the paper, including the title page and the references section. Page numbers appear flush right within your header.
  • Section headings and subsection headings within the body of your paper use different types of formatting depending on the level of information you are presenting. Additional details from Jorge’s paper are provided.

Cover Page

Begin formatting the final draft of your paper according to APA guidelines. You may work with an existing document or set up a new document if you choose. Include the following:

  • Your title page
  • The abstract you created in Note 13.8 “Exercise 1”
  • Correct headers and page numbers for your title page and abstract

APA style uses section headings to organize information, making it easy for the reader to follow the writer’s train of thought and to know immediately what major topics are covered. Depending on the length and complexity of the paper, its major sections may also be divided into subsections, sub-subsections, and so on. These smaller sections, in turn, use different heading styles to indicate different levels of information. In essence, you are using headings to create a hierarchy of information.

The following heading styles used in APA formatting are listed in order of greatest to least importance:

  • Section headings use centered, boldface type. Headings use title case, with important words in the heading capitalized.
  • Subsection headings use left-aligned, boldface type. Headings use title case.
  • The third level uses left-aligned, indented, boldface type. Headings use a capital letter only for the first word, and they end in a period.
  • The fourth level follows the same style used for the previous level, but the headings are boldfaced and italicized.
  • The fifth level follows the same style used for the previous level, but the headings are italicized and not boldfaced.

Visually, the hierarchy of information is organized as indicated in Table 13.1 “Section Headings” .

Table 13.1 Section Headings

A college research paper may not use all the heading levels shown in Table 13.1 “Section Headings” , but you are likely to encounter them in academic journal articles that use APA style. For a brief paper, you may find that level 1 headings suffice. Longer or more complex papers may need level 2 headings or other lower-level headings to organize information clearly. Use your outline to craft your major section headings and determine whether any subtopics are substantial enough to require additional levels of headings.

Working with the document you developed in Note 13.11 “Exercise 2” , begin setting up the heading structure of the final draft of your research paper according to APA guidelines. Include your title and at least two to three major section headings, and follow the formatting guidelines provided above. If your major sections should be broken into subsections, add those headings as well. Use your outline to help you.

Because Jorge used only level 1 headings, his Exercise 3 would look like the following:

Citation Guidelines

In-text citations.

Throughout the body of your paper, include a citation whenever you quote or paraphrase material from your research sources. As you learned in Chapter 11 “Writing from Research: What Will I Learn?” , the purpose of citations is twofold: to give credit to others for their ideas and to allow your reader to follow up and learn more about the topic if desired. Your in-text citations provide basic information about your source; each source you cite will have a longer entry in the references section that provides more detailed information.

In-text citations must provide the name of the author or authors and the year the source was published. (When a given source does not list an individual author, you may provide the source title or the name of the organization that published the material instead.) When directly quoting a source, it is also required that you include the page number where the quote appears in your citation.

This information may be included within the sentence or in a parenthetical reference at the end of the sentence, as in these examples.

Epstein (2010) points out that “junk food cannot be considered addictive in the same way that we think of psychoactive drugs as addictive” (p. 137).

Here, the writer names the source author when introducing the quote and provides the publication date in parentheses after the author’s name. The page number appears in parentheses after the closing quotation marks and before the period that ends the sentence.

Addiction researchers caution that “junk food cannot be considered addictive in the same way that we think of psychoactive drugs as addictive” (Epstein, 2010, p. 137).

Here, the writer provides a parenthetical citation at the end of the sentence that includes the author’s name, the year of publication, and the page number separated by commas. Again, the parenthetical citation is placed after the closing quotation marks and before the period at the end of the sentence.

As noted in the book Junk Food, Junk Science (Epstein, 2010, p. 137), “junk food cannot be considered addictive in the same way that we think of psychoactive drugs as addictive.”

Here, the writer chose to mention the source title in the sentence (an optional piece of information to include) and followed the title with a parenthetical citation. Note that the parenthetical citation is placed before the comma that signals the end of the introductory phrase.

David Epstein’s book Junk Food, Junk Science (2010) pointed out that “junk food cannot be considered addictive in the same way that we think of psychoactive drugs as addictive” (p. 137).

Another variation is to introduce the author and the source title in your sentence and include the publication date and page number in parentheses within the sentence or at the end of the sentence. As long as you have included the essential information, you can choose the option that works best for that particular sentence and source.

Citing a book with a single author is usually a straightforward task. Of course, your research may require that you cite many other types of sources, such as books or articles with more than one author or sources with no individual author listed. You may also need to cite sources available in both print and online and nonprint sources, such as websites and personal interviews. Chapter 13 “APA and MLA Documentation and Formatting” , Section 13.2 “Citing and Referencing Techniques” and Section 13.3 “Creating a References Section” provide extensive guidelines for citing a variety of source types.

Writing at Work

APA is just one of several different styles with its own guidelines for documentation, formatting, and language usage. Depending on your field of interest, you may be exposed to additional styles, such as the following:

  • MLA style. Determined by the Modern Languages Association and used for papers in literature, languages, and other disciplines in the humanities.
  • Chicago style. Outlined in the Chicago Manual of Style and sometimes used for papers in the humanities and the sciences; many professional organizations use this style for publications as well.
  • Associated Press (AP) style. Used by professional journalists.

References List

The brief citations included in the body of your paper correspond to the more detailed citations provided at the end of the paper in the references section. In-text citations provide basic information—the author’s name, the publication date, and the page number if necessary—while the references section provides more extensive bibliographical information. Again, this information allows your reader to follow up on the sources you cited and do additional reading about the topic if desired.

The specific format of entries in the list of references varies slightly for different source types, but the entries generally include the following information:

  • The name(s) of the author(s) or institution that wrote the source
  • The year of publication and, where applicable, the exact date of publication
  • The full title of the source
  • For books, the city of publication
  • For articles or essays, the name of the periodical or book in which the article or essay appears
  • For magazine and journal articles, the volume number, issue number, and pages where the article appears
  • For sources on the web, the URL where the source is located

The references page is double spaced and lists entries in alphabetical order by the author’s last name. If an entry continues for more than one line, the second line and each subsequent line are indented five spaces. Review the following example. ( Chapter 13 “APA and MLA Documentation and Formatting” , Section 13.3 “Creating a References Section” provides extensive guidelines for formatting reference entries for different types of sources.)

References Section

In APA style, book and article titles are formatted in sentence case, not title case. Sentence case means that only the first word is capitalized, along with any proper nouns.

Key Takeaways

  • Following proper citation and formatting guidelines helps writers ensure that their work will be taken seriously, give proper credit to other authors for their work, and provide valuable information to readers.
  • Working ahead and taking care to cite sources correctly the first time are ways writers can save time during the editing stage of writing a research paper.
  • APA papers usually include an abstract that concisely summarizes the paper.
  • APA papers use a specific headings structure to provide a clear hierarchy of information.
  • In APA papers, in-text citations usually include the name(s) of the author(s) and the year of publication.
  • In-text citations correspond to entries in the references section, which provide detailed bibliographical information about a source.

Writing for Success Copyright © 2015 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

  • Services Offered
  • Get Free Quote

10 Parts Of A Common Research Paper

  • by We Do Assignment

apa mla research paper format examples and samples

Too lazy to read this article? Get Your Research Paper Written By An Expert . Our experts can write both APA style research paper format and MLA style research paper format. If you have a specific format, let us know, we will help you with that as well.

Before we begin, let us understand what is a research paper and why is it needed?

A research paper is a kind of essay in which you have to explain what you have learned after understanding and exploring your topic in depth. In a research paper, you include information from sources such as books, interviews, Internet blogs, and articles. You can also use your own thoughts, creativity, knowledge, and opinions. It basically means that more than 75% of your data has to be in your own words.

In other words

The research paper is a part of academic writing that provides review, description, and reasoning based on in-depth independent research.

Research papers are similar to educational essays, but they are usually longer and more detailed, designed to evaluate not only your writing skills but also your skills in educational research. Writing a research paper requires you to demonstrate a strong awareness of your topic, take part in a variety of sources, and make an original contribution.

What are the Most Important Sections of a Research Paper?

Research papers start with a question in mind. A paper that describes a particular study clearly states the query, procedure, discoveries, and other relevant information. Read below for explanations and standards of research paper sections. The main sections of a typical APA research paper include the following:

The Cover page/Title page

The first page of the research paper is always a cover page. This includes the name of the paper, a running head , a list of authors, and the institutional affiliation of the authors.

What is a running head in APA format example?

A running head is also called a page header. It is a phrase at the top of each page of a document that gives the reader important details. For APA format, the running head includes the title of the paper in the upper-case, along with the page number.

The institutional affiliation is often listed in an Author Note. The Author’s note is placed towards the bottom of the cover page.  In some cases, the Author Note also contains an acceptance of any financial support and of any individuals that helped with the research project. This page also contains the date of writing the paper.

Here are two examples of a basic APA cover page:

Criminal psychology

Samantha and Eric

University of Los Angeles

5 August 2020

Impact of Digital Marketing on Society

Stacy Carpenter

NRW-4B1-021

16 January 2018

A one-passage summary of the entire research – typically no more than 240 words in length (and in many cases, it is well brief than that), the Abstract provides an overview of the study.

An abstract does not need to be provided in every paper, but an abstract should be used in papers that include a theory. A good abstract is short — about one hundred sixty to two hundred forty words — and is written in an unbiased, neutral style. Your writing voice will not be as plain here as in the body of your research paper. When writing the abstract, take a just-the-facts approach, and encapsulate your research question and your findings in a few sentences.

Table of Contents

The table of contents is placed on the third page, includes the list of headlines for all the sections with the page numbers mark. A short essay or research paper requires no table of contents.

If your written report or research paper is very long, it may be helpful to include a table of contents showing the page number where each section starts.

For those writing an extensive document, i.e. a book, here is the suggested order for placing items in a Table of Contents:

  • Acknowledgments
  • Commencement/Introduction
  • Body (sections I, II, III, IV…)
  • Descriptive Notes
  • Postscripts
  • Contact Organizations
  • Terminology
  • Bibliography

A less difficult Table of Contents may simply include the following parts: Introduction, Body, Conclusion (or Summary), References, along with the matching page number where each part begins.

Table of Content in a research paper could be like:

Introduction…………………………………………..……….1 Politics……………………………………………………………….5 Economical Growth…………………………………..8 Arts and Music……………………………………………..15 Conclusion……………………………………………………..18 References………………………………………………………22

Introduction

The introduction is the first major section of the text in the paper. Here you can point out the reasons why you have started to write your paper and entitle thesis as well.

The Introduction commonly expresses the topic under exploration, outlines or discusses relevant previous research, identifies unanswered issues that the current research will address, and provides a summary of the research that is to be described in greater detail in the parts.

The research paper commencement or start should address these three questions: What, how, and why?

What?  Be particular about the subject of the paper, introduce the grounding, and define key concepts.

How?  To let the reader know what to anticipate from the rest of the paper, the introduction should include a “chart” of what will be considered, briefly presenting the key components of the paper in sequential order.

Why?  This is the most predominant, but also the hardest, part of the introduction. Try to provide brief answers to the following questions: What new stuff or insight are you offering? What important concerns does your essay help define or answer?

Body paragraphs (research description and methods)

The body of a research paper reveals the essence of the work. The major difficulty faced by most writers is how to arrange the information presented in the paper.

One way to stay on track is to use your theory statement and subject sentences. Check:

  • subject sentences against the theory statement;
  • subject sentences against each other, for resemblance and logical arrangement;
  • and each sentence against the subject sentence of that paragraph.

Be well informed of paragraphs that seem to cover the same things. If two paragraphs discuss something alike, they must approach that topic in different ways. Aim to create smooth transformations between sentences, paragraphs, and sections.

Methods that can be written in body of research paper:

  • Procedure: Describe data collection or participant selection.
  • Prototype: Describe the prototype or dataset, including basic enumerations.
  • Setting: Describe the setting, if applicable (generally only in subjective designs)
  • Investigation: If applicable, describe, in detail, how you implemented the investigation
  • Instrument: Describe, in detail, how you executed the instrument; Describe the loyalty and validity linked with the instrument
  • Data Inspection: Describe the type of course of action (tests, meetings, etc.) and software (if used)

This section describes the data that was gathered and the outcomes of any statistical assessments that were performed.  It may also be introduced by a description of the analysis method that was used. If there were numerous experiments, then each experiment may require a separate results section such as:

Example of writing results in a research paper

  • Research Query 1 (Quantitative)
  • Outline of the results
  • Research Query 2 (Qualitative)
  • Describe the results

Discussion is the final major section of work in the research paper. The discussion often features a synopsis of the results that were acquired in the study, expresses how those results communicate the topic under examination and/or the complications that the research was designed to address, and may stretch upon the suggestion of those results.

Discussion in research papers may include:

  • Recapitulate overall research query
  • Express how the results, when taken together, acknowledge the main question
  • Describe how the results explain or contradict the writings you reviewed

Conclusion in a research paper implies the evaluation of results acquired during the research and the quick review of the whole work.

It might include following:

  • A quick summary of all of the major facts stated in the body
  • Recapitulate the thesis statement
  • Ending remark or idea.

The research paper conclusion is tailored to help your reader out of the paper’s logic, giving them a sense of decisiveness. Track down the course of the work, highlighting how it all comes together to prove your theory statement. Give the paper a sense of decisiveness by making sure the reader recognizes how you’ve resolved the issues aroused in the introduction.

You might also discuss the more general outcomes of the argument, outline what the paper offers to upcoming students of the topic, and suggest any questions the paper’s argument brings up but cannot or does not attempt to answer.

While writing the conclusion you should not do the following:

  • Offer new differences of opinions or important information
  • Take up any more expanse than necessary
  • Begin with ancestry phrases that indicate you are ending the paper (for example “In conclusion”)

Bibliography/reference list

Bibliography in a research paper means the record of backing literature and other information sources. Academicians often ask to create an explained bibliography.

The bibliography can also include a list of clauses and any references from books – an indexed list of the sources that are cited in the research paper (by the surname of the first author of each reference). Each reference should follow specific APA instructions regarding author names, dates, article subjects, journal subjects, journal book numbers, page numbers, book producers, publisher locations, websites, and so on.

Appendix (if any add-ons were available)

Appendix in a research paper includes additional information (which is optional) – in some cases, additional information that is not evaluative to understanding the research paper, such as a list of experiment encouragement, details of a secondary scanning, or programming code, is provided.  This is often placed in an Appendix.

APA Research Paper Format Example

apa research paper format example title page

MLA Research Paper Format Example

mla research paper format example 1

If you are still having difficulty understanding the research paper format you can contact us on WhatsApp (+91 9888991872) for instant help in writing a research paper. Our experts can deliver quality content at the most affordable price.

1 thought on “10 Parts Of A Common Research Paper”

Pingback:  Case Study Guide: How to Write Case Study Assignments – We Do Assignment

Leave a Reply Cancel reply

You must be logged in to post a comment.

  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn
  • Share on Email
  • Share on Telegram
  • Share on Reddit
  • Share on Instagram
  • Share on WhatsApp

we do assignment cheap writing service

Don’t miss the chance to avail the biggest discount of this year.

No thanks, I’m not interested!

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Welcome to the Purdue Online Writing Lab

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

The Online Writing Lab at Purdue University houses writing resources and instructional material, and we provide these as a free service of the Writing Lab at Purdue. Students, members of the community, and users worldwide will find information to assist with many writing projects. Teachers and trainers may use this material for in-class and out-of-class instruction.

The Purdue On-Campus Writing Lab and Purdue Online Writing Lab assist clients in their development as writers—no matter what their skill level—with on-campus consultations, online participation, and community engagement. The Purdue Writing Lab serves the Purdue, West Lafayette, campus and coordinates with local literacy initiatives. The Purdue OWL offers global support through online reference materials and services.

A Message From the Assistant Director of Content Development 

The Purdue OWL® is committed to supporting  students, instructors, and writers by offering a wide range of resources that are developed and revised with them in mind. To do this, the OWL team is always exploring possibilties for a better design, allowing accessibility and user experience to guide our process. As the OWL undergoes some changes, we welcome your feedback and suggestions by email at any time.

Please don't hesitate to contact us via our contact page  if you have any questions or comments.

All the best,

Social Media

Facebook twitter.

parts of the common research paper

Get science-backed answers as you write with Paperpal's Research feature

How to Write the First Draft of a Research Paper with Paperpal? 

first draft of a research paper

Do you encounter writer’s block during the first draft of a research paper? Crafting a clear outline from your initial ideas and notes can feel like a daunting first hurdle. Many researchers and students struggle with the initial stages of research paper writing. Uncertainties about content structure, information selection, and weaving complex findings into a cohesive narrative can lead to staring at a blank page. 

Table of Contents

  • AI-generated outlines with a personalized approach 
  • Identify gaps to strengthen your research paper 
  • Step 1: Creating a research paper outline  
  • Step 2: Breaking down the outline into sections  
  • Step 3: Drafting the research paper  

A glimpse into academic forums and social media gives a clear picture that many researchers across the world go through similar problems while writing the first draft of a research paper. Where to begin? What should I write? How to begin? How to compile 2-3+ years of research into a 2500 or 5000-word research paper? If you’re grappling with these concerns, do not worry. You’re not alone.   

parts of the common research paper

Researchers face a mountain of work when it comes to writing papers. Paperpal decided to tackle this challenge and, in the process, discovered some fascinating writing habits: 

  • Start verbally: Some researchers find their flow by talking through their ideas first. They record themselves or brainstorm with a friend, then use these spoken notes as a springboard for their draft. 
  • Write on the go: Others prioritize keeping their thoughts flowing freely. They write in bursts, leaving the structuring and editing for later. 
  • Divide and Conquer: For some, especially new researchers, a structured approach works best. They break the paper into sections, focusing on building each one in detail before assembling the final draft. 
  • Outlines: Many researchers swear by outlines. Outlines provide a roadmap, complete with headings, subheadings, and key points. This saves time in the long run by eliminating the need for major restructuring later. You can focus on polishing the language and adding academic vocabulary during the final edit . 

Inspired by the outline method, Paperpal set out to create a tool that would give researchers a head start. This led to the development of Paperpal’s AI-generated outlines, which build a rough skeleton for your draft, allowing you to flesh out each section with confidence. 

How do Paperpal’s AI-generated outlines help you write the first draft 2x faster?   

Unlike traditional outlining methods, Paperpal doesn’t just provide a generic structure. Paperpal’s AI-generated outlines identify the key topics that form the backbone of your draft, providing a clear structure without sacrificing crucial elements. 

AI-generated outlines with a personalized approach

Paperpal goes beyond just suggesting topics. It seamlessly integrates your input, including notes, ideas, and research findings. This ensures the generated outline reflects your unique perspective and aligns perfectly with your project goals. This personalized approach not only streamlines the drafting process but also fosters a sense of ownership, keeping you engaged and motivated. 

Identify gaps to strengthen your research paper

After creating an outline based on your notes, Paperpal takes things a step further by helping you flesh out each section with content suggestions. Let’s say you’re working on the introduction of your research paper . Paperpal not only analyzes your notes to generate an outline, but it also identifies potential gaps in your research. It can then suggest content additions like knowledge gaps, research questions, and rationale statements to address those weaknesses. This comprehensive support streamlines the writing process for your first draft, making it smoother and more effortless. 

Researchers who have incorporated Paperpal into their workflow, have achieved higher levels of academic writing productivity . The result? Producing the first draft of a research paper in a shorter time frame, without making it completely AI-driven. 

How to write the first draft of a research paper with Paperpal?  

Paperpal redefines the way researchers approach academic writing, transforming the once-daunting task of drafting into a breeze. Here’s a walkthrough of writing the first draft of a research paper with Paperpal.  

Step 1: Creating a research paper outline

  • Sign- up to Paperpal and open a new or existing document.  
  • Navigate to Templates , select Outlines and choose Research Article to begin.  
  • Fill out the necessary details in the required fields according to your needs. Add your research notes to the Brief Description section and click on Generate .  

Paperpal gets you started on the right foot by analyzing your information and generating a comprehensive outline. This roadmap for your draft breaks down the content into clear, logical sections: 

  • Background: Sets the context for your research. 
  • Topic Importance: Highlights the significance of your research area. 
  • Existing Knowledge: Summarizes what’s already known about the topic. 
  • Knowledge Gap: Identifies areas where further research is needed. 
  • Rationale: Explains why your research is important to address the gap. 
  • Research Question: Formulates the specific question your research aims to answer. 
  • Aim/Objective: Defines the overall goals and desired outcomes of your research. 
  • Hypothesis: Makes a prediction about the expected results of your study (optional, not all research papers require a hypothesis). 

Paperpal’s outline provides a head-start to structure and write your research paper. This process helps in laying a strong foundation for your writing and refining it effortlessly.  

Step 2: Breaking down the outline into sections

Once you have the initial outline, you can further refine it by dividing it into subsections. This helps you explore each aspect of your research in detail, ensuring thorough coverage of your topic. You can choose from pre-built sections like Introduction, Methods, Results, Discussion, and Conclusion and start developing one by one.  

Step 3: Drafting the research paper

Start your research paper’s draft based on the outline and custom section enhancements. During the writing phase, Paperpal also offers insights into using its features:   

  • Incorporating references and additional content as required  
  • Rephrasing, shortening sentences, and refining language and structure using Paperpal’s Edit and Rewrite options  
  • Refining your draft by adding citations and specific information relevant to the topic via Paperpal Research. This ensures originality, and clarity, and adds value to your writing.  

By streamlining the journey from raw research to a polished draft, Paperpal helps students, researchers, and academics overcome common writing hurdles and achieve greater productivity. Whether you are a seasoned researcher or a student, Paperpal serves as a trusted companion, guiding you through each stage of the drafting process. Unlock academic writing potential with Paperpal. Get your free Paperpal account today!  

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • 7 Ways to Improve Your Academic Writing Process
  • How to Paraphrase Research Papers Effectively
  • How Long Should a Chapter Be?
  • How to Use Paperpal to Generate Emails & Cover Letters?

MLA Works Cited Page: Format, Template & Examples

Introducing paperpal predictive text suggestions: transform ideas into words faster than ever , you may also like, how to ace grant writing for research funding..., powerful academic phrases to improve your essay writing , how to write a high-quality conference paper, how paperpal’s research feature helps you develop and..., how paperpal is enhancing academic productivity and accelerating..., academic editing: how to self-edit academic text with..., 4 ways paperpal encourages responsible writing with ai, what are scholarly sources and where can you..., how to write a hypothesis types and examples .

Welcome to 2024! Happy New Year!

Hudson County Community College Libraries logo

Research Writing ~ How to Write a Research Paper

  • Choosing A Topic
  • Critical Thinking
  • Domain Names
  • Starting Your Research
  • Writing Tips
  • Parts of the Paper
  • Edit & Rewrite
  • Citations This link opens in a new window

Papers should have a beginning, a middle, and an end. Your introductory paragraph should grab the reader's attention, state your main idea and how you will support it. The body of the paper should expand on what you have stated in the introduction. Finally, the conclusion restates the paper's thesis and should explain what you have learned, giving a wrap up of your main ideas.   

1. The Title The title should be specific and indicate the theme of the research and what ideas it addresses. Use keywords that help explain your paper's topic to the reader. Try to avoid  abbreviations  and  jargon.  Think about keywords that people would use to search for your paper and include them in your title. 

2. The Abstract The abstract is used by readers to get a quick overview of your paper. Typically, they are about 200 words in length (120 words minimum to  250 words maximum). The abstract should introduce the topic and thesis, and should provide a general statement about what you have found in your research. The abstract allows you to mention each major aspect of you topic and helps readers decide whether they want to read the rest of the paper. Because it is a summary of the entire research paper, it is often written last. 

3. The Introduction The introduction should be designed to attract the reader's attention and explain the focus of the research. You will introduce your overview of the topic, your main points of information, and why this subject is important. You can introduce the current understanding and background information about the topic. Toward the end of the introduction, you add your thesis statement, and explain how you will provide information to support your research questions. This provides the purpose, focus, and structure for the rest of the paper.

4. Thesis Statement Most papers will have a thesis statement or main idea and supporting facts/ideas/arguments. State your main idea (something of interest or something to be proven or argued for or against) as your thesis statement, and then provide  supporting facts and arguments. A thesis statement is a declarative sentence that asserts the position a paper will be taking. It also points toward the paper's development. This statement should be both specific and arguable. Generally, the thesis statement will be placed at the end of the first paragraph of your paper. The remainder of your paper will support this thesis.

Students often learn to write a thesis as a first step in the writing process, but often, after research, a writers viewpoint may change. Therefore a thesis statement may be one of the final steps in writing. 

Examples of thesis statements from Purdue OWL. . .

5. The Literature Review The purpose of the literature review is to describe past important research and how it specifically relates to the research thesis. It should be a synthesis of the previous literature and the new idea being researched. The review should examine the major theories related to the topic to date and their contributors. It should include all relevant findings from credible sources, such as academic books and peer-reviewed journal articles. You will want  to:

  • Explain how the literature helps the researcher understand the topic.
  • Try to show connections and any disparities between the literature.
  • Identify new ways to interpret prior research.
  • Reveal any gaps that exist in the literature.

More about writing a literature review. . .  from The Writing Center at UNC-Chapel Hill More about summarizing. . . from the Center for Writing Studies at the University of Illinois-Urbana Champaign

6. The Discussion ​The purpose of the discussion is to interpret and describe what you have learned from your research. Make the reader understand why your topic is important. The discussion should always demonstrate what you have learned from your readings (and viewings) and how that learning has made the topic evolve, especially from the short description of main points in the introduction. Explain any new understanding or insights you have had after reading your articles and/or books. Paragraphs should use transitioning sentences to develop how one paragraph idea leads to the next. The discussion will always connect to the introduction, your thesis statement, and the literature you reviewed, but it does not simply repeat or rearrange the introduction. You want to: 

  • Demonstrate critical thinking, not just reporting back facts that you gathered.
  • If possible, tell how the topic has evolved over the past and give it's implications for the future.
  • Fully explain your main ideas with supporting information.
  • Explain why your thesis is correct giving arguments to counter points.

​7. The Conclusion A concluding paragraph is a brief summary of your main ideas and restates the paper's main thesis, giving the reader the sense that the stated goal of the paper has been accomplished. What have you learned by doing this research that you didn't know before? What conclusions have you drawn? You may also want to suggest further areas of study, improvement of research possibilities, etc. to demonstrate your critical thinking regarding your research.

  • << Previous: Writing Tips
  • Next: Edit & Rewrite >>
  • Last Updated: Feb 1, 2024 4:06 PM
  • URL: https://library.hccc.edu/research_paper

Gabert Library

JSQ map

NHC Library

NHC map

  • Database A-Z
  • Research Guides
  • Citation Help
  • Ask a Librarian
  • Library Instruction
  • Academic Liaisons
  • Library Staff Login

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Perspective
  • Open access
  • Published: 03 June 2024

Scientific integrity and U.S. “Billion Dollar Disasters”

  • Roger Pielke Jr 1 , 2  

npj Natural Hazards volume  1 , Article number:  12 ( 2024 ) Cite this article

1434 Accesses

12 Altmetric

Metrics details

  • Attribution
  • Climate-change impacts
  • Climate sciences

For more than two decades, the U.S. National Oceanic and Atmospheric Administration (NOAA) has published a count of weather-related disasters in the United States that it estimates have exceeded one billion dollars (inflation adjusted) in each calendar year starting in 1980. The dataset is widely cited and applied in research, assessment and invoked to justify policy in federal agencies, Congress and by the U.S. President. This paper performs an evaluation of the dataset under criteria of procedure and substance defined under NOAA’s Information Quality and Scientific Integrity policies. The evaluation finds that the “billion dollar disaster” dataset falls short of meeting these criteria. Thus, public claims promoted by NOAA associated with the dataset and its significance are flawed and at times misleading. Specifically, NOAA incorrectly claims that for some types of extreme weather, the dataset demonstrates detection and attribution of changes on climate timescales. Similarly flawed are NOAA’s claims that increasing annual counts of billion dollar disasters are in part a consequence of human caused climate change. NOAA’s claims to have achieved detection and attribution are not supported by any scientific analysis that it has performed. Given the importance and influence of the dataset in science and policy, NOAA should act quickly to address this scientific integrity shortfall.

Similar content being viewed by others

parts of the common research paper

The global historical climate database HCLIM

parts of the common research paper

The evolving landscape of sea-level rise science from 1990 to 2021

parts of the common research paper

No evidence that mandatory open data policies increase error correction

Introduction.

In the late 1990s, the U.S. National Oceanic and Atmospheric Administration (NOAA) began publishing a tally of weather and climate disasters that each resulted in more than $1 billion in damage, noting that the time series had become “one of our more popular web pages” 1 . Originally, the data was reported in current-year U.S. dollars. In 2011, following criticism that the dataset was misleading, NOAA modified its methods to adjusted historical losses to constant-year dollars by accounting for inflation ( https://www.washingtonpost.com/blogs/capital-weather-gang/post/2011-billion-dollar-weather-disaster-record-legit-or-bad-economics/2012/01/12/gIQADocztP_blog.html ).

By 2023, the billion dollar disaster time series had become a fixture in NOAA’s public outreach, was highlighted by the U.S. government’s U.S. Global Change Research Program (USGCRP) as a “climate change indicator” ( https://storymaps.arcgis.com/collections/ad628a4d3e7e4460b089d9fe96b2475d?item=1 ), was a cited as evidence in support of a “key message” of the Fifth U.S. National Climate Assessment showing that “extreme events are becoming more frequent and severe” ( https://nca2023.globalchange.gov/chapter/2/ ). The time series is often cited in policy settings as evidence of the effects of human-caused climate change to increase the frequency and intensity of extreme weather events and associated economic damage, including in federal agencies, Congress and by the U.S. President ( https://www.congress.gov/bill/118th-congress/house-bill/598/text ; https://www.whitehouse.gov/briefing-room/statements-releases/2023/11/14/fact-sheet-biden-harris-administration-releases-fifth-national-climate-assessment-and-announces-more-than-6-billion-to-strengthen-climate-resilience-across-the-country ). In addition to being widely cited in justifications of policy, as of March, 2024, NOAA’s billion dollar dataset has been cited in almost 1000 articles according to Google Scholar ( https://scholar.google.com/scholar?hl=en&as_sdt=0%2C6&q=%22billion+dollar+disasters%22&btnG= ).

This paper evaluates the billion dollar disaster time series by applying criteria of NOAA’s Information Quality and Scientific Integrity policies. The evaluation finds that billion dollar disaster time series fails to meet NOAA’s criteria for “information quality,” specifically, NOAA’s criteria of traceability, transparency, presentation, and substance.

Thus, the billion dollar disaster dataset is not simply an insufficient basis for claims of the detection and attribution of changes in climate variables (or a consequence of such changes), but the dataset is inappropriate for use in such research. Throughout, I use the terms “detection” and “attribution” as defined by the Intergovernmental panel on Climate Change (IPCC) 2 . Climate data should be the basis for claims of detection and attribution of changes in climate variables, not economic loss data. Because of the shortfalls in scientific integrity documented in this evaluation, policy makers and the public have been misinformed about extreme events and disasters in the United States.

Evaluation of policy or program performance is among the most common and influential practices in applied policy research. Policy evaluation tells us if actions by government programs and agencies are meeting their stated goals and provides insight into reasons for successes and failures. As such, evaluation offers important input that empowers policy makers to correct course and supports efforts by the public to hold governments democratically accountable. A systematic evaluation includes four distinct intellectual tasks 3 , 4 : (a) identification of goals to be achieved, (b) metrics which can be used to assess progress (or lack thereof) with respect to goals, (c) data or evidence related to such metrics, and finally, if possible, (d) judgments of responsibility for observed outcomes.

NOAA’s billion dollar disaster time series is considered a “fundamental research communication” under the Public Communications order of NOAA’s parent agency, the Department of Commerce ( https://www.osec.doc.gov/opog/dmp/daos/dao219_1.html ). NOAA defines a “fundamental research communication” to be “official work regarding the products of basic or applied research in science and engineering, the results of which ordinarily are published and shared broadly within the scientific community” ( https://www.noaa.gov/sites/default/files/legacy/document/2021/Feb/202-735-D.pdf ). NOAA further identifies an important subset of “fundamental research communications” to be “influential information,” which “means information the agency reasonably can determine will have or does have a clear and substantial impact on important public policies or private sector decisions” ( https://www.noaa.gov/organization/information-technology/policy-oversight/information-quality/information-quality-guidelines ). The billion dollar disaster dataset is also what the Office of Management and Budget defines as “Influential Scientific Information” ( https://www.govinfo.gov/content/pkg/FR-2005-01-14/pdf/05-769.pdf ).

NOAA’s Information Quality and Scientific Integrity policies set forth the criteria to be used for evaluating “fundamental research communications,” including the subset of “influential information.” Specifically, NOAA’s Information Quality Guidelines identify three criteria of information quality: utility, objectivity, and integrity ( https://www.noaa.gov/organization/information-technology/policy-oversight/information-quality/information-quality-guidelines ).

Utility refers to “the usefulness of research to its intended users, including the public,” with an emphasis on “transparency.” NOAA’s Scientific Integrity Policy provides further guidance: “Transparency, traceability, and integrity at all levels are required” in order for the agency “to achieve” its mission ( https://www.noaa.gov/sites/default/files/legacy/document/2021/Feb/202-735-D.pdf ).

Traceability: “The ability to verify sources, data, information, methodology, results, assessments, research, analysis, conclusions or other evidence to establish the integrity of findings.”

Transparency: “Characterized by visibility or accessibility of information.”

Objectivity refers to presentation and substance:

Presentation: “includes whether disseminated information is presented in an accurate, clear, complete, and unbiased manner and in a proper context.”

Substance: “involves a focus on ensuring accurate, reliable, and unbiased information. In a scientific, financial, or statistical context, the original and supporting data shall be generated, and the analytic results shall be developed, using sound statistical and research methods.”

Integrity refers to “security ‑ the protection of information from unauthorized access or revision, to ensure that the information is not compromised through corruption or falsification.” Integrity will not be further considered as part of this evaluation.

NOAA’s Scientific Integrity Policy also states that it will “ensure that data and research used to support policy decisions undergo independent peer review by qualified experts” ( https://sciencecouncil.noaa.gov/scientific-integrity-commons/sic-integrity-policy/ ). OMB requires that agencies develop “a transparent process for public disclosure of peer review planning, including a Web-accessible description of the peer review plan that the agency has developed for each of its forthcoming influential scientific disseminations” ( https://www.govinfo.gov/content/pkg/FR-2005-01-14/pdf/05-769.pdf ). There is no such plan in place for the NOAA “billion dollar” dataset and the methods, which have evolved over time, and results have not been subject to any public or transparent form of peer review.

The evaluation conducted here thus focuses on traceability and transparency (as elements of utility) and presentation and substance (as elements of objectivity).

Traceability and transparency

The NOAA billion dollar disaster dataset is intransparent in many ways, including its sources, input data and methodologies employed to produce results. The intransparency includes elements of event loss estimation, additions to and subtractions of events from the database, and adjustments made to historical loss estimates. There have been an unknown number of versions of the dataset, which have not been documented or made publicly available. Changes are made to the dataset more frequently than annually, suggesting that there have been many dozens of versions of the dataset over the past decades. Replication of the dataset or changes made to it is thus not possible by any independent researcher, as is verification or evaluation of the dataset itself.

Seven examples illustrate the lack of transparency and lack of traceability.

First, NOAA states that it utilizes more than “a dozen sources” to “help capture the total, direct costs (both insured and uninsured) of the weather and climate events” ( https://www.ncei.noaa.gov/access/billions/faq ). However, NOAA does not specifically identify these sources in relation to specific events, how its estimates are derived from these sources, or the estimates themselves. Almost all data sources that NOAA cites that it relies on for loss estimates are public agencies that produce data released to the public. Insured losses for specific events are aggregated and typically made available to the public, such as by the Florida Office of Insurance Regulation ( https://www.floir.com/home ). Aggregated data provides no information on specific businesses or individuals.

NOAA also states that it includes in it loss estimates various indirect losses such as business interruption, wildfire suppression and others. NOAA does not provide the data or methods for its estimation of such indirect losses. Smith and Matthews 5 (who also have created and maintained the dataset as NOAA employees) also identify livestock feeding costs as a function of national feedstock trends as a variable used in compiling the dataset. Livestock feeding costs are not considered a disaster cost in conventional disaster accounting methods (such as by NOAA Storm Data or SHELDUS), as these are not direct losses due to a local or regional extreme event, but rather an estimate of national market changes in commodity prices which are influenced by many more factors than an extreme event. It is unclear what other measures of indirect costs are included in the NOAA tabulation.

Second, consider the case of Hurricane Idalia, which made landfall in the Big Bend Region of Florida in late September 2023. Initial catastrophe model estimates suggested insured losses of $2.5 to 5 billion ( https://www.insurancejournal.com/news/national/2023/09/05/738970.htm ). The initial NOAA estimate reported on its billion dollar disaster website in the immediate aftermath of the storm was $2.5 billion. However, actual insured losses have been far less than was estimated in the storm’s aftermath, totaling officially about $310 million through mid-November 2023 ( https://www.floir.com/home/idalia ). The historical practice of NOAA’s National Hurricane Center for estimating total direct hurricane damage was to double insured losses to arrive at an estimate of total direct losses 6 . Even accounting for some additional insurance claims to be made, it is unlikely that Idalia would reach $1 billion in total direct losses under the NHC methodology. Yet by December 2023 NOAA had increased its loss estimate for Idalia to $3.6 billion. What is the basis for NOAA’s estimate of Idalia’s total losses being ~12 times insured losses? That is unknown.

Third, similarly unknown is why historical events are periodically added and removed from the dataset. For instance, from a version of the dataset available in December 2022 to an update published in July 2023, 10 new events were added and 3 were deleted (Fig. 1 ). A later comparison with yet another version of the dataset indicates 4 additional historical events were added (not shown in Fig. 1 ). There is no documentation or justification for such changes, I am only aware of them through the happenstance of downloading the currently available dataset at different times.

figure 1

Undocumented changes to disaster counts made by NOAA between two different versions of the billion dollar disaster dataset, one downloaded in 2022 and another in 2023.

Fourth, a comparison of event loss estimates from the 2022 dataset and the 2023 version shows that each individual event has been adjusted by a different amount. According to NOAA, the only annual adjustment acknowledged is for inflation based on the Consumer Price Index (CPI). From 2022 to 2023, most of the adjustments made to individual events are between 4.5% and 6% but nine events are adjusted from 6.6% to 145%, and one is a reduction of about 75%. An annual adjustment for CPI should be constant across all events. No documentation is provided to explain these various adjustments and why they are unique to each event.

Fifth, NOAA states that they perform “key transformations” of loss data estimates by “scaling up insured loss data to account for uninsured and underinsured losses, which differs by peril, geography, and asset class.” NOAA makes no details available on the methodology or basis for such transformations, nor their impact on loss estimates, nor how these transformations may change over time.

Similarly, Smith and Matthews 5 reference an overall bias correction that has been applied to the dataset, as well as an additional correction for crop insurance losses. Smith and Katz 6 reference other adjustments, such as an adjustment to U.S. flood insurance participation rates, but neither the methodologies nor results of these various adjustments are documented, nor has the baseline data to which the adjustments are applied. Table 3 from Smith and Katz 7 suggests an open-ended formulaic approach to loss estimation, but none of the data that would be used in such formulas is available. Nor is it clear that NOAA currently applies the formula to loss estimation. If so, it should be straightforward to provide sources, data and methods for each iteration of the dataset.

Sixth, the number of smaller disasters ranging from $1 to $2 billion was fairly constant from 1980 to 2007 and then sharply increased starting in 2008 (Fig. 2 ). NOAA states that “we introduce events into the time series as they “inflate” their way above $1B in costs in today’s dollars. Every year, this leads to the introduction of several new events added from earlier in the time series” ( https://sciencecouncil.noaa.gov/scientific-integrity-commons/sic-integrity-policy/ ). However, the December 2023 dataset shows a net change of zero events from $1-2 billion for the period of 1980–2000 and a net increase of such 2 events from 2001–2023. NOAA’s statement that it elevates disasters from <1 billion in losses to the billion dollar disaster database also indicates that NOAA has another dataset with sub-billion dollar events that is not publicly available.

figure 2

Increasing disaster counts costing $1-2 billion in a version of NOAA’s 2023 dataset.

The sharp discontinuity in the counts of $1-2 billion events starting in 2008 is suggestive of a change in disaster accounting methods, however, the lack of transparency into the creation of the dataset makes it impossible to know the reasons that may underlie this discontinuity.

Seventh, a comparison of 2023 CPI-adjusted official losses of NOAA’s National Hurricane Center (NHC)20 to the loss estimates of the 2023 NOAA billion dollar dataset (BDD), for significant hurricanes shows large differences (Table 1 ).

The NOAA billion dollar disaster estimates are in all cases except Hurricane Andrew substantially higher than the CPI-adjusted estimates based on the official estimates of NHC. There is no obvious pattern to the differences and the lack of methodological and data transparency makes it impossible to understand why there are such large differences and why these differences vary by such a great deal.

These seven examples indicate clearly that the NOAA billion dollar dataset fails with respect to NOAA’s scientific integrity criteria of traceability and transparency. The many issues and questions raised above cannot be answered because it is impossible to verify sources, data or methodology to establish the integrity of findings. These seven examples are just a small subset of issues that I have raised in public forums about the provenance, methods, and publicly communicated results of the application of these methods. The billion dollar dataset thus does not meet NOAA’s requirement that data be transparent and traceable.

Presentation and substance

Even in the absence of the issues documented above, the NOAA billion dollar disaster dataset is potentially misleading, because it has been represented by NOAA and U.S. government officials as evidence of the detection of trends in extreme weather phenomena and the attribution of those trends to human-caused climate change due to the emission of greenhouse gases.

For instance:

The NOAA official responsible for overseeing the dataset claimed that the dataset showed: “Climate change is supercharging many of these extremes that can lead to billion-dollar disasters” ( https://www.cbsnews.com/news/noaa-billion-dollar-weather-disasters-2022-hurricane-ian-drought/ ).

At the press conference where the 2022 dataset was released, the NOAA Administrator claimed that the dataset indicated that, “Climate change is creating more and more intense extreme events that cause significant damage” ( https://www.npr.org/2023/01/12/1148633707/extreme-weather-fueled-by-climate-change-cost-the-u-s-165-billion-in-2022 ).

In 2021 the U.S. Department of Treasury identified increasing billion dollar disasters as evidence of the effects of climate change on financial risks ( https://home.treasury.gov/system/files/261/FSOC-Climate-Report.pdf ).

The Fifth U.S. National Climate Assessment cited the NOAA dataset as evidence that “Climate change is not just a problem for future generations, it’s a problem today,” and claimed that the dataset, in part, demonstrated “the increasing frequency and severity of extreme events” due in part to “human-caused climate change” ( https://nca2023.globalchange.gov/chapter/2/ ).

In 2023, President Biden attributed weather and climate-related disaster costs in the U.S. in 2022 to climate change, citing the NOAA dataset: “[C]limate change related extreme weather events still pose a rapidly intensifying threat – one that costs the U.S. at least $150 billion each year … This year set a record for the number of climate disasters that cost the United States over $1 billion. The United States now experiences a billion-dollar disaster approximately every three weeks on average, compared to once every four months during the 1980s” ( https://www.whitehouse.gov/briefing-room/statements-releases/2023/11/14/fact-sheet-biden-harris-administration-releases-fifth-national-climate-assessment-and-announces-more-than-6-billion-to-strengthen-climate-resilience-across-the-country/ ).

The point here is not to call into question the reality or importance of human-caused climate change – it is real, and it is important. Rather, the question is whether the NOAA billion dollar disaster time series provides evidence of detection or attribution of changes in the climate of extreme weather events in the United States, as frequently claimed.

Economic loss data is not suitable for detection and attribution of trends in extreme weather events because losses involve more than just climatic factors. It is well understood that a disaster occurs at the intersection of an extreme event and a vulnerable and exposed society (IPCC) 8 . NOAA acknowledges that a combination of risk, vulnerability and exposure is necessary for a disaster to occur ( https://www.ncei.noaa.gov/access/billions/faq ), but it fails to take any of these factors into account in its methodologies prior to making claims of detection and attribution. Of note, NOAA performs such a GDP normalization for disasters at the state level but does not do so for its national billion dollar disaster database. In a June, 2023 insurance industry Webinar, the lead scientist responsible for the NOAA dataset identified the absence of a national GDP-based normalization to be a major challenge for interpreting the database, and suggested that this would be added to the dataset in the future ( https://www.catmanagers.org/event-details/put-past-losses-in-their-proper-context-1 ). Smith and Katz 7 explain that “the billion-dollar dataset is only adjusted for the CPI over time, not currently incorporating any changes in exposure (e.g., as reflected by shifts in wealth or population)”.

Over time, population and wealth have increased dramatically in the United States (and globally), meaning that when an extreme climate or weather event occurs, there is more to be damaged and invariably, more damage occurs even if there is no underlying trend in the frequency or intensity of extreme weather. Consequently, there is a large literature that seeks to “normalize” historical loss data to account for changes in exposure and vulnerability (e.g., a recent literature review identified more than 60 such papers 9 , other relevant studies discuss the importance of the spatial dimensions of land use change 10 , 11 , 12 , 13 ).

A common approach to disaster normalization adjusts historical losses based on GDP, as a proxy for increasing population and wealth 14 , 15 , 16 , 17 , 18 . Figure. 3 shows loss per disaster in the NOAA 2023 dataset as a percentage of US GDP ( https://fred.stlouisfed.org/series/RGDPNAUSA666NRUG ). According to a simple linear trend, losses per disaster are down by about 80% since 1980, as a proportion of GDP. This is likely due to a combination of actual decreasing losses as a proportion of GDP, as has been documented in many rich countries, as well as the sharp increase in small disasters included in NOAA’s dataset (see Fig. 2 ).

figure 3

Losses per disaster in NOAA’s billion dollar disaster dataset (the version downloaded in July 2023), 1980 to 2022.

In comparison, weather and climate disasters losses as a percentage of U.S. GDP, show no increase over the period of record, which is 1990–2019 based on these data (Fig. 4 ).

figure 4

Sources: Spatial Hazard Events and Losses Database for the United States (SHELDUS) at Arizona State University, which has made public aggregate losses from 1990 to 2019. Data on GDP from the U.S. Office of Management and Budget.

Other, more sophisticated and granular approaches to the normalization of U.S. weather and climate related disaster losses robustly confirm the aggregate downward trend in losses, once population growth and wealth are properly accounted 6 , 18 , 19 , 20 , 21 , 22 . Hurricane, flood and tornado losses have all decreased as a proportion of GDP on climate time scales, and as these are responsible for the majority of direct losses, so too have aggregate disaster losses.

NOAA’s failure to consider changes in exposure and vulnerability is significant. Consider for example Hurricane Andrew in 1992. The NOAA 2023 billion dollar disaster loss estimate for Andrew is $58.9 billion, but a 2023 normalized loss estimate is more than twice that at $119.9 billion (based on Weinkle et al.). For comparison, in 2022, Swiss Reinsurance estimated that a recurrence of Hurricane Andrew would result in $120 billion in total damage ( https://www.abcactionnews.com/news/price-of-paradise/experts-say-modern-day-hurricane-andrew-could-cost-florida-120-billion ). Thus, these estimates differ by ~100%.

By adjusting for inflation, but not for changes in exposure or vulnerability, the NOAA billion dollar dataset introduces a bias into the time series, as the upwards trend in losses in the billion dollar disaster time series is a result of growth in population and wealth, and not climate trends. As Smith and Katz 7 acknowledged more than a decade ago of the increase in billion dollar disasters, “the magnitude of such increasing trends is greatly diminished when applied to data normalized for exposure.”

Thus, any claim that the NOAA billion dollar disaster dataset indicates worsening weather or worsening disasters is incomplete at best and misleading at worst. When U.S. disaster losses are considered in the context of exposure changes it becomes clear that as the absolute costs of disasters has increased, the impact relative to the economy has diminished over past decades, which is exactly the opposite of claims made by NOAA, the U.S. National Climate Assessment, the USGCRP, and the president of the United States, among many others.

The most appropriate data for investigating detection and attribution of changes in climate variables will always be climate data, and not economic data. IPCC has assessed research on the detection and attribution of trends in extreme weather events and has only low confidence in the emergence of signals of climate-impact drivers for river floods, heavy precipitation and pluvial flood, landslide, drought, fire weather, tropical cyclones, hail, severe wind storms and heavy snowfall 2 – that is, each of the elements of the billion dollar disaster dataset. The IPCC does express confidence in some regions in the detection and attribution of changes in heat extremes and in extreme precipitation 2 , neither of which is an element of the billion dollar disaster database. The IPCC is explicit in warning against conflating changes in extreme precipitation with changes in pluvial flooding 2 .

NOAA makes strong claims of detection and attribution contrary to the conclusions of the IPCC but provides no analyses in support of these claims. For instance, NOAA states of its time series:

“The increases in population and material wealth over the last several decades are an important factor for higher damage potential. These trends are further complicated by the fact that many population centers and infrastructure exist in vulnerable areas like coasts and river floodplains, while building codes are often insufficient in reducing damage from extreme events. Climate change is also playing a role in the increasing frequency of some types of extreme weather that lead to billion-dollar disasters.”

However, NOAA makes no effort to quantify the roles of increasing population and material wealth, nor does it substantiate its claims that climate change has increased the frequency of some types of extreme weather.

NOAA does not acknowledge a large literature on disaster “normalization” that seeks to quantify the roles of population, material wealth, mitigation, building practices, etc. on increasing losses and also ignores literature on the detection and attribution of trends in various forms of extreme weather 2 , 9 .

Thus, any claim that the NOAA billion dollar disaster dataset indicates the detection trends in climate variables and the attribution of those trends to human-caused climate change is contrary to the most recent assessment of the IPCC. NOAA has provided no evidence or research to support claims that human-caused changes in climate are driving the increase in billion dollar disaster counts. Similarly, the opposite claim, that increasing billion dollar disasters are evidence of changes in the frequency of some extreme events resulting from human-caused climate change is also unsupported. NOAA’s claims are also circular – one claim is that climate change causes increasing billion dollar disasters and the second claim is that increasing billion dollar disasters indicate climate change. The billion dollar dataset fails to meet NOAA’s criteria of presentation and substance.

To summarize: the NOAA billion dollar disaster dataset falls short of NOAA’s guidelines for scientific integrity. The shortfalls documented here are neither small nor subtle. They represent a departure from NOAA’s long-term history of scientific integrity and excellence, which has saved countless lives and supported the nation’s economy.

Identifying the reasons why NOAA’s billion dollar disaster dataset has departed so significantly from the agency’s own standards of scientific integrity goes well beyond the scope of this paper. However, the steps necessary to bring the dataset back into conformance with NOAA’s information quality criteria are straightforward ( https://www.noaa.gov/organization/information-technology/policy-oversight/information-quality/information-quality-guidelines ):

Publish all data, including all versions of the dataset;

Document and publish baseline loss estimates and their provenance;

Clearly describe all methodologies employed to adjust baseline data;

Document every change made to the dataset, give each successive version of the dataset a unique name, and publish all version of the data;

Maintain all historical versions of the dataset in a publicly accessible archive;

Subject the methods and results to annual peer review by experts, including economists and others with subject matter expertise, who are independent of NOAA. Make the peer review reports public;

Align NOAA’s practices with federal government policies for disseminating statistical information that are applied to other agencies ( https://www.federalregister.gov/documents/2002/06/04/02-13892/federal-statistical-organizations-guidelines-for-ensuring-and-maximizing-the-quality-objectivity );

Align claims with IPCC methods and standards for any claims of detection and attribution, or justify why the claims are at odds with those of the IPCC.

NOAA is a crucially important agency that sits at the intersection of science, policy and politics. It has a long and distinguished history of providing weather, climate, water, ocean and other data to the nation. These data have saved countless lives, supported the economy and enabled significant scientific research. The agency is far too important to allow the shortfalls in scientific integrity documented in this paper to persist. Fortunately, science and policy are both self-correcting.

Policy evaluation

The analysis in this paper follows the logic of policy evaluation, which compares policy implementation with respect to criteria, with a goal of identifying progress or lack thereof towards goals (sources). Identifying progress requires identification of specific metrics of progress and data relevant to those metrics.

Lott, N. & Ross, T. Tracking and evaluating U.S. billion dollar disasters, 1980-2005, NOAA’s National Climatic Data Center, Asheville, North Carolina, https://www.ncei.noaa.gov/monitoring-content/billions/docs/lott-and-ross-2006.pdf (2005).

IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [eds Masson-Delmotte, V., P et al.]. 2391 (Cambridge University Press, Cambridge, 2021) https://doi.org/10.1017/9781009157896 .

Pielke, R. Jr. & Boye, E. Scientific integrity and anti-doping regulation. Int. J. Sport Policy Polit. 11 , 295–313 (2019).

Article   Google Scholar  

Lasswell, H.D. A pre-view of policy sciences (Elsevier Publishing Company, 1971).

Smith, A. B. & Matthews, J. L. Quantifying uncertainty and variable sensitivity within the US billion-dollar weather and climate disaster cost estimates. Nat. Hazards 77 , 1829–1851 (2015).

Weinkle, J. et al. Normalized hurricane damage in the continental United States 1900–2017. Nat. Sustain. 1 , 808–813 (2018).

Smith, A. B. & Katz, R. W. US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases. Nat. Hazards 67 , 387–410 (2013).

IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (eds. Field, C.B. et al.) 582 (Cambridge University Press, 2012).

Pielke, R. Economic ‘normalisation’ of disaster losses 1998–2020: A literature review and assessment. Environ. Hazards 20 , 93–111 (2021).

Ye, M., Wu, J., Liu, W., He, X. & Wang, C. Dependence of tropical cyclone damage on maximum wind speed and socioeconomic factors. Environ. Res. Lett. 15 , 094061 (2020).

Strader, S. M., Ashley, W. S., Pingel, T. J. & Krmenec, A. J. How land use alters the tornado disaster landscape. Appl. Geogr. 94 , 18–29 (2018).

Ferguson, A. P. & Ashley, W. S. Spatiotemporal analysis of residential flood exposure in the Atlanta, Georgia metropolitan area. Nat. Hazards 87 , 989–1016 (2017).

Strader, S. M. & Ashley, W. S. The expanding bull’s-eye effect. Weatherwise 68 , 23–29 (2015).

Nordhaus, W. D. The economics of hurricanes and implications of global warming. Clim. Change Econ. 1 , 1–20 (2010).

Neumayer, E. & Barthel, F. Normalizing economic loss from natural disasters: A global analysis. Global Environ. Change 21 , 13–24 (2011).

Wu, J. et al. Post-disaster recovery and economic impact of catastrophes in China. Earthq. Spectra 30 , 1825–1846 (2014).

Chen, W., Lu, Y., Sun, S., Duan, Y. & Leckebusch, G. C. Hazard footprint-based normalization of economic losses from tropical cyclones in China during 1983–2015. Int. J. Disaster Risk Scie. 9 , 195–206 (2018).

Alstadt, B., Hanson, A. & Nijhuis, A. Developing a Global Method for Normalizing Economic Loss from Natural Disasters. Nat. Hazards Rev. 23 , 04021059 (2022).

Martinez, A. B. Improving normalized hurricane damages. Nat. Sustain. 3 , 517–518 (2020).

Klotzbach, P. J., Bowen, S. G., Pielke, R. & Bell, M. Continental US hurricane landfall frequency and associated damage: Observations and future risks. Bull. Am. Meteorol. Soc. 99 , 1359–1376 (2018).

Katz, R. W. Statistical issues in detection of trends in losses from extreme weather and climate events. In Evaluating climate change impact s. 165–186 (Chapman and Hall/CRC, 2020).

Zhang, J., Trück, S., Truong, C., & Pitt, D. Time trends in losses from major tornadoes in the United States. Weather Clim Extremes 41 , 100579 (2023).

Download references

Author information

Authors and affiliations.

University of Colorado Boulder, Boulder, CO, USA

Roger Pielke Jr

American Enterprise Institute, Washington, DC, USA

You can also search for this author in PubMed   Google Scholar

Contributions

R.P. did everything.

Corresponding author

Correspondence to Roger Pielke Jr .

Ethics declarations

Competing interests.

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Pielke, R. Scientific integrity and U.S. “Billion Dollar Disasters”. npj Nat. Hazards 1 , 12 (2024). https://doi.org/10.1038/s44304-024-00011-0

Download citation

Received : 05 January 2024

Accepted : 13 April 2024

Published : 03 June 2024

DOI : https://doi.org/10.1038/s44304-024-00011-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

parts of the common research paper

The state of AI in early 2024: Gen AI adoption spikes and starts to generate value

If 2023 was the year the world discovered generative AI (gen AI) , 2024 is the year organizations truly began using—and deriving business value from—this new technology. In the latest McKinsey Global Survey  on AI, 65 percent of respondents report that their organizations are regularly using gen AI, nearly double the percentage from our previous survey just ten months ago. Respondents’ expectations for gen AI’s impact remain as high as they were last year , with three-quarters predicting that gen AI will lead to significant or disruptive change in their industries in the years ahead.

About the authors

This article is a collaborative effort by Alex Singla , Alexander Sukharevsky , Lareina Yee , and Michael Chui , with Bryce Hall , representing views from QuantumBlack, AI by McKinsey, and McKinsey Digital.

Organizations are already seeing material benefits from gen AI use, reporting both cost decreases and revenue jumps in the business units deploying the technology. The survey also provides insights into the kinds of risks presented by gen AI—most notably, inaccuracy—as well as the emerging practices of top performers to mitigate those challenges and capture value.

AI adoption surges

Interest in generative AI has also brightened the spotlight on a broader set of AI capabilities. For the past six years, AI adoption by respondents’ organizations has hovered at about 50 percent. This year, the survey finds that adoption has jumped to 72 percent (Exhibit 1). And the interest is truly global in scope. Our 2023 survey found that AI adoption did not reach 66 percent in any region; however, this year more than two-thirds of respondents in nearly every region say their organizations are using AI. 1 Organizations based in Central and South America are the exception, with 58 percent of respondents working for organizations based in Central and South America reporting AI adoption. Looking by industry, the biggest increase in adoption can be found in professional services. 2 Includes respondents working for organizations focused on human resources, legal services, management consulting, market research, R&D, tax preparation, and training.

Also, responses suggest that companies are now using AI in more parts of the business. Half of respondents say their organizations have adopted AI in two or more business functions, up from less than a third of respondents in 2023 (Exhibit 2).

Gen AI adoption is most common in the functions where it can create the most value

Most respondents now report that their organizations—and they as individuals—are using gen AI. Sixty-five percent of respondents say their organizations are regularly using gen AI in at least one business function, up from one-third last year. The average organization using gen AI is doing so in two functions, most often in marketing and sales and in product and service development—two functions in which previous research  determined that gen AI adoption could generate the most value 3 “ The economic potential of generative AI: The next productivity frontier ,” McKinsey, June 14, 2023. —as well as in IT (Exhibit 3). The biggest increase from 2023 is found in marketing and sales, where reported adoption has more than doubled. Yet across functions, only two use cases, both within marketing and sales, are reported by 15 percent or more of respondents.

Gen AI also is weaving its way into respondents’ personal lives. Compared with 2023, respondents are much more likely to be using gen AI at work and even more likely to be using gen AI both at work and in their personal lives (Exhibit 4). The survey finds upticks in gen AI use across all regions, with the largest increases in Asia–Pacific and Greater China. Respondents at the highest seniority levels, meanwhile, show larger jumps in the use of gen Al tools for work and outside of work compared with their midlevel-management peers. Looking at specific industries, respondents working in energy and materials and in professional services report the largest increase in gen AI use.

Investments in gen AI and analytical AI are beginning to create value

The latest survey also shows how different industries are budgeting for gen AI. Responses suggest that, in many industries, organizations are about equally as likely to be investing more than 5 percent of their digital budgets in gen AI as they are in nongenerative, analytical-AI solutions (Exhibit 5). Yet in most industries, larger shares of respondents report that their organizations spend more than 20 percent on analytical AI than on gen AI. Looking ahead, most respondents—67 percent—expect their organizations to invest more in AI over the next three years.

Where are those investments paying off? For the first time, our latest survey explored the value created by gen AI use by business function. The function in which the largest share of respondents report seeing cost decreases is human resources. Respondents most commonly report meaningful revenue increases (of more than 5 percent) in supply chain and inventory management (Exhibit 6). For analytical AI, respondents most often report seeing cost benefits in service operations—in line with what we found last year —as well as meaningful revenue increases from AI use in marketing and sales.

Inaccuracy: The most recognized and experienced risk of gen AI use

As businesses begin to see the benefits of gen AI, they’re also recognizing the diverse risks associated with the technology. These can range from data management risks such as data privacy, bias, or intellectual property (IP) infringement to model management risks, which tend to focus on inaccurate output or lack of explainability. A third big risk category is security and incorrect use.

Respondents to the latest survey are more likely than they were last year to say their organizations consider inaccuracy and IP infringement to be relevant to their use of gen AI, and about half continue to view cybersecurity as a risk (Exhibit 7).

Conversely, respondents are less likely than they were last year to say their organizations consider workforce and labor displacement to be relevant risks and are not increasing efforts to mitigate them.

In fact, inaccuracy— which can affect use cases across the gen AI value chain , ranging from customer journeys and summarization to coding and creative content—is the only risk that respondents are significantly more likely than last year to say their organizations are actively working to mitigate.

Some organizations have already experienced negative consequences from the use of gen AI, with 44 percent of respondents saying their organizations have experienced at least one consequence (Exhibit 8). Respondents most often report inaccuracy as a risk that has affected their organizations, followed by cybersecurity and explainability.

Our previous research has found that there are several elements of governance that can help in scaling gen AI use responsibly, yet few respondents report having these risk-related practices in place. 4 “ Implementing generative AI with speed and safety ,” McKinsey Quarterly , March 13, 2024. For example, just 18 percent say their organizations have an enterprise-wide council or board with the authority to make decisions involving responsible AI governance, and only one-third say gen AI risk awareness and risk mitigation controls are required skill sets for technical talent.

Bringing gen AI capabilities to bear

The latest survey also sought to understand how, and how quickly, organizations are deploying these new gen AI tools. We have found three archetypes for implementing gen AI solutions : takers use off-the-shelf, publicly available solutions; shapers customize those tools with proprietary data and systems; and makers develop their own foundation models from scratch. 5 “ Technology’s generational moment with generative AI: A CIO and CTO guide ,” McKinsey, July 11, 2023. Across most industries, the survey results suggest that organizations are finding off-the-shelf offerings applicable to their business needs—though many are pursuing opportunities to customize models or even develop their own (Exhibit 9). About half of reported gen AI uses within respondents’ business functions are utilizing off-the-shelf, publicly available models or tools, with little or no customization. Respondents in energy and materials, technology, and media and telecommunications are more likely to report significant customization or tuning of publicly available models or developing their own proprietary models to address specific business needs.

Respondents most often report that their organizations required one to four months from the start of a project to put gen AI into production, though the time it takes varies by business function (Exhibit 10). It also depends upon the approach for acquiring those capabilities. Not surprisingly, reported uses of highly customized or proprietary models are 1.5 times more likely than off-the-shelf, publicly available models to take five months or more to implement.

Gen AI high performers are excelling despite facing challenges

Gen AI is a new technology, and organizations are still early in the journey of pursuing its opportunities and scaling it across functions. So it’s little surprise that only a small subset of respondents (46 out of 876) report that a meaningful share of their organizations’ EBIT can be attributed to their deployment of gen AI. Still, these gen AI leaders are worth examining closely. These, after all, are the early movers, who already attribute more than 10 percent of their organizations’ EBIT to their use of gen AI. Forty-two percent of these high performers say more than 20 percent of their EBIT is attributable to their use of nongenerative, analytical AI, and they span industries and regions—though most are at organizations with less than $1 billion in annual revenue. The AI-related practices at these organizations can offer guidance to those looking to create value from gen AI adoption at their own organizations.

To start, gen AI high performers are using gen AI in more business functions—an average of three functions, while others average two. They, like other organizations, are most likely to use gen AI in marketing and sales and product or service development, but they’re much more likely than others to use gen AI solutions in risk, legal, and compliance; in strategy and corporate finance; and in supply chain and inventory management. They’re more than three times as likely as others to be using gen AI in activities ranging from processing of accounting documents and risk assessment to R&D testing and pricing and promotions. While, overall, about half of reported gen AI applications within business functions are utilizing publicly available models or tools, gen AI high performers are less likely to use those off-the-shelf options than to either implement significantly customized versions of those tools or to develop their own proprietary foundation models.

What else are these high performers doing differently? For one thing, they are paying more attention to gen-AI-related risks. Perhaps because they are further along on their journeys, they are more likely than others to say their organizations have experienced every negative consequence from gen AI we asked about, from cybersecurity and personal privacy to explainability and IP infringement. Given that, they are more likely than others to report that their organizations consider those risks, as well as regulatory compliance, environmental impacts, and political stability, to be relevant to their gen AI use, and they say they take steps to mitigate more risks than others do.

Gen AI high performers are also much more likely to say their organizations follow a set of risk-related best practices (Exhibit 11). For example, they are nearly twice as likely as others to involve the legal function and embed risk reviews early on in the development of gen AI solutions—that is, to “ shift left .” They’re also much more likely than others to employ a wide range of other best practices, from strategy-related practices to those related to scaling.

In addition to experiencing the risks of gen AI adoption, high performers have encountered other challenges that can serve as warnings to others (Exhibit 12). Seventy percent say they have experienced difficulties with data, including defining processes for data governance, developing the ability to quickly integrate data into AI models, and an insufficient amount of training data, highlighting the essential role that data play in capturing value. High performers are also more likely than others to report experiencing challenges with their operating models, such as implementing agile ways of working and effective sprint performance management.

About the research

The online survey was in the field from February 22 to March 5, 2024, and garnered responses from 1,363 participants representing the full range of regions, industries, company sizes, functional specialties, and tenures. Of those respondents, 981 said their organizations had adopted AI in at least one business function, and 878 said their organizations were regularly using gen AI in at least one function. To adjust for differences in response rates, the data are weighted by the contribution of each respondent’s nation to global GDP.

Alex Singla and Alexander Sukharevsky  are global coleaders of QuantumBlack, AI by McKinsey, and senior partners in McKinsey’s Chicago and London offices, respectively; Lareina Yee  is a senior partner in the Bay Area office, where Michael Chui , a McKinsey Global Institute partner, is a partner; and Bryce Hall  is an associate partner in the Washington, DC, office.

They wish to thank Kaitlin Noe, Larry Kanter, Mallika Jhamb, and Shinjini Srivastava for their contributions to this work.

This article was edited by Heather Hanselman, a senior editor in McKinsey’s Atlanta office.

Explore a career with us

Related articles.

One large blue ball in mid air above many smaller blue, green, purple and white balls

Moving past gen AI’s honeymoon phase: Seven hard truths for CIOs to get from pilot to scale

A thumb and an index finger form a circular void, resembling the shape of a light bulb but without the glass component. Inside this empty space, a bright filament and the gleaming metal base of the light bulb are visible.

A generative AI reset: Rewiring to turn potential into value in 2024

High-tech bees buzz with purpose, meticulously arranging digital hexagonal cylinders into a precisely stacked formation.

Implementing generative AI with speed and safety

  • Open access
  • Published: 01 June 2024

Biomarkers for personalised prevention of chronic diseases: a common protocol for three rapid scoping reviews

  • E Plans-Beriso   ORCID: orcid.org/0000-0002-9388-8744 1 , 2   na1 ,
  • C Babb-de-Villiers 3   na1 ,
  • D Petrova 2 , 4 , 5 ,
  • C Barahona-López 1 , 2 ,
  • P Diez-Echave 1 , 2 ,
  • O R Hernández 1 , 2 ,
  • N F Fernández-Martínez 2 , 4 , 5 ,
  • H Turner 3 ,
  • E García-Ovejero 1 ,
  • O Craciun 1 ,
  • P Fernández-Navarro 1 , 2 ,
  • N Fernández-Larrea 1 , 2 ,
  • E García-Esquinas 1 , 2 ,
  • V Jiménez-Planet 7 ,
  • V Moreno 2 , 8 , 9 ,
  • F Rodríguez-Artalejo 2 , 10 , 11 ,
  • M J Sánchez 2 , 4 , 5 ,
  • M Pollan-Santamaria 1 , 2 ,
  • L Blackburn 3 ,
  • M Kroese 3   na2 &
  • B Pérez-Gómez 1 , 2   na2  

Systematic Reviews volume  13 , Article number:  147 ( 2024 ) Cite this article

290 Accesses

2 Altmetric

Metrics details

Introduction

Personalised prevention aims to delay or avoid disease occurrence, progression, and recurrence of disease through the adoption of targeted interventions that consider the individual biological, including genetic data, environmental and behavioural characteristics, as well as the socio-cultural context. This protocol summarises the main features of a rapid scoping review to show the research landscape on biomarkers or a combination of biomarkers that may help to better identify subgroups of individuals with different risks of developing specific diseases in which specific preventive strategies could have an impact on clinical outcomes.

This review is part of the “Personalised Prevention Roadmap for the future HEalThcare” (PROPHET) project, which seeks to highlight the gaps in current personalised preventive approaches, in order to develop a Strategic Research and Innovation Agenda for the European Union.

To systematically map and review the evidence of biomarkers that are available or under development in cancer, cardiovascular and neurodegenerative diseases that are or can be used for personalised prevention in the general population, in clinical or public health settings.

Three rapid scoping reviews are being conducted in parallel (February–June 2023), based on a common framework with some adjustments to suit each specific condition (cancer, cardiovascular or neurodegenerative diseases). Medline and Embase will be searched to identify publications between 2020 and 2023. To shorten the time frames, 10% of the papers will undergo screening by two reviewers and only English-language papers will be considered. The following information will be extracted by two reviewers from all the publications selected for inclusion: source type, citation details, country, inclusion/exclusion criteria (population, concept, context, type of evidence source), study methods, and key findings relevant to the review question/s. The selection criteria and the extraction sheet will be pre-tested. Relevant biomarkers for risk prediction and stratification will be recorded. Results will be presented graphically using an evidence map.

Inclusion criteria

Population: general adult populations or adults from specific pre-defined high-risk subgroups; concept: all studies focusing on molecular, cellular, physiological, or imaging biomarkers used for individualised primary or secondary prevention of the diseases of interest; context: clinical or public health settings.

Systematic review registration

https://doi.org/10.17605/OSF.IO/7JRWD (OSF registration DOI).

Peer Review reports

In recent years, innovative health research has moved quickly towards a new paradigm. The ability to analyse and process previously unseen sources and amounts of data, e.g. environmental, clinical, socio-demographic, epidemiological, and ‘omics-derived, has created opportunities in the understanding and prevention of chronic diseases, and in the development of targeted therapies that can cure them. This paradigm has come to be known as “personalised medicine”. According to the European Council Conclusion on personalised medicine for patients (2015/C 421/03), this term defines a medical model which involves characterisation of individuals’ genotypes, phenotypes and lifestyle and environmental exposures (e.g. molecular profiling, medical imaging, lifestyle and environmental data) for tailoring the right therapeutic strategy for the right person at the right time, and/or to determine the predisposition to disease and/or to deliver timely and targeted prevention [ 1 , 2 ]. In many cases, these personalised health strategies have been based on advances in fields such as molecular biology, genetic engineering, bioinformatics, diagnostic imaging and new’omics technologies, which have made it possible to identify biomarkers that have been used to design and adapt therapies to specific patients or groups of patients [ 2 ]. A biomarker is defined as a substance, structure, characteristic, or process that can be objectively quantified as an indicator of typical biological functions, disease processes, or biological reactions to exposure [ 3 , 4 ].

Adopting a public health perspective within this framework, one of the most relevant areas that would benefit from these new opportunities is the personalisation of disease prevention. Personalised prevention aims to delay or avoid the occurrence, progression and recurrence of disease by adopting targeted interventions that take into account biological information, environmental and behavioural characteristics, and the socio-economic and cultural context of individuals. These interventions should be timely, effective and equitable in order to maintain the best possible balance in lifetime health trajectory [ 5 ].

Among the main diseases that merit specific attention are chronic noncommunicable diseases, due to their incidence, their mortality or disability-adjusted life years [ 6 , 7 , 8 , 9 ]. Within the European Union (EU), in 2021, one-third of adults reported suffering from a chronic condition [ 10 ]. In addition, in 2019, the leading causes of mortality were cardiovascular disease (CVD) (35%), cancer (26%), respiratory disease (8%), and Alzheimer's disease (5%) [ 11 ]. For all of the above, in 2019, the PRECeDI consortium recommended the identification of biomarkers that could be used for the prevention of chronic diseases to integrate personalised medicine in the field of chronicity. This will support the goal of stratifying populations by indicating an individuals’ risk or resistance to disease and their potential response to drugs, guiding primary, secondary and tertiary preventive interventions [ 12 ]; understanding primary prevention as measures taken to prevent the occurrence of a disease before it occurs, secondary prevention as actions aimed at early detection, and tertiary prevention as interventions to prevent complications and improve quality of life in individuals already affected by a disease [ 4 ].

The “Personalised Prevention roadmap for the future HEalThcare” (PROPHET) project, funded by the European Union’s Horizon Europe research and innovation program and linked to ICPerMed, seeks to assess the effectiveness, clinical utility, and existing gaps in current personalised preventive approaches, as well as their potential to be implemented in healthcare settings. It also aims to develop a Strategy Research and Innovation Agenda (SRIA) for the European Union. This protocol corresponds to one of the first steps in the PROPHET, namely a review that aims to map the evidence and highlight the evidence gaps in research or the use of biomarkers in personalised prevention in the general adult population, as well as their integration with digital technologies, including wearable devices, accelerometers, and other appliances utilised for measuring physical and physiological functions. These biomarkers may be already available or currently under development in the fields of cancer, CVD, and neurodegenerative diseases.

There is already a significant body of knowledge about primary and secondary prevention strategies for these diseases. For example, hypercholesterolemia or dyslipidaemia, hypertension, smoking, diabetes mellitus and obesity or levels of physical activity are known risk factors for CVD [ 6 , 13 ] and neurodegenerative diseases [ 14 , 15 , 16 ]; for cancer, a summary of lifestyle preventive actions with good evidence is included in the European code against cancer [ 17 ]. The question is whether there is any biomarker or combination of biomarkers that can help to better identify subgroups of individuals with different risks of developing a particular disease, in which specific preventive strategies could have an impact on clinical outcomes. Our aim in this context is to show the available research in this field.

Given the context and time constraints, the rapid scoping review design is the most appropriate method for providing landscape knowledge [ 18 ] and provide summary maps, such as Campbell evidence and gap map [ 19 ]. Here, we present the protocol that will be used to elaborate three rapid scoping reviews and evidence maps of research on biomarkers investigated in relation to primary or secondary prevention of cancer, cardiovascular and neurodegenerative diseases, respectively. The results of these three rapid scoping reviews will contribute to inform the development of the PROPHET SRIA, which will guide the future policy for research in this field in the EU.

Review question

What biomarkers are being investigated in the context of personalised primary and secondary prevention of cancer, CVD and neurodegenerative diseases in the general adult population in clinical or public health settings?

Three rapid scoping reviews are being conducted between February and June 2023, in parallel, one for each disease group included (cancer, CVD and neurodegenerative diseases), using a common framework and specifying the adaptations to each disease group in search terms, data extraction and representation of results.

This research protocol, designed according to Joanna Briggs Institute (JBI) and Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) Checklist [ 20 , 21 , 22 ] was uploaded to the Open Science Framework for public consultation [ 23 ], with registration DOI https://doi.org/ https://doi.org/10.17605/OSF.IO/7JRWD . The protocol was also reviewed by experts in the field, after which modifications were incorporated.

Eligibility criteria

Following the PCC (population, concept and context) model [ 21 , 22 ], the included studies will meet the following eligibility criteria (Table  1 ):

Rationale for performing a rapid scoping review

As explained above, these scoping reviews are intended to be one of the first materials produced in the PROPHET project, so that they can inform the first draft of the SRIA. Therefore, according to the planned timetable, the reviews should be completed in only 4 months. Thus, following recommendations from the Cochrane Rapid Review Methods Group [ 24 ] and taking into account the large number of records expected to be assessed, according to the preliminary searches, and in order to meet these deadlines, specific restrictions were defined for the search—limited to a 3-year period (2020–2023), in English only, and using only MEDLINE and EMBASE as possible sources—and it was decided that the title-abstract and full-text screening phase would be carried out by a single reviewer, after an initial training phase with 10% of the records assessed by two reviewers to ensure concordance between team members. This percentage could be increased if necessary.

Rationale for population selection

These rapid scoping reviews are focused on the general adult population. In addition, they give attention to studies conducted among populations that present specific risk factors relevant to the selected diseases or that include these factors among those considered in the study.

For cancer, these risk (or preventive) factors include smoking [ 25 ], obesity [ 26 ], diabetes [ 27 , 28 , 29 ], Helicobacter pylori infection/colonisation [ 30 ], human papillomavirus (HPV) infection [ 30 ], human immunodeficiency virus (HIV) infection [ 30 ], alcohol consumption [ 31 ], liver cirrhosis and viral (HVB, HVC, HVD) hepatitis [ 32 ].

For CVD, we include hypercholesterolemia or dyslipidaemia, arterial hypertension, smoking, diabetes mellitus, chronic kidney disease, hyperglycaemia and obesity [ 6 , 13 ].

Risk groups for neurodegenerative diseases were defined based on the following risk factors: obesity [ 15 , 33 ], arterial hypertension [ 15 , 33 , 34 , 35 ], diabetes mellitus [ 15 , 33 , 34 , 35 ], dyslipidaemia [ 33 ], alcohol consumption [ 36 , 37 ] and smoking [ 15 , 16 , 33 , 34 ].

After the general search, only relevant and/or disease-specific subpopulations will be used for each specific disease. On the other hand, pregnancy is an exclusion criterion, as the very specific characteristics of this population group would require a specific review.

Rationale for disease selection

The search is limited to diseases with high morbidity and mortality within each of the three disease groups:

Cancer type

Due to time constraints, we only evaluate those malignant neoplasms with the greatest mortality and incidence rates in Europe, which according to the European Cancer Information System [ 38 ] are breast, prostate, colorectum, lung, bladder, pancreas, liver, stomach, kidney, and corpus uteri. Additionally, cervix uteri and liver cancers will also be included due to their preventable nature and/or the existence of public health screening programs [ 30 , 31 ].

We evaluate the following main causes of deaths: ischemic heart disease (49.2% of all CVD deaths), stroke (35.2%) (this includes ischemic stroke, intracerebral haemorrhage and subarachnoid haemorrhage), hypertensive heart disease (6.2%), cardiomyopathy and myocarditis (1.8%), atrial fibrillation and flutter (1.7%), rheumatic heart disease (1.6%), non-rheumatic valvular heart disease (0.9%), aortic aneurism (0.9%), peripheral artery disease (0.4%) and endocarditis (0.4%) [ 6 ].

In this scoping review, specifically in the context of CVD, rheumatic heart disease and endocarditis are not considered because of their infectious aetiology. Arterial hypertension is a risk factor for many cardiovascular diseases and for the purposes of this review is considered as an intermediary disease that leads to CVD.

  • Neurodegenerative diseases

The leading noncommunicable neurodegenerative causes of death are Alzheimer’s disease or dementia (20%), Parkinson’s disease (2.5%), motor neuron diseases (0.4%) and multiple sclerosis (0.2%) [ 8 ]. Alzheimer’s disease, vascular dementia, frontotemporal dementia and Lewy body disease will be specifically searched, following the pattern of European dementia prevalence studies [ 39 ]. Additionally, because amyotrophic lateral sclerosis is the most common motor neuron disease, it is also included in the search [ 8 , 40 , 41 ].

Rationale for context

Public health and clinical settings from any geographical location are being considered. The searches will only consider the period between January 2020 and mid-February 2023 due to time constraints.

Rationale for type of evidence

Qualitative studies are not considered since they cannot answer the research question. Editorials and opinion pieces, protocols, and conference abstracts will also be excluded. Clinical practice guidelines are not included since the information they contain should be in the original studies and in reviews on which they are based.

Pilot study

We did a pilot study to test and refine the search strategies, selection criteria and data extraction sheet as well as to get used to the software—Covidence [ 42 ]. The pilot study consisted of selecting from the results of the preliminary search matrix 100 papers in order of best fit to the topic, and 100 papers at random. The team comprised 15 individual reviewers (both in the pilot and final reviews) who met daily to revise, enhance, and reach consensus on the search matrices, criteria, and data extraction sheets.

Regarding the selected databases and the platforms used, we conducted various tests, including PubMed/MEDLINE and Ovid/MEDLINE, as well as Ovid/Embase and Elsevier/Embase. Ultimately, we chose Ovid as the platform for accessing both MEDLINE and Embase, utilizing thesaurus Mesh and EmTrees. We manually translated these thesauri to ensure consistency between them. Given that the review team was spread across the UK and Spain, we centralised the search results within the UK team's access to the Ovid license to ensure consistency. Additionally, using Ovid exclusively for accessing both MEDLINE and Embase streamlined the process and allowed for easier access to preprints, which represent the latest research in this rapidly evolving field.

Identification of research

The searches are being conducted in MEDLINE via Ovid, Embase via Ovid and Embase preprints via Ovid. We also explored the feasibility of searching in CDC-Authored Genomics and Precision Health Publications Databases [ 43 ] . However, the lack of advanced tools to refine the search, as well as the unavailability of bulk downloading prevented the inclusion of this data source. Nevertheless, a search with 15 records for each disease group showed a full overlap with MEDLINE and/or Embase.

Search strategy definition

An initial limited search of MEDLINE via PubMed and Ovid was undertaken to identify relevant papers on the topic. In this step, we identified keytext words in their titles and abstracts, as well as thesaurus terms. The SR-Accelerator, Citationchaser, and Yale Mesh Analyzer tools were used to assist in the construction of the search matrix. With all this information, we developed a full search strategy adapted for each included database and information source, optimised by research librarians.

Study evidence selection

The complete search strategies are shown in Additional file 3. The three searches are being conducted in parallel. When performing the search, no limits to the type of study or setting are being applied.

Following each search, all identified citations will be collated and uploaded into Covidence (Veritas Health Innovation, Melbourne, Australia, available at www.covidence.org ) with the citation details, and duplicates will be removed.

In the title-abstract and full-text screening phase, the first 10% of the papers will be evaluated by two independent reviewers (accounting for 200 or more papers in absolute numbers in the title-abstract phase). Then, a meeting to discuss discrepancies will lead to adjusting inclusion and exclusion criteria and to acquire consistency between reviewers’ decisions. After that, the full screening of the search results will be performed by a single reviewer. Disagreements that arise between reviewers at each stage of the selection process will be resolved through discussion, or with additional reviewers. We maintain an active forum to facilitate permanent contact among reviewers.

The results of the searches and the study inclusion processes will be reported and presented in a flow diagram following the PRISMA-ScR recommendations [ 22 ].

Expert consultation

The protocol has been refined after consultation with experts in each field (cancer, CVD, and neurodegenerative diseases) who gave input on the scope of the reviews regarding the diverse biomarkers, risk factors, outcomes, and types of prevention relevant to their fields of expertise. In addition, the search strategies have been peer-reviewed by a network of librarians (PRESS-forum in pressforum.pbworks.com) who kindly provided useful feedback.

Data extraction

We have developed a draft data extraction sheet, which is included as Additional file 4, based on the JBI recommendations [ 21 ]. Data extraction will include citation details, study design, population type, biomarker information (name, type, subtype, clinical utility, use of AI technology), disease (group, specific disease), prevention (primary or secondary, lifestyle if primary prevention), and subjective reviewer observations. The data extraction for all papers will be performed by two reviewers to ensure consistency in the classification of data.

Data analysis and presentation

The descriptive information about the studies collected in the previous phase will be coded according to predefined categories to allow the elaboration of visual summary maps that can allow readers and researchers to have a quick overview of their main results. As in the previous phases, this process will be carried out with the aid of Covidence.

Therefore, a summary of the extracted data will be presented in tables as well as in static and, especially, through interactive evidence gap maps (EGM) created using EPPI-Mapper [ 44 ], an open-access web application developed in 2018 by the Evidence for Policy and Practice Information and Coordinating Centre (EPPI-Centre) and Digital Solution Foundry, in partnership with the Campbell Collaboration, which has become the standard software for producing visual evidence gap maps.

Tables and static maps will be made by using R Studio, which will also be used to clean and prepare the database for its use in EPPI-Mapper by generating two Excel files: one containing the EGM structure (i.e. what will be the columns and rows of the visual table) and coding sets, and another containing the bibliographic references and their codes that reviewers had added. Finally, we will use a Python script to produce a file in JSON format, making it ready for importation into EPPI-Reviewer.

The maps are matrixes with biomarker categories/subcategories defining the rows and diseases serving as columns. They define cells, which contain small squares, each one representing each paper included in it. We will use a code of colours to reflect the study design. There will be also a second sublevel in the columns, depending on the map. Thus, for each group of diseases, we will produce three interactive EGMs: two for primary prevention and one for secondary prevention. For primary prevention, the first map will stratify the data to show whether any or which lifestyle has been considered in each paper in combination with the studied biomarker. The second map for primary prevention and the map for secondary prevention will include, as a second sublevel, the subpopulations in which the biomarker has been used or evaluated, which are disease-specific (i.e. cirrhosis for hepatic cancer) researched. The maps will also include filters that allow users to select records based on additional features, such as the use of artificial intelligence in the content of the papers. Furthermore, the EGM, which will be freely available online, will enable users to view and export selected bibliographic references and their abstracts. An example of these interactive maps with dummy data is provided in Additional file 5.

Finally, we will elaborate on two scientific reports for PROPHET. The main report, which will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) recommendations, will summarise the results of the three scoping reviews, will provide a general and global interpretation of the results and will comment on their implication for the SRIA, and will discuss the limitations of the process. The second report will present the specific methodology for the dynamic maps.

This protocol summarises the procedure to carry out three parallel rapid scoping reviews to provide an overview of the available research and gaps in the literature on biomarkers for personalised primary and secondary prevention for the three most common chronic disease groups: cancer, CVD and neurodegenerative diseases. The result will be a common report for the three scoping reviews and the online publication of interactive evidence gap maps to facilitate data visualisation.

This work will be complemented, in a further step of the PROPHET project, by a subsequent mapping report on the scientific evidence for the clinical utility of biomarkers. Both reports are part of an overall mapping effort to characterise the current knowledge and environment around personalised preventive medicine. In this context, PROPHET will also map personalised prevention research programs, as well as bottlenecks and challenges in the adoption of personalised preventive approaches or in the involvement of citizens, patients, health professionals and policy-makers in personalised prevention. The overall results will contribute to the development of the SRIA concept paper, which will help define future priorities for personalised prevention research in the European Union.

In regard to this protocol, one of the strengths of this approach is that it can be applied in the three scoping reviews. This will improve the consistency and comparability of the results between them, allowing for better leveraging of efforts; it also will facilitate the coordination among the staff conducting the different reviews and will allow them to discuss them together, providing a more global perspective as needed for the SRIA. In addition, the collaboration of researchers with different backgrounds, the inclusion of librarians in the research team, and the specific software tools used have helped us to guarantee the quality of the work and have shortened the time invested in defining the final version of this protocol. Another strength is that we have conducted a pilot study to test and refine the search strategy, selection criteria and data extraction sheet. In addition, the selection of the platform of access to the bibliographic databases has been decided after a previous evaluation process (Ovid-MEDLINE versus PubMed MEDLINE, Ovid-Embase versus Elsevier-Embase, etc.).

Only 10% of the papers will undergo screening by two reviewers, and if time permits, we will conduct kappa statistics to assess reviewer agreement during the screening phases. Additionally, ongoing communication and the exchange and discussion of uncertainties will ensure a high level of consensus in the review process.

The main limitation of this work is the very broad field it covers: personalised prevention in all chronic diseases; however, we have tried to maintain decisions to limit it to the chronic diseases with the greatest impact on the population and in the last 3 years, making a rapid scoping review due to time constraints following recommendations from the Cochrane Rapid Review Methods Group [ 24 ]; however, as our aim is to identify gaps in the literature in an area of growing interest (personalisation and prevention), we believe that the records retrieved will provide a solid foundation for evaluating available literature. Additionally, systematic reviews, which may encompass studies predating 2020, have the potential to provide valuable insights beyond the temporal constraints of our search.

Thus, this protocol reflects the decisions set by the PROPHET's timetable, without losing the quality and rigour of the work. In addition, the data extraction phase will be done by two reviewers in 100% of the papers to ensure the consistency of the extracted data. Lastly, extending beyond these three scoping reviews, the primary challenge resides in amalgamating their findings with those from numerous other reviews within the project, ultimately producing a cohesive concept paper in the Strategy Research and Innovation Agenda (SRIA) for the European Union, firmly rooted in evidence-based conclusions.

Council of European Union. Council conclusions on personalised medicine for patients (2015/C 421/03). Brussels: European Union; 2015 dic. Report No.: (2015/C 421/03). Disponible en: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52015XG1217(01)&from=FR .

Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018;109(6):952–63.

Article   PubMed   PubMed Central   Google Scholar  

FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring (MD): Food and Drug Administration (US); 2016 [citado 3 de febrero de 2023]. Disponible en: http://www.ncbi.nlm.nih.gov/books/NBK326791/ .

Porta M, Greenland S, Hernán M, dos Silva I S, Last JM. International Epidemiological Association, editores. A dictionary of epidemiology. 6th ed. Oxford: Oxford Univ. Press; 2014. p. 343.

Google Scholar  

PROPHET. Project kick-off meeting. Rome. 2022.

Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J Am College Cardiol. 2020;76(25):2982–3021.

Article   Google Scholar  

GBD 2019 Cancer Collaboration, Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the global burden of disease study 2019. JAMA Oncol. 2022;8(3):420.

Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, et al. The global burden of neurological disorders: translating evidence into policy. The Lancet Neurology. 2020;19(3):255–65.

Article   PubMed   Google Scholar  

GBD 2019 Collaborators, Nichols E, Abd‐Allah F, Abdoli A, Abosetugn AE, Abrha WA, et al. Global mortality from dementia: Application of a new method and results from the Global Burden of Disease Study 2019. A&D Transl Res & Clin Interv. 2021;7(1). Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/trc2.12200 . [citado 7 de febrero de 2023].

Eurostat. ec.europa.eu. Self-perceived health statistics. European health interview survey (EHIS). 2022. Disponible en: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Self-perceived_health_statistics . [citado 7 de febrero de 2023].

OECD/European Union. Health at a Glance: Europe 2022: State of Health in the EU Cycle. Paris: OECD Publishing; 2022. Disponible en: https://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-europe-2022_507433b0-en .

Boccia S, Pastorino R, Ricciardi W, Ádány R, Barnhoorn F, Boffetta P, et al. How to integrate personalized medicine into prevention? Recommendations from the Personalized Prevention of Chronic Diseases (PRECeDI) Consortium. Public Health Genomics. 2019;22(5–6):208–14.

Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–337.

World Health Organization. Global action plan on the public health response to dementia 2017–2025. Geneva: WHO Document Production Services; 2017. p. 27.

Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94.

Mentis AFA, Dardiotis E, Efthymiou V, Chrousos GP. Non-genetic risk and protective factors and biomarkers for neurological disorders: a meta-umbrella systematic review of umbrella reviews. BMC Med. 2021;19(1):6.

Schüz J, Espina C, Villain P, Herrero R, Leon ME, Minozzi S, et al. European Code against Cancer 4th Edition: 12 ways to reduce your cancer risk. Cancer Epidemiol. 2015;39:S1-10.

Tricco AC, Langlois EtienneV, Straus SE, Alliance for Health Policy and Systems Research, World Health Organization. Rapid reviews to strengthen health policy and systems: a practical guide. Geneva: World Health Organization; 2017. Disponible en: https://apps.who.int/iris/handle/10665/258698 . [citado 3 de febrero de 2023].

White H, Albers B, Gaarder M, Kornør H, Littell J, Marshall Z, et al. Guidance for producing a Campbell evidence and gap map. Campbell Systematic Reviews. 2020;16(4). Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/cl2.1125 . [citado 3 de febrero de 2023].

Aromataris E, Munn Z. editores. JBI: JBI Manual for Evidence Synthesis; 2020.

Peters MDJ, Marnie C, Tricco AC, Pollock D, Munn Z, Alexander L, et al. Updated methodological guidance for the conduct of scoping reviews. JBI Evid Synth. 2020;18(10):2119–26.

Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467–73.

OSF. Open Science Framework webpage. Disponible en: https://osf.io/ . [citado 8 de febrero de 2023].

Garritty C, Gartlehner G, Nussbaumer-Streit B, King VJ, Hamel C, Kamel C, et al. Cochrane Rapid Reviews Methods Group offers evidence-informed guidance to conduct rapid reviews. Journal Clin Epidemiol. 2021;130:13–22.

Leon ME, Peruga A, McNeill A, Kralikova E, Guha N, Minozzi S, et al. European code against cancer, 4th edition: tobacco and cancer. Cancer Epidemiology. 2015;39:S20-33.

Anderson AS, Key TJ, Norat T, Scoccianti C, Cecchini M, Berrino F, et al. European code against cancer 4th edition: obesity, body fatness and cancer. Cancer Epidemiology. 2015;39:S34-45.

Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL, et al. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA. 2008;300(23):2754–64.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL, et al. Postoperative mortality in cancer patients with preexisting diabetes: systematic review and meta-analysis. Diabetes Care. 2010;33(4):931–9.

Noto H, Tsujimoto T, Sasazuki T, Noda M. Significantly increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis. Endocr Pract. 2011;17(4):616–28.

Villain P, Gonzalez P, Almonte M, Franceschi S, Dillner J, Anttila A, et al. European code against cancer 4th edition: infections and cancer. Cancer Epidemiology. 2015;39:S120-38.

Scoccianti C, Cecchini M, Anderson AS, Berrino F, Boutron-Ruault MC, Espina C, et al. European Code against Cancer 4th Edition: Alcohol drinking and cancer. Cancer Epidemiology. 2016;45:181–8.

El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142(6):1264-1273.e1.

Li XY, Zhang M, Xu W, Li JQ, Cao XP, Yu JT, et al. Midlife modifiable risk factors for dementia: a systematic review and meta-analysis of 34 prospective cohort studies. CAR. 2020;16(14):1254–68.

Ford E, Greenslade N, Paudyal P, Bremner S, Smith HE, Banerjee S, et al. Predicting dementia from primary care records: a systematic review and meta-analysis Forloni G, editor. PLoS ONE. 2018;13(3):e0194735.

Xu W, Tan L, Wang HF, Jiang T, Tan MS, Tan L, et al. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2015;86(12):1299–306.

PubMed   Google Scholar  

Guo Y, Xu W, Liu FT, Li JQ, Cao XP, Tan L, et al. Modifiable risk factors for cognitive impairment in Parkinson’s disease: A systematic review and meta-analysis of prospective cohort studies. Mov Disord. 2019;34(6):876–83.

Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Alcohol consumption and risk for Parkinson’s disease: a systematic review and meta-analysis. J Neurol agosto de. 2019;266(8):1821–34.

ECIS European Cancer Information System. Data explorer | ECIS. 2023. Estimates of cancer incidence and mortality in 2020 for all cancer sites. Disponible en: https://ecis.jrc.ec.europa.eu/explorer.php?$0-0$1-AE27$2-All$4-2$3-All$6-0,85$5-2020,2020$7-7,8$CEstByCancer$X0_8-3$CEstRelativeCanc$X1_8-3$X1_9-AE27$CEstBySexByCancer$X2_8-3$X2_-1-1 . [citado 22 de febrero de 2023].

Bacigalupo I, Mayer F, Lacorte E, Di Pucchio A, Marzolini F, Canevelli M, et al. A systematic review and meta-analysis on the prevalence of dementia in Europe: estimates from the highest-quality studies adopting the DSM IV diagnostic criteria Bruni AC, editor. JAD. 2018;66(4):1471–81.

Barceló MA, Povedano M, Vázquez-Costa JF, Franquet Á, Solans M, Saez M. Estimation of the prevalence and incidence of motor neuron diseases in two Spanish regions: Catalonia and Valencia. Sci Rep. 2021;11(1):6207.

Ng L, Khan F, Young CA, Galea M. Symptomatic treatments for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Neuromuscular Group, editor. Cochrane Database of Systematic Reviews. 2017;2017(1). Disponible en: http://doi.wiley.com/10.1002/14651858.CD011776.pub2 . [citado 13 de febrero de 2023].

Covidence systematic review software. Melbourne, Australia: Veritas Health Innovation; 2023. Disponible en: https://www.covidence.org .

Centre for Disease Control and Prevention. Public Health Genomics and Precision Health Knowledge Base (v8.4). 2023. Disponible en: https://phgkb.cdc.gov/PHGKB/specificPHGKB.action?action=about .

Digital Solution Foundry and EPPI Centre. EPPI Centre. UCL Social Research Institute: University College London; 2022.

Download references

Acknowledgements

We are grateful for the library support received from Teresa Carretero (Instituto de Salud Carlos III, ISCIII) and, from Concepción Campos-Asensio (Hospital Universitario de Getafe, Comité ejecutivo BiblioMadSalud) for the seminar on the Scoping Reviews methodology and for their continuous teachings through their social networks.

Also, we would like to thank Dr. Héctor Bueno (Centro Nacional de Investigaciones Cardiovasculares (CNIC), Hospital Universitario 12 de Octubre) and Dr. Pascual Sánchez (Fundación Centro de Investigación de Enfermedades Neurológicas (CIEN)) for their advice in their fields of expertise.

The PROPHET project has received funding from the European Union’s Horizon Europe research and innovation program under grant agreement no. 101057721. UK participation in Horizon Europe Project PROPHET is supported by UKRI grant number 10040946 (Foundation for Genomics & Population Health).

Author information

Plans-Beriso E and Babb-de-Villiers C contributed equally to this work.

Kroese M and Pérez-Gómez B contributed equally to this work.

Authors and Affiliations

Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain

E Plans-Beriso, C Barahona-López, P Diez-Echave, O R Hernández, E García-Ovejero, O Craciun, P Fernández-Navarro, N Fernández-Larrea, E García-Esquinas, M Pollan-Santamaria & B Pérez-Gómez

CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain

E Plans-Beriso, D Petrova, C Barahona-López, P Diez-Echave, O R Hernández, N F Fernández-Martínez, P Fernández-Navarro, N Fernández-Larrea, E García-Esquinas, V Moreno, F Rodríguez-Artalejo, M J Sánchez, M Pollan-Santamaria & B Pérez-Gómez

PHG Foundation, University of Cambridge, Cambridge, UK

C Babb-de-Villiers, H Turner, L Blackburn & M Kroese

Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain

D Petrova, N F Fernández-Martínez & M J Sánchez

Escuela Andaluza de Salud Pública (EASP), Granada, Spain

Cambridge University Medical Library, Cambridge, UK

National Library of Health Sciences, Instituto de Salud Carlos III, Madrid, Spain

V Jiménez-Planet

Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, 08908, Spain

Colorectal Cancer Group, ONCOBELL Program, Institut de Recerca Biomedica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, 08908, Spain

Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain

F Rodríguez-Artalejo

IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain

You can also search for this author in PubMed   Google Scholar

Contributions

BPG and MK supervised and directed the project. EPB and CBV coordinated and managed the development of the project. CBL, PDE, ORH, CBV and EPB developed the search strategy. All authors reviewed the content, commented on the methods, provided feedback, contributed to drafts and approved the final manuscript.

Corresponding author

Correspondence to E Plans-Beriso .

Ethics declarations

Competing interests.

There are no conflicts of interest in this project.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: glossary., additional file 2: glossary of biomarkers that may define high risk groups., additional file 3: search strategy., additional file 4: data extraction sheet., additional file 5: example of interactive maps in cancer and primary prevention., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Plans-Beriso, E., Babb-de-Villiers, C., Petrova, D. et al. Biomarkers for personalised prevention of chronic diseases: a common protocol for three rapid scoping reviews. Syst Rev 13 , 147 (2024). https://doi.org/10.1186/s13643-024-02554-9

Download citation

Received : 19 October 2023

Accepted : 03 May 2024

Published : 01 June 2024

DOI : https://doi.org/10.1186/s13643-024-02554-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Personalised prevention
  • Precision Medicine
  • Precision prevention
  • Cardiovascular diseases
  • Chronic diseases

Systematic Reviews

ISSN: 2046-4053

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

parts of the common research paper

IMAGES

  1. 10 Parts Of A Common Research Paper

    parts of the common research paper

  2. Parts Of A Research Paper: How To Write It Properly?

    parts of the common research paper

  3. 10 Parts Of A Common Research Paper

    parts of the common research paper

  4. Parts of a Research Paper

    parts of the common research paper

  5. 10 Parts Of A Common Research Paper

    parts of the common research paper

  6. 10 Parts Of A Common Research Paper

    parts of the common research paper

VIDEO

  1. Introduction of SBS Common Research Core, CUHK

  2. Common Types of Research Papers for Publication

  3. Small Business Networking 201: Advice for Finding the Right Research Partner

  4. How to read and Write Abstract of research paper

  5. What are the 10 steps to writing a research paper?

  6. COMMON RESEARCH TERMS

COMMENTS

  1. How to Write a Research Paper: Parts of the Paper

    1. The Title. The title should be specific and indicate the theme of the research and what ideas it addresses. Use keywords that help explain your paper's topic to the reader. Try to avoid abbreviations and jargon. Think about keywords that people would use to search for your paper and include them in your title. 2.

  2. Everything You Need to Know about the Parts of a Research Paper

    Here's a breakdown of some common types of research papers: Analytical Papers. Focus: Dissect a complex subject, text, or phenomenon to understand its parts, implications, or underlying meanings. Structure: Emphasizes a clear thesis statement, systematic analysis, and in-depth exploration of different perspectives.

  3. Parts of the paper

    Different sections are needed in different types of scientific papers (lab reports, literature reviews, systematic reviews, methods papers, research papers, etc.). Projects that overlap with the social sciences or humanities may have different requirements. Generally, however, you'll need to include: TITLE. ABSTRACT. INTRODUCTION (Background)

  4. Research Paper Structure

    A complete research paper in APA style that is reporting on experimental research will typically contain a Title page, Abstract, Introduction, Methods, Results, Discussion, and References sections. 1 Many will also contain Figures and Tables and some will have an Appendix or Appendices. These sections are detailed as follows (for a more in ...

  5. PDF The Structure of an Academic Paper

    The thesis is generally the narrowest part and last sentence of the introduction, and conveys your position, the essence of your argument or idea. See our handout on Writing a Thesis Statement for more. The roadmap Not all academic papers include a roadmap, but many do. Usually following the thesis, a roadmap is a

  6. Research Paper

    Here are some common situations where a person might need to write a research paper: For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities.

  7. Writing an Educational Research Paper

    Content aside, the writing style and presentation of papers in different educational fields vary greatly. Nevertheless, certain parts are common to most papers, for example: Title/Cover Page. Contains the paper's title, the author's name, address, phone number, e-mail, and the day's date. Abstract. Not every education paper requires an abstract.

  8. Research Guides: Structure of a Research Paper : Home

    Abstract: "Structured abstract" has become the standard for research papers (introduction, objective, methods, results and conclusions), while reviews, case reports and other articles have non-structured abstracts. The abstract should be a summary/synopsis of the paper. III. Introduction: The "why did you do the study"; setting the ...

  9. How to Write a Research Paper

    Choose a research paper topic. Conduct preliminary research. Develop a thesis statement. Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion. The second draft.

  10. Research Paper Structure: A Comprehensive Guide

    A well-structured research paper not only helps readers follow the flow of ideas but also enhances the clarity and coherence of the content. By organizing information into sections, paragraphs, and sentences, researchers can present their thoughts logically and systematically. This logical organization allows readers to easily connect ideas ...

  11. Parts of a Research Paper

    Method. This should be the easiest part of the paper to write, as it is a run-down of the exact design and methodology used to perform the research. Obviously, the exact methodology varies depending upon the exact field and type of experiment.. There is a big methodological difference between the apparatus based research of the physical sciences and the methods and observation methods of ...

  12. How to Write a Research Paper

    For these students, developing the working thesis may happen as a part of the rough draft (see the relevant section below). ... Common Research Paper Methodologies. When grading a research paper, instructors look for a consistent methodology. This section will help you understand different methodological approaches used in research papers ...

  13. Writing a Research Paper

    The pages in this section cover the following topic areas related to the process of writing a research paper: Genre - This section will provide an overview for understanding the difference between an analytical and argumentative research paper. Choosing a Topic - This section will guide the student through the process of choosing topics ...

  14. How To Structure a Research Paper: 8 Key Elements

    1. Research Paper Title. A research paper title is read first, and read the most. The title serves two purposes: informing readers and attracting attention. Therefore, your research paper title should be clear, descriptive, and concise. If you can, avoid technical jargon and abbreviations.

  15. 7 Parts of the Research Paper

    Parts of a Research Paper. There is no one right style or manner for writing an education paper. Content aside, the writing style and presentation of papers in different fields vary greatly. Nevertheless, certain parts are common to most papers, below are outlined the 7 most common parts. Links are provided to more information about each section.

  16. Writing a Research Paper Introduction

    Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  17. Parts of a Research Paper

    This part of a research paper is supposed to provide the theoretical framework that you elaborated during your research. You will be expected to present the sources you have studied while preparing for the work ahead, and these sources should be credible from an academic standpoint (including educational books, peer-reviewed journals, and other relevant publications).

  18. Structuring the Research Paper: Formal Research Structure

    Formal Research Structure. These are the primary purposes for formal research: enter the discourse, or conversation, of other writers and scholars in your field. learn how others in your field use primary and secondary resources. find and understand raw data and information. For the formal academic research assignment, consider an ...

  19. 3.2 Components of a scientific paper

    3.2.1 Abstract. The abstract is a short summary (150-200 words or less) of the important points of the paper. It does not generally include background information. There may be a very brief statement of the rationale for conducting the study. It describes what was done, but without details.

  20. Writing a Research Paper: From the Parts to the Whole

    up of two parts, the title and a sub-title, separated by a colon, as in the. case of this paper. Author and affiliation. The name of the author (or authors) i s given. below the title, followed by ...

  21. 13.1 Formatting a Research Paper

    Set the top, bottom, and side margins of your paper at 1 inch. Use double-spaced text throughout your paper. Use a standard font, such as Times New Roman or Arial, in a legible size (10- to 12-point). Use continuous pagination throughout the paper, including the title page and the references section.

  22. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  23. 10 Parts Of A Common Research Paper

    The research paper is a part of academic writing that provides review, description, and reasoning based on in-depth independent research. Research papers are similar to educational essays, but they are usually longer and more detailed, designed to evaluate not only your writing skills but also your skills in educational research.

  24. Welcome to the Purdue Online Writing Lab

    Mission. The Purdue On-Campus Writing Lab and Purdue Online Writing Lab assist clients in their development as writers—no matter what their skill level—with on-campus consultations, online participation, and community engagement. The Purdue Writing Lab serves the Purdue, West Lafayette, campus and coordinates with local literacy initiatives.

  25. How to Write the First Draft of a Research Paper with Paperpal?

    Step 1: Creating a research paper outline. Step 2: Breaking down the outline into sections. Step 3: Drafting the research paper. A glimpse into academic forums and social media gives a clear picture that many researchers across the world go through similar problems while writing the first draft of a research paper.

  26. What do editors and reviewers look out for in a paper?

    As an author, you will have spent weeks, months or perhaps even years preparing your manuscript for submission. Whilst you will know the ins and outs of your article, the fate of the manuscript, whether it be a research paper, review or case report, will lie in the hands of an impartial selection of individuals who are experts in their respective fields, but have no prior knowledge of your ...

  27. Parts of the Paper

    Finally, the conclusion restates the paper's thesis and should explain what you have learned, giving a wrap up of your main ideas. 1. The Title The title should be specific and indicate the theme of the research and what ideas it addresses. Use keywords that help explain your paper's topic to the reader. Try to avoid abbreviations and jargon.

  28. Scientific integrity and U.S. "Billion Dollar Disasters"

    NOAA defines a "fundamental research communication" to be "official work regarding the products of basic or applied research in science and engineering, the results of which ordinarily are ...

  29. The state of AI in early 2024: Gen AI adoption spikes and starts to

    If 2023 was the year the world discovered generative AI (gen AI), 2024 is the year organizations truly began using—and deriving business value from—this new technology. In the latest McKinsey Global Survey on AI, 65 percent of respondents report that their organizations are regularly using gen AI, nearly double the percentage from our ...

  30. Biomarkers for personalised prevention of chronic diseases: a common

    In recent years, innovative health research has moved quickly towards a new paradigm. The ability to analyse and process previously unseen sources and amounts of data, e.g. environmental, clinical, socio-demographic, epidemiological, and 'omics-derived, has created opportunities in the understanding and prevention of chronic diseases, and in the development of targeted therapies that can ...